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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

OPTIMUM LIFTING BODIES AT HIGH SUPERSONIC AIRSPEEDS

By Meyer M. Resnikoff
SUMMARY

The shapes of bodies having minimum pressure drag for a given 1lift
at high supersonic speeds and satisfying conditions of given length and
width are determined with the aid of Newton's law of resistance. The
resulting shapes, as had been argued by Sanger, have flat bottoms which
are, in addition, rectangular. If it is further required that, for the
given conditions (both geometric and aerodynamic), the shapes have maxi-
mum volume, then they become simple wedges.

To determine if these bodies do, in fact, have improved lift-drag
ratios at high supersonic speeds, several wedges satisfying numerically
different sets of given conditions were tested at a Mach number of 5.
Measured aerodynamic characteristics are compared with theory and with
the measured characteristics of corresponding bodies of revolution having
fineness ratios from 3 to 7. It is found from experiment that the wedges
have maximum lift-drag ratios from 40 to 100 percent higher than those
of the corresponding bodies of revolution.

INTRODUCTION

It was argued by Sﬁnger (refs. 1 and 2) that at high supersonic
speeds a lifting body having a flat bottom would have higher lift-drag
ratio than one having, say, a round bottom like a body of revolution.
Sénger did not, however, pursue this subject to the extent of determining
the shape of an optimum 1lifting body; nor did he prove, for that matter,
that such a body would have a flat bottom.

The determination of an optimum lifting body is normally, at best,
a difficult problem because of the complexity of theories which must be
employed to predict accurately the forces on an arbitrary shape. In
hypersonic flow, however, a theory of remarkable simplicity becomes
available, namely, the so-called impact theory of Newton (ref. 3).
Newton himself pointed out that the theory should apply to flows in
which the inertial forces are large compared to the elastic forces and

CONFIDENTIAL



2 CONF IDENTIAL NACA RM A54B15

it is now well known (see, e.g., refs. 1 and 4) that hypersonic flow
tends to satisfy this condition. For application at the high Mach num-
bers presently of interest, say of the order of 5, the theory is, of
course, only approximate. Nevertheless, it was found to be a useful
tool in the determination of optimum (minimum-drag) nonlifting bodies
of revolution (ref. 5). It might be expected therefore that impact

theory could also be used effectively in determining optimum lifting
bodies.

The objective of the present report is, then, to determine with the
aid of impact theory, and subject to given conditions, a complete body
shape possessing minimum drag for given 1lift in inviscid hypersonic
flow. 1In addition, it is undertaken to measure experimentally the
characteristics of the bodies so determined.

SYMBOLS

A plan-form area

o D
Cp drag coefficient, o iw
e 1ift coefficient, —2

qOZW
D foredrag
d base diameter of body of revolution
£ fineness ratio, % <é— for bodies of revolution>
L 1t
T projected body length
M Mach number
X! Peto
P pressure coefficient,
o]

P static pressure
q dynamic pressure
Re Reynolds number
S body surface area
v body volume
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air-flow velocity

maximum body width

coordinates of points on surface of body (positive x axis in
the direction of free-stream velocity, origin of the coor-

dinate system coinciding with nose of body)

one-half the lateral dimension of the body at a distance x
downstream of the body nose

angles formed by body surface normals and the Xx,y, and z
axes, respectively

angle of attack of body (for wedges, measured from line
bisecting apex angle)

variable of integration

wedge angle
Subscripts

values on lower and upper surface, respectively
values on vertical portions of body surface

free-stream conditions

Superscripts

values pertaining to a comparison body

THEORY

The geometric characteristics of the optimum body will be found by

a comparison procedure rather than by the customary calculus of vari-

ations.

The comparison procedure will be developed during the applica-

tion and is complete within this report. The method is more direct than
the variational method, thus enabling constant surveillance of physical
characteristics throughout the development and avoiding some of the
difficult questions associated with the application of the calculus of
variations in two independent variables.
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The comparison is made between the physical characteristics of a
given body and those of its transform.l The transformed body satisfies
the given aerodynamic and geometric conditions. In particular, the
transformation is so chosen that its application leads to a body with
1ift force unchanged and either leaves the drag force unchanged or
decreases it. Applied to an optimum body, it is necessary that the
transformation leave the drag force unchanged. The requirement that
the optimum body have the same drag as its transform yields analytic
statements prescribing the geometric characteristics it must have.

Lift and Drag Expressions

The well-known impact theory expression for local pressure coef-
ficient at a point on a body is (see sketch)

P = 2 sin? (%-§)=2c052§ (1)
Z
Y
I/nner surface 4
normal ¢
£
e 0 ,//' \ X
A = T

ds

The 1ift and drag forces acting on an element dS of surface area are
given by the projection of the force P dS on the vertical (z) axis

and on streamwise (x) axis, respectively, multiplied by the free-stream
dynamic pressure, qg:

1The comparison of given geometric configurations with properly chosen
transforms leaving desired geometric or physical properties invariant
has been used extensively by Polya and Szego to solve quite general
problems (ref, 6).
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o

(P cos ¢) 9,48 (2)

and

&

(P cos t) q.ds (3)

By use of the pressure coefficient, equation (1), and the geometric
relations

dS = dx dy sec ¢
cos® & + cos® y + cos® £ =1
the 1ift and drag expressions (2) and (3) may be written
dL = 2q, cos® & dx dy (L4)
and

ddD =2

3

dg cos” & dx dy + dDy (5)
V1 - cos® £ - cos® q

where dD, represents the drag force on a vertical surface (i.e., an

area dS for which dx dy = 0 and cos § = 0). The 1ift and drag forces

acting on the entire forebody are obtained by summing the 1ift and drag
expressions, respectively, over the forebody surface:

L = Uq, {f ﬁf(x) [ - cos® £,(x,¥) + cos® &,(x,y)] dy ax (6)

and

® Eu(x,y)
= hq, L; IY(X) aggs +

o}
N/ 1 - cos® gu(x,Y) - cos? ﬂu(X:Y)

=)
|

cos3 gz(x:Y)

dy dx + Dy &é)

V1 - cos? £, (x%,5) = cos® n;(x,y)

where Dy represents the total of the drