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RESEARCH MEM)RANDUM 

AERODYNAMIC CHARACTERISTICS AT TRANSONIC AND SUPERSONIC 

SPEEDS OF A ROCKET-PROPELLED AIRPLANE CONFIGURATION 

HAVING A 52.50 DELTA WING AND A LOW, 

SWEPT HORIZONTAL TAIL 

By Alan B. Kehlet 

SUMMARY 

A flight investigation over a Mach number range from 0.79 to 1.83 
has been conducted in order to determine the aerodynamic characteristics 
at low lift of a rocket model of an airplane configuration having a 
52.50 delta wing of aspect rat io 3 .08 with NACA 65A003 airfoil sections 
in the streamwise direct ion and a low, swept horizontal tail. The 
lift-curve slopes and static longitudinal stability were nonlinear with 
lift coefficient over most of the Mach number range and increased with 
increasing lift coefficient over the lift range covered. The minimum 
drag coefficient increased from 0.016 to 0 . 035 through the transonic 
speed range. 

The model damping characteristics were irregular and altered for 
the t wo tail settings over t he Mach number range covered with the higher
lift tail setting having the greater damping . 

The measured periods of the lat eral oscillations were of the same 
order of magnitude as the longitudinal periods, but apparently were not 
affect ed by lift coefficient . The model exhibited stable static direc
tional characteristics throughout the Mach number range tested. 

INTRODUCTION 

As part of a general research program investigating longitudinal 
stability of wings having various plan forms and t hickness ratios] a 
rocket - propelled model of an airplane configuration having a 52 .50 delta 
wing of aspec t ratio 3 .08 has been 'flown. The basic fuselage -empennage 
configuration (ref. 1) had swept horizontal and vertical tails with the 
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all-movable horizontal tail mounted in a low position. During the 
flight, the horizontal tail was deflected in a square-wave program 
between 0.100 and -3.20

• 

The model was flown at the Langley Pilotless Aircraft Research 
Station at Wallops Island, Va . 
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SYMBOLS 

normal- force coefficient, 

chord- force coefficient, _ ar wjs 
g q 

lift coefficient, CN cos ~ - Cc sin ~ 

drag coefficient, Cc cos ~ + CN sin ~ 

lift coefficient at minimum drag coefficient 

pitching- moment coefficient about center of gravity 

normal acceleration determined from accelerometer, ft/sec 2 

longitudinal acceleration determined from accelerometer, 
ft/sec 2 

acceleration of gravity, ft/sec 2 

dynamic pressure, 0. 70pM2 

free - stream static pressure , lb/sq ft 

Mach number 

Reynolds number, based on wing mean aerodynamic chord 

wing area (including area enclosed by fuselage), sq ft 

wing mean aerodynamic chord (M. A.C. ), ft 

wing span , ft 

weight, lb 

CONFIDENTIAL 



r 

NACA RM L54A20 CONF IDENTIAL 

A cross-sectional area, sq in. 

r equivalent radius of cross-sectional area, in. VA/rt 

x longitudinal dis t ance from station 0, in. 

length of model, in. 

p period of oscillation, sec 

Tl/2 time to damp to one-half amplitude, sec 

8 

Cm == 
q 

Cma, 

dCm 

angle of attack, deg 

cont rol panel deflect ion (measured free stream normal to 
wing chord plane), deg 

angl e of pitch, radians 

angl e of sideslip, deg 

---

d(~~) 
dCm ---

d(~~) 

effective rate of change of yawing-moment coefficient with 
sideslip angle per degree (derived as in ref. 7) 

Subscripts: 

w wing 

f fuselage 
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1 dCL CL ---
57.3 dt 

de 
q = dt 

The symbols CL, 
the derivative of the 

dCL 
example, CLa, = dCL 
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a, q, 0, and ~* used as subscripts indicate 
quantity with respect to t he subscript; for 

MODEL AND INSTRUMENTATI ON 

Model 

A three- view drawing of the model is shown in figure 1 . The non
dimensional equivalent body and area distribution, presented for 
possible drag correlation purposes, are shown in figure 2 . Photographs 
of the model are shown in figure 3. 

The empennage has a vertical fin of wood and aluminum with the 
quarter- chord line swept 600 and NACA 65A003 airfoil sections in the 
s t reamwise direction; a horizontal tail of duralumin with the quarter
chord line swept 450 with 200 negative dihedral and NACA 65A006 airfoil 
sections in the streamwise direction perpendicular to the chord plane . 
The fuselage is described in reference 2 . 

The steel delta wing of aspect ratio 3 .08 had a leading- edge sweep 
of 52 . 50 and NACA 65A003 airfoil sections in the streamwise direction . 

Each panel of the horizontal t ail was deflected in an approximate 
square- wave program by a separate servo-cont rol fed by a common pressure 
system and regulated by an electric motor- driven selector valve . For 
the present investigation, the stop positions were 0 .10 and - 3.20 

measured parallel t o the model center line and normal to the wing chord 
plane . 

The model weighed 118 .75 pounds and had a moment of inertia in 
pitch and yaw of 8 . 21 and 8 . 31 slug- ft 2 , respectively . The center of 
gravity was loca ted at 0.26 of the wing mean aerodynamic chord . 
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Instrumentation 

The model was equipped with an NACA telemetering system which 
transmitted continuous measurements of normal acceleration at the 
center of gravity) normal acceleration at a reference nose station) 
angle of attack) longitudinal acceleration) transverse acceleration) 
control position) total pressure) and reference static pressure. 

5 

Flight-path information was obtained from tracking radar and 
atmospheric conditions at altitude from a radiosonde released immediately 
after the flight. Motion-picture cameras were used to photograph the 
launching and first portion of the flight. 

TESTS AND DATA REDUCTION 

Preflight Tests 

Prior to instrumentation) the model was placed in a profile machine 
and measurements were made in the streamwise direction of the airfoil 
sections) perpendicular to the chord planes of the vertical and hori
zontal tails and of the wing . These measurements were used to check 
construction tolerances. 

Prior t o flight testing and with the instruments installed) the 
model was suspended by shock chords and vibrated by an electromagnetic 
shaker. The following model natural frequencies and modes of vibration 
were determined: 

First Second 
Torsion) bending) bending) 

cps cps cps 

Horizontal tail . 100 
Vertical tail . 57 
Wing . . . . . 116 164 370 

Wing Modes 

First bending Second bending Torsion 

Nose 
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Fli ght Tests 

The model was launched at an angle of approximately 600 from tne 
horizontal by means of a mobile launcher as shown in figure 3 . Two 
6- inch- diameter solid- fuel ABL Deacon rocket motors boosted the model 
to maximum velocity . All measurements used were taken during the 
decelerating portion of the flight . 

Dat a Reduction 

The response of the model to deflections of an all- movable hori 
zontal tail in an approximate square- wave program was analyzed by the 
me t hod of reference 3 . The indicated angles of attack were corrected 
to angles of attack at the model center of gravity by the method of 
reference 4. The two- accelerometer method for obtaining instantaneous 
total pitching-moment coefficients was used as described in reference 2. 

ACCURACY 

The absolute accuracy of the measured quantities is impossible to 
establish because the inst rument calibrations can not be checked during 
or after the flight . Most of the probable inst rumentation errors occur 
as errors in absolute magnitude . Incremental values or slopes should) 
in general) be more accurate than the absolute values . An indication 
of t he syst ematic instrument errors possible is given by the following 
table) based on an accuracy of ±l percent of the full instrument range: 

M CN Cc 

1. 7 ±0 . 00490 ±0 . 00122 
1. 0 ±. 0225l ±. 00563 

. S ±. 041S0 ±.01045 

The CW Doppler radar unit is believed to be accur ate to better 
t han 1 precent for nonmaneuvering models . The Mach number at peak 
velocity should) t herefore) be accurate to 1 percent or better. Since 
the Mach number subsequent t o peak velocity was determined from 
telemetric da t a ) it probably becomes less accurate as the Mach number 
decreases . 

Further error s in the aerodynamic coefficients may ari se f r om 
possible dynamic- pressure inaccuracies which are approximately twice 
as great as errors in Mach number . 
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An indication of random errors encountered may be noted from the 
scatter of data points shown in the figures. Errors in angle of attack 
and control panel deflection are independent of dynamic pressure and 
are not likely to vary with Mach number. The horizontal-tail deflec
tions are estimated to be accurate within ±0.100 and the increments in 
angle of attack within ±0 . 20°. 

RESULTS AND DISCUSSION 

Dynamic pressure and Reynolds number obtained during the flight 
are shown in figures 4 and 5, respectively . A typical time history at 
the higher Mach numbers of some of the quantities measured is shown in 
figure 6. Hereafter, in order to distinguish the two tail settings, 
the deflection of 0.10 shall be referred to as the low- lift tail setting 
and the deflection of -3.20 as the higher-lift tail setting. 

Longitudinal Trim 

The variations of the trim lift coefficient and trim angle of attack 
at the two control settings as functions of Mach number are shown in fig 
ure 7. At transonic speeds and with increasing Mach number, the model 
exhibited a trim change of approximately 10 nose- up in the low lift 
range ; whereas at the higher trimmed lift condition, a nose- down trim 
change of approximately 20 occurred. 

Lift 

The variation of the lift coefficient with angle of attack over the 
Mach number range is shown in figure 8. The lift- curve slopes repre
sented by the faired lines in figure 8 are presented as functions of 
Mach number in figure 9 for' both tail settings. I ncluded in figure 9 
for comparative purposes are the lift - curve- slope data for a wind- tunnel 
model with a similar wing- fuselage combination having no horizontal tail 
(ref . 5). In view of the differences in models, the agreement between 
the rocket - model data and the wind- tunnel data is considered good . I t 
is indicated in figure 9 that the lift coefficient does not vary line
arly with the angle of attack, particularly at the lower Mach numbers; 
however, reference to the trim lift coefficients ( fig . 7), which are 
indicative of the lift ranges covered by the two tai l settings, shows 
that the linearity of the lift - curve slopes present at the higher Mach 
numbers may be due to the low lift range of the hi gher- lift tail setting 
and not entirely to a Mach number effect . The incr ease in lift - curve 
slope with increasing lift coefficient, where nonlinearity occurs, is 
believed to be due in part to a decrease in the downwash field over the 
low horizontal tail with increasing angle of attack of the model and to 
a nonlinearity in the lift - curve slope of the long nose section of the 
fuselage. 
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Drag 

The variation of drag coefficient with lift coefficient corresponding 
to the lift ranges of figure 8 is shown in figure 10. The maximum lift
drag ratios that could be measured from figure 10 and lift coefficient 
at which (L/D)max occurs are shown in figure 11 . Because of the 
reduced amplitude of the oscillations) the model never reached its maxi
mum lift-drag ratios at Mach numbers greater than 1 . 12; values of 
(L/D)max and CL for (L/D)max obtained at higher Mach numbers were 
extrapolated from the data for the drag due to lift) minimum drag coef
ficient) and lift coefficient at minimum drag. At high subsonic speeds) 
the maximum value of the maximum lift-drag ratios obtained was about 9) 
decreasing to about 6 at low supersonic speeds and to about 4~ at the 

testIs limit ; the values of lift coefficient corresponding to these 
values are about 0.25) 0.40) and 0.30) respectively. 

The minimum drag coefficient and the lift coefficient at IDlnlmum 
drag coefficient obtained from figure 10 are presented as a function 
of Mach number in figure 12. The flagged symbols on the minimum-drag
coefficient curve indicate extrapolated points from the higher-lift 
tail setting. It should be noted that) as indicated by the basic data 
of figure 10) the values of the minimum drag coefficient correspond 
closely to the values of the zero lift-drag coefficient) the drag polars 
at the low-lift tail setting are flat around zero lift coefficient) and 
the values of the lift coefficient at minimum drag can be determined) 
with any degree of accuracy) only below a Mach number of 1 . 3. At all 
Mach numbers for the higher-lift tail setting) no lift coefficient at 
minimum drag can be obtained. 

By using the values of the lift coefficient at IDlnlmum drag coeffi
cient (fig. 12) for the low- lift tail setting and by interpolating 
values for the higher - lift tail setting) the effect of lift on drag as 
a function of Mach number was determined and is presented in figure 13. 
As indicated by the data of figure 13) the model exhibited poor leading
edge suction over the Mach number range where the effect of lift on drag 
could be determined. As stated before) prior to instrumentation) measure
ments of the airfoil sections were made . The wing airfoil sections) as 
determined from these measurements) revealed a leading- edge radius some
what smaller than the true NACA 65A003 airfoil section. The resulting 
rather sharp leading edge is believed to be part of the cause of the 
lack of leading- edge suct ion obtained. 

Longitudinal Static Stability 

The measured periods of the longitudinal oscillations for both 
tail settings as a function of Mach number and the longitudinal- static
stability parameter Cmu determined from these periods are presented in 
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figures 14 and 15, respectively . As with the lift-curve slopes (fig . 9), 
the nonlinearity present in the data decreased wit h increasing Mach num
ber. Where nonlinearity of the data occurred, the higher - lift tail 
setting had the greater value of static stabili ty . Again, however, the 
linearity at the higher Mach numbers may be due to the decreasing trim 
lift coefficient rather than to the increasing Mach number. 

The variation of the static- stability parameter is reflected in 
t he aerodynamic- center location for the two tail settings (fig. 16). 
The data at both tail settings exhibited a rearward movement of the 
aerodynamic center up to a Mach number of about 1 .5 with the higher
lift tail setting having the greater stability . Above M = 1.5, a 
forward movement occur s . 

The variation of the total pitching- moment coefficient, obtained 
from the two- accelerometer method (ref. 2), with lift coefficient is 
shown in figure 17. Although some scatter is present, particularly at 
subsonic speeds, the data agree, in general, with the slopes indicated by 
the period method and the trim data of figure 7 which are also shown 
in figure 17. 

A measure of the horizontal- tail effectiveness in producing moment 
and ability to produce lift, as obtained from an average of Cmu for 

the two tail settings (fig. 15), the trim angle of attack ( fig . 7), and 
an estimated tail length, is presented in figure 18. Both parameters 
exhibit the same general shape as the lift - curve slopes (fig . 9) , that 
is, increasing with Mach number to M = 1 .0 and then decreasing with 
increasing Mach number . At the test limit (M ~ 1 . 83) , a decrease of 
approximately 50 percent of that at M = 1 .0 is noted in both param
eters . Included in figure 18 for comparative purposes are C16 and 
Cmo , obtained from C~ from the exposed duralumin wing of reference 2 
(extrapolated C~ at the higher Mach numbers) and corrected for 
dihedral effects . 

Although the values obtained from reference 2 are approximately 
20 percent higher throughout the Mach number range covered, it should 
be pointed out that the duralumin wing C~ used was not corrected 
for the small gap that exists between the fuselage and horizontal- tail 
panel . The effects of a small gap in a nonviscous flow (ref. 6) can 
be large, reducing the lift-curve slope by as much as 40 percent. By 
using an average gap of 0.076 inch and C~ from reference 2, an esti-

mate of the effect of the gap at M = 1.00 was made . The gap reduced 
the parameters by about 30 percent (about 15 percent lower than the 
model values). However, since ~he flow is viscous and, therefore, the 
effective gap is smaller than the measured gap, the tail parameters 
obtained from C~ of reference 2 and corrected for an effective gap 

should, in general, be close to the values obtained from the model. 
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Damping in Pitch 

The variations of the amplitude rat io (the ratio of the amplitude 
from the trim line of successive oscillations to the initial oscilla
tion) with time, for both tail settings, are shown in figure 19. The 
time to damp to one-half amplitude, represented by the t ime required 
for the faired line to cross 0.50 amplitude ratio (fig. 19), as a 
function of Mach number, and the pitch damping-moment factors are shown 
in figure 20. As with the lift-curve slope and period data, nonlinearity 
with the trim lift coefficient was also present in the time to damp to 
one-half amplitude over all but the hi gher Mach numbers. Where non
linearity occurred, the model exhibited irregular damping character
istics with the higher-lift tail se t ting having the greater damping. 
Since, for the configuration used in this investigation, damping is 
primarily due to the tail and would be expected to decrease as downwash 
over the tail decreases, and, since, in the discussion of lift, downwash 
was believed to decrease over the tail with increasing angle of attack, 
the model damping at the higher-lift tail setting would be expected to 
be less than the damping at the low-lift tail setting. The reasons for 
the altered damping characteristics are not known at this time; however, 
since the model exhibited both longitudinal and lateral oscillations, 
the possibility exists of coupling between these oscillations . The 
effect of coupling is believed to tend to reduce the model damping. 

Directional Static Stability 

Although the primary purpose of the model flown in this investiga
tion was longitudinal stability, lateral oscillations were present and, 
therefore, were investigated . These oscillations are believed to be 
caused by some asymmetry in the horizontal- tail stops that could be 
present and cause lateral disturbances. 

The variation of the measured periods of the lateral oscillations 
as a function of Mach number and the static-directional-stability coeffi
cient (derived as in ref. 7) as determined from these periods are pre
sented in figures 21 and 22, respectively. Throughout the Mach number 
range the measured periods of the lateral oscillation are of the same 
order of magnitude as the measured periods of the longitudinal oscilla
tions and appear to be unaffected by lift coefficient over the lift 
range covered. Although some coupling between the longitudinal and 
lateral oscillations is probably present, the effect of this coupling 
is believed to be small on all the aerodynamic parameters with the 
exception of the damping in pitch. 

The static-directional-stability coefficient exhibited a decrease 
of about 30 percent from the high subsonic to the highest supersonic 
Mach numbers. Flexibility becomes increasingly important with increasing 
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Mach number) and the decrease in the static-directional-stability coef
ficient is believed to be due in part t o flexibili t y of the vertical 
tail. Reference to the table of natural frequencies indicates that the 
vertical tail is rather flexible. At the Mach numbers covered) however) 
the model exhibited stable static directional characteristics. 

An estimation of the approximate maximum amplitudes of the angle 
of sideslip over the Mach number range covered has been made. At the 
high subsonic Mach numbers) maximum ampli t udes of ±2° and ±3° occurred 
for the higher- and low-lift tail settings) respectively; these ampli
tudes decreased to about half at the t ransonic and supersonic Mach 
numbers . 

CONCIDSIONS 

A flight investigation of the aerodynamic characteristics at 
transonic and supersonic speeds of a rocket-propelled airplane con
figuration having a 52.50 delta wing and a low, swept horizontal tail 
indicated the following conclusions: 

1. At transonic speeds and with increasing Mach number) the model 
exhibited a t rim change of approximately 10 nose-up in the low lift 
range and a 2° nose-down trim change while trimmed at the higher lift 
condition. 

2. The lift-curve slopes were nonlinear in the t ransonic and low 
supersonic Mach number range and increased with lift coefficient over 
t he lift range covered. 

3 . The minimum drag coefficient increased from 0.016 to 0.035 
through the transonic speed range. The minimum drag coefficient was 
close to the drag coefficient at zero lift. 

4. Over the Mach number range where it could be determined) the 
model exhibit ed poor leading-edge suction. 

5. The aerodynamic center moved rearward with increasing Mach num
ber up to a Mach number of about 1.5, with greater stability at the 
higher lifts. 

6. The model damping characteristics were irregular and altered 
for the two t ail settings over the Mach number range covered with the 
higher-lift tail setting having the greater damping. 
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7. The model exhibited stable sta t ic direct ional characteristics 
over the Mach number and lift ranges covered. 

Langley Aeronautical Laboratory, 
Nat ional Advisory Committee for Aeronautics, 

Langley Field, Va., January 7, 1954. 

1. McFall, John C., Jr.: 
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Model 

. 1 

r 0 1: 

.1 
.4 0 .1 .2 .3 · 5 .6 ·7 .8 .9 1.0 

Equi valen t body 

. 008 

'L = 90 .25 in. Total 

A 

? . 004 
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o .1 . 2 .4 1.0 

Area distribution 

Figure 2 .- Nondimensional e~uivalent body and area distribution of model . 
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I L-79541 
(b) Model on launcher. 

Figure 3. - Concluded. 

CONFIDENTIAL 



~D NACA RM L54A20 CONFmENTIAL 17 

~oo 

V 
4,000 ./ 

V 
oJ ~ooo 
" ;;l 
CIl 
CIl 

1/ V 

./ 
V 

OJ 

" a. 
.>l ~OOO 
8 
oj 

~ 
1,000 

V V 

V V 

--
V V --~ 

,..-
I-- I--

1-

.8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1. 6 1. 7 1.8 1.9 

lVIach number 

Figure 4 .- Variation of dynamic pressure with Mach number. 

18 x lO 6 

16 
.... ):7 

14 
/ 

17 

V 
7 

12 / 

/' 
,/ 

... 10 
Ji 
8 

./ 
.,J./ 

;;l 
c:: 
CIl V 

:!'l 8 
0 

~ V 
OJ 

0:; 

6 
./ 

V 

/' 
V 

4 V V 

2 

.8 .9 1.0 1.1 1.2 l.3 1.4 1.5 1.6 1.7 1.8 1 .9 

Mach number 

Figure 5.- Variation of Reynolds number with Mach number. 

CONFIDENTIAL 



I-
I 

(") 

~ 
H 
t:J 

~ 
~ 
t-' 

;:; 
,:: 1.8 

..c:: 

i 2.o f 
~ ~ 1.6 4 

-< bO 1 4 
Q)~ • 

@ " 
0.':: 
-< 0 o ..... 
f-<'" ... t> 
,::~ 
0"" 
u~ 

bO 
Q) 
"0 

.><:" 

~ 
:t! 
ro .... 
0 

~ 
bO 

~ 

7J 
Q) 

·0 
;:::: 
'H 
Q) 
0 
t> 
;::: 
~ 

o 

6, -4 

4 

2 

l' 
-2 .1 

0 

-.1 
3.0 

--

\ II 

f\ 

f\ I \ . I \ ...... 

I \ r I / \.; \/ 1""-" '-. V -
./ Y 

./ V f\ 

I II \ r ~ r ........... r I Il\ /' 
--'" 'l/ 

'-" '-' 

II IV 
V 1\ \ 

1/ \ r ....... h I \ f\ ,/ '----~ f.--- ---../ ~ v 

\) IJ '-' 

f\ f\ 

) \ II \ r ~ ~ r "\./ --......... V- I X\ r 
\ ~ \ I iV 
V \. 

3.2 3.4 3.6 3.8 4.0 4.2 4.4 4. 6 4.8 5.0 5.2 5.4 5.6 5.8 

Time, sec 

Figure 6. - Time history during first portion of flight of some quantities 
obtained in present investigation . 

-.....,.. ....... 

'-........--" 

6.0 

I-' 
OJ 

() 

~ 
§ 
~ 

~ 
f;; 

~ 
(;; 

~ o 



(") 

~ 
H 

§ 
8 
H 
:t> 
t""' 

+> 
~ 
Q) 

..-i 
() 

..-i ..... ..... 
Q) 

o 
() 

+> 

.4 

.2 

..... 0 

..-i 
~ 

E 
..-i 

t: 

..>:; 
() 

uI ..., 
+> 
a1 

..... 
0 

Q) 

M 
t.:' 
C 
a1 

S 
..-i 
H 

E--. 

- . 2 
·7 

8 

4 

0 

-4 
·7 

0 
0 0=-3. 2 0 

fU)-~ 0 0= 0 .10 

~ ~t-
I1lI7 ,..... 

Oil( 

.-1'T Innn ~ 

...n. h h-1 /-WUI" 

.8 .9 1. 0 1.1 1.2 1.3 1.4 1. 5 1.6 1.7 1. 8 1.9 

Mach number 

(a ) Trim lift coef f icient. 

r-. 

0 6=-3.2 0 

D O 0 .1
0 

.JI..V--

~ ~ l1Il\.. L....o... - mn bon.--- u.J...{ LO 
~ 

-
l..nt ~ 

..... ...... ~ "1...U. UllU" -a. IIlIlIJ -
I 

.8 .9 1.0 1.1 1.2 1. 3 1.~ 1., 1.6 1.7 1.8 1. 9 

I,'ach numb er 

(b) Trim angle of attack . 

Figure 7.- Longitudinal trim characteristics as a function of Mach number. 

~ 
(") 

:t> 

~ 
t""' 
\Jl 

~ o 

(") 

~ ; 
~ 

I-' 
\0 



20 

Figure 

CONFIDENTIAL NACA RM L54A20 

.6 

;t 
M _ 0.80 ;10 86 P .93 

/ 
Higher Uft j-J P l1' l) ... - 3.2° 

.5 

r 1J V rzI 
rJ1 ~ ~ 1. 02 :d 

.4 

~J r .2 rH }t ~ f 
r; J1 , ). ~ ~p ~ 

.3 

~ c 
Q) 

~ .2 

'8 J 
rf ~ 

ff II 
~ I~ 

W ~~ 1.12 

~ II ~p ~ 
~ ld I~ 

/ 

~ ~ ~~ 
" 
:3 .1 

.82 ~ f .89 ~ P .. 97 ,€ ~ 1.07 ,A; ~ A~ 
Ql 
~. 

~ ~ ~ ~. ~ 
o 

W {r rJJ -' 1.17 ~~ Low IUt 
...D! 5 - 0.10 

o/l , ~Ir (/ -.1 

~ t? ? 9 Increaslng a. 

ri 

~ ;3 )- 0 <> 
Decreasing a. 

-. 2 

p 0 "V 
-.3 0 2 4 6 8 10 

I I I I I I I I I 
0 0 0 0 0 0 0 0 0 

M- 0.80 .82 .86 .89 .93 .97 1.02 ,,07 1.12 1.17 

o 

Angle of attack, deg 

(a ) Transonic Mach numbers . 

.4 

/ 

M - 1.23 19 1.34 / 1.47 

~ ;;=l / 
.3 

Higher 11ft J fJ J1 1.65 .d 5. -3.20 

~ 1 d' l$ W I-' 
.2 

~ / 1.29 ~ 1.41 ~ ~ 
I'" 

fo1 Cl ~ ft :H ~ 
I'" Iif D f' ,..."d V 

.1 

o fl IJf ~ t 
~~ 

II ~ 
-. 1 

elf#' 
I d) 

IrP 

1/ 
-. 2 
026 

I I I 

o 0 0 
M - 1.23 1.29 1.34 1.41 

l# JW I. 76 

IJf l.55 )J Low lift 
5- 0.10 

8 
! I ! I I 

o 0 0 o 0 
1.47 1.55 1.65 I. 76 1.83 

Angle of attack, deg 

(b ) Supersoni c Mach numbers . 

.,..,/ 1.83 

IIU 

JJ I"" 

Inc reasing Q. 

0 <> 
Decreasing a. 

0 "V 

U .- Variation of lift coefficient wi th angle of attack at t r ansonic 
and supersonic Mach numbers . 

CONFIDENTIAL 

~- -- ------ -------



.10 

.08 r"-
(l) 

0. 
0 

.06 ~ 
III 

-"'-' 

----
l:::o::: 

(l) 
(") > 

~ ~ 
;::s 
0 

.04 H I 

§ ~ 

""' oM 
~ 

~ .02 

o 
.8 .7 

----
"'().. 

0-: 
~ ~ '-...... 

I--!0-.-/'" ........ 
~ .....--r--- r--u-

0--:: f==:::=... :::a :--c t-
, -::::- D::::::: ::::0.. -'- --- -

-_CLa(W+f) 
from Ref. 5 

. 9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 

Mach number 

Figure 9.- Variation of lift-curve slope with Mach number. 

0 o:=:::: -3.2° 
0'0= O.lQ 

~ 'V-

1.7 1.8 1.9 

~ 
() 

:» 
~ 
5: 
~ o 

() 

~ 

~ 
~ 

I\) 
f--' 



22 

.;..> 

c ., 
...... 
() 
~, 

r.... 
r.... 
CIl 
0 
0 

t..l 
oj 
~ 
w 

1.S3 0 

1.76 0 

1.65 0 

1.55 0 

1.47 0 

1.41 0 

1.34 0 

1.29 0 

1.23 0 

1.17 0 

1 . 12 0 

1.07 0 

1.02 0 . 12 

. 97 0 

. 93 0 . 0S 

. S9 0 

. S6 0 . 04 

• 82 0 

M~O . SO 0 
-. 3 

CONFIDENTIAL NACA RM L54A20 

M""= 1 . S3 Increasing Cl 

nI rn- 0""-3.2· 
0 0 IIlJIlII ~ 

Decreasing Cl 

M::::: 1. 76 0 M-1. 6 5 0 V 

0::::: 0 . 1° ~ IJ 0"'-3 . 2" 
::00; f'I"". 

M 1. <;5 """'""' pM 1 . 4, 
0=::-0 .1° ..rttt11.1I o--d 0:::0-3 . 2° 

[]lYl.' r M-1.34 
0=<- 3 . 2° 

M 1.41 CD 
.J:/ ffiJ ~ 0-0.1° 

IJ.ALJ"" M~1.23 

..., &=-3 . 2° 
M 1.29 

.d ~ 
ru 

0-0.1° 
UJlI - , M-1.12 

().("\ .aD 0::::-3 . 2° 

:M 1.17 _Wtr fA--' 
0 0. 1° 

n 

""...,..... M 1.02 
.Q 

00- ..r\ 
0-::::-3 . 2° . ..,....0 

M 1 . 07 ~ teP' 
O~0 . 1° - ~ !:lY" --v 

I M- 0 . 93 

" 
0:::-3 . 2° rT V vru-o r-o Q-o. ~ " ...... ~ 2f" M-:::: 0 . 86 

0.- &=-3 . 2° 
M :;::'0 . 97 "vv\ rvv-

l--Sb ..:f#; V 
/ VU 

0:::::'0. 1° ~ ere-. f-"-'~ 

~ 
.,/ V 

~ -.r.ft- ..IT 
M ~0. S9 ~ 

~ 

/ 0=0. 1° -'I: ~ 
----< ~ y'" 

f"\. k9-: 
M ~0 . B2 '" tp...J V ~ M O. So 
0-:::::;0 . 1° ..... N-,o.. 0:=-3 . 2° 

-. 2 -. 1 o . 1 . 2 .4 · 5 .6 

Lift coefficient 

Figure 10 .- Variation of drag wi th lift . 

CONFIDENTIAL 



(") 

@ 
'xj 
H ; 
~ 
t-' 

K 
as 
E 

12 

8 

f4 

o 
.7 

.6 

~ .4 
E -.::B 
~ 
0 
r... 

...:l 
Q 

. 2 

o 
.7 

qr- h 
-u-

'" '\ [)." 
~ - 1--r------f---r--r-- - --r--f----r-

. 8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1. 6 1.7 1.8 

Mach number 

(a) Maximum lift-drag ratios. 

y v - ~ ---- :-----f---1-------
( - 10-

r--o--./ ---- - -~ -

.8 .9 1. 0 1.1 1.2 1.3 1.4 1. 5 1.6 1.7 1.8 

Mach number 

(b) Lif t coefficients at which maximum lift-drag ratios occur. 

Figure 11.- Variation of maximum lift-drag r atios and lift coefficients 
at which maximum lift-drag r atios occur as a function of Mach number. 

1.9 

1.9 

s; 
(") 

:t> 

~ 
s 
~ o 

(") 
o 
~ 

~ 
~ 

f\) 
\.>J 



-+-' 
C 
<I> 

orl 
() 

orl 
...... 
...... 
<I> 
0 
() 

bO 
aj 
~ 
'0 

~ 
::s 
S 

orl 
C 

orl 
::E 

(") 

~ 
I-zj 
H 

tiJ -+-' 2: C 8 -+-'<1> 

~ aj ..... 
() 

t-' -+-' ..... 
c ...... 
<1>1;.... 

"-<<1> 
() 0 

orl () 
'H 
...... bO 
<I> al 

g~ 
-+-' ~ 
...... ::s 
orl ~ 
....:lorl 

C ..... 
~ 

. 06 
Flagged symbols indicate 0 0::::::-3.2' 
extrapolated points 0 0:::::- 0 .1' 

r( ,..< 
./ / ..rf /i'O 

~ ~ ~ -u rI \.. r--' '-J f-' 

. 04 

~ 
n. .- UJ . 02 

o ~7 .8 .9 1.0 1.1 1.2 1.3 1.4 1·5 1.6 1.7 1. 8 1.9 

Mach number 

(a ) Minimum drag coefficient . 

.1 Iltl1fRdJilllJ_LI L 1IIIIgf~-r 
o 

-. 1 .
7 .8 . 9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 

Mach number 

(b) Lift coefficient at minimum drag coefficient. 

Figure 12.- Vari ation of IDlnlmum drag coefficient and lift coefficient 
at minimum drag coefficient as a function of Mach number . 

1.8 1.9 

r\) 

+" 

(") 

~ 

~ 
~ 

~ 
f) 
;J> 

~ 
t-' 

\J1 

~ o 



(") 

~ 
'-.:j 
H 

~ 
~ 
8 

~ 
t-< 

.4 

. 3 

dCD 
dC

L
2 . 2 

0 
Q) 

rJl 

. 
'0 
0 

...-i 
s... 
Q) 

0.. 

. 1 

o 
·1 

.6 

.4 

. 2 

0 . 7 

-
,=-.-.-.-::::;:::: 

..... 
~ 1.-:::;;: f:::( 

1.-:::- :-= 

.- ~ -.-;:::;-I-
e -p~ ~ - ~ ......... 

~ .-!-'- 0 '--' 

-- ~ 

1 
---- 57.3 CL a. 

1 
---lTA 

-

.8 . 9 1.0 1.1 1.2 1.3 1.4 1.5 1. 6 1.7 

Mach number 

Figure 13 .- Effect of lift on drag as a function of Mach number . 

u...... 
~ 

l 
~ 

"" R;", 

~ ~~ 
.......... ~ I.JI..l.-. 

fam ~ I.liI. 
,.... 

~ LJ' 

.8 . 9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 

Ma c h numbe r 

Figure 14 .- Variation of measured period with Mach number. 

o 0=-3 . 2° 
00=0 . 1° 

1.8 1. 9 

00-3~2~1 00 = 0 .1 

D. "'" ""'" 

1.8 1.9 

-----s-

~ 
(") 

:x> 

~ 
t-< 
\Jl 

~ o 

(") 

~ 
tJ 
~ 
~ 

f\) 
\Jl 



I 

(") 

~ 
I-xj 
H 

i 
H 
~ 
t-' 

-. 03 

: - . 02 
"C 

" <l) 
Q. 

d -. 0 1 
E 

u 

U 

<X: 

:;;: 
..., 
C 
Q) 
<) 

" <l) 
Q. 

" Q) ..., 
c 
Q) 
<) 

<) 

..-< 
E 
al 
C 
po, 
'0 
0 

" Q) 

<X: 

o 
·7 

80 

60 

40 

20 

o 
·7 

00 - 3 .2 0 

.r.. f'L 00_ 0 . 1° 

V 
~ -~ P- ------VV 

~ ~ 

V r0-M 
'- V r 

0- l 
.8 .9 1.0 1.1 1.2 1. 3 1.4 1.5 1.6 1.7 1.8 1.9 

Mach number 

Figure 15 .- Variat ion of static-stability par ameter with Mach number. 

...n. 
o 0~-3 . 2 0 

D O 0 .1 0 

J"\ 
~ ~ r:::: p-- l-

ID-t-o 

...D' 
l--ro- ~ f-U 

1--- -tJ 

>- .-LI 

~ ...n V 

.8 .9 1.0 1.1 1. 2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

Mach number 

Figure 16 .- Variation of aerodynamic center With Mach number. 

f\) 
0\ 

o 

~ 
H 

~ 
~ 

~ 

~ o 
~ 

~ 
t-' 
VI 

~ o 



(") 

~ 
t-:rj 
H 

i 
1-3 

~ 
t-' 

~ . 04 
Q) 

E 
o 
Ef c .02 
Q()Q) 
s: . .-< 

:.8 .~ 0 
t)t,.., 

...,t,.., 
• .-< Q) 

0.. ~ - . 02 
...... 
ro ..., 

"'., 

--=>;"" 

""" 
r> 

~ p"-' ,'(I 

M::l 
~R 

M"'0 .82 Il ~ 

. 97 °10- 1.07 
toO ~ h'-, ~ 

'" to t: ~ b; 

IU N 1,6] ~D 13 
''!! t> I ~ 

. 89 q~ 

Increasing DC 00 

c Decreasing ex. cr 

~ ~ ~ I~ IA 
~ ~ ~I;J <Cltl ~R 

i.<@ CJ ~ ~ ~ I~ I~ 
~ ~ I1b ~ ~ I&I 

~ 1.17 ~ 1.29 rn 1.41 I~ 1.55 '\ 1. 76 I"" 

f!. - . O~. 2 - . 1 0 
I" 1 11 1 J-----Deriod method - ---- --

.1 

..., 
s: 
Q) 

• .-< 
t) 

• .-< 
t,.., 
t,.., 
Q) 

0 
t) 

..., 
s: 
Q) 

E 
0 
E 
tk 
s: 

• .-< 

..c 
t) ..., 

• .-< 

0.. 

...... 
ro ..., 
0 
~ 

" I I I I I 

o 0 0 0 0 0 0 0 
M= 0 . 82 . 89 . 97 1.07 1.17 1.29 1.41 1.55 1.76 

Lift coefficient 

(a) 5 "'=' 0 .10° . 

. 06 
f!iJ. Increasing 0<:.. ° 

. 86, D . 93 ~ . . lit 1.12 k. 1.34 1.47 Decreasing oeD" 

~ '~ 0 lJi ~, 0 q I~ ~ 
. 04 

o~ i\ , ~ ~. '5:, ~ r';s ~ ~ 1. 83 
ro ~ SJ D~ ~~ "'r.r ~ Iw fv, ~ tm 

. 02 

c'" ~ ~ .~ ~ d: 13' ~tlJ 
M=0.80 ,,~ I~ (~ ~ ~ ~ ~ (\j 1<!I't: 

o 

0' ~ '\: 1l C ~'" l( ~ ~ i"'fl P 

b~ ,n '\ ~ ~~ I\' 1,\ 0 \ \ 
-.02 

q " 1. 02 1. 23- \ 1.65 \ 
,~ lIT \ I \ 

- . 04 

~ n\ --Period method 
- 06 

. 0 . 1 . 2 . 3 . 4 .5.6 .7 
I I I I I I I I I 

o 0 0 0 0 0 0 0 0 
M= .0 . 80 . 86 . 93 1. 02 1.12 1.23 1.34 1.47 1. 65 1.83 

Lift coefficient 

(b) 5"'=' -3.2°. 

Figure 17.- Variation of total pitching-moment coefficient with lift 
coefficient. 

~ 
(") 

~ 

~ 
t-I 
VI 

~ o 

(") 

~ ; 
~ 

f\) 
~ 



0 

~ 
'"%j 
H 

~ 
~ 
t-< 

. 02 

CLo . 01 

Cmo 

o 
.7 

-. 04 

-.03 

-.02 

-. 01 

~7 

-- ---- CL (C L from ref. 2) 
o a ---...... -'---~ to-

( -- "'- I--I--~ '- ..... - -- '-
0 CL (r ef. 2) corrected for gap 

---
0 

. 8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

Mach number 

(a) Ability to produce lift. 

----c (C 
mo La 

From ref. 2) 

,,~ I-" - r---.... ~~ , """"-- -1--
...... ~ 

-..... r--..... !-- ----...... 
CD ---- - - I..... 

I---- "'----- - . 
o C (ref. 2) Correc ted for gap '- ---

mo -
1 1 1 1 1 

.8 .9 1. 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 

Mach number 

(b) Effectiveness in producing moment. 

Figure 18 .- Variation of ability of horizontal tail to produce lift and 
effectiveness in producing moment as a function of Mach number. 

I 

1.9 

I\) 
CO 

o 

~ 
~ 
~ 

~ 

~ o 
:x> 

~ 
t-< 
\Jl 

~ o 



NACA RM L54A20 

0 
.-< ..., 
'" s.. 

" '0 
;:l ..., 

.-< 

..... 
0-
I'! 
« 

1,0 
.9 
.8 

·7 
.6 

. 2 

.1 

1.0 
.9 
.8 

· 7 
.6 

· 5 

.4 

.3 

.2 

~ 

? 
o 

f"" 

9 

CONFIDENTIAL 

~ ." 1\ 1\ 1\ 1\ 1\ Av. M 

'" '" \. \ \ \ \ \ \ \ 0 0.80 

~ \ \ \ \ ~ \ \ 
0 .86 

\. (> ·93 

'n"" ~ r\ ~ R- t \ \ \ D. 1.02 
L1 1.12 

'" ~ r\'\ \ \ \ 1\ 1\ \ 
Ll 1.2R 
0 1.3 

~ ~ ~\ R \ ~ \' 
0 1.t7 

1\ 0 1. 5 
0 1.83 

0' ~\ \ f\\ 1\ 1\\ ~ f\ 
\ '\ r\ 1\\ ~~ 

~ ~ 0 '\ I~ 
? ? D. L1 Ll 9 ~ 

0 
i I 

, 
o 

.2 .4 .6 .8 1 .0 
b b 6 6 6 6 6 6 

Time from initial peak, sec 

~ I\- 1\ 1\ 1\ Av. M 

"'- "'- \. \. \. \ \ \ \ o 0.82 
~ "'-, f\. \ \ \ \ \ 0 .89 

~ ~\.. ~ ~ ~ \ 6 ~ 
(> . 97 
D. 1.07 

~ ~\ r'\ \ \' \ 
L1 1.17 

1\ Ll 1.29 
0 1.41 

~ ~\ \: ~\ ~ \ 0 1.5t 0 1.7 

~ ~ ~ ~ 1\\ 
" ~ I' \ 

~ ~ , ~ 
I\L \ 

~ ? 6 1 Ll 0 0 0 
I 

. 2 .4 .6 .8 
o~! ~o~~o--~o--~o--o~'~o~'~d 

1.0 

Time from initial peak , sec 

Figure 19.- Variation of amplitude ratio with time. 

CONFIDENTIAL 

29 



() 

Q) 
U) 

~ 

C\J 

"" .-< 
E-< 

(") 

~ 
H 

~ 
~ 
t-< 

' 0 
E 

() 

+ 
c:J' 

E 
() 

. 6 

.4 

. 2 

o 
·7 

- 30 

-20 

- 10 

o 
·7 

o 0""' - 3 . 20 

o O?:l 0 . 10 

C ........... u...... "'--.c 
u......... ........ 

"'D--
"'0- - -0.. 

~ 

y '"\... LI 'oJ 

-0 

L..--..... ___ L-__ 

.8 ·9 1. 0 1.1 1. 2 1.3 1.4 1.') 1.6 1.7 1. 8 1. 9 

Mach number 

(a ) Time to damp to one-half amplitude . 

o °""' - 3 .2° 
o 0 = 0 .1 0 

.c;----~ 
r----ro-- J) 

'-' 

-D 
D --ro-... ~ n. - - -0' ~ 

L ~ r----, 

.8 .9 1. 0 1.1 1.2 1.3 1.4 1.') 1.6 1.7 1.8 1. 9 

:\~~ch number 

(b) Pitch damping-moment factor. 

Figure 20.- Variation of dumping characteristics of short period oscilla
tions with Mach number. 
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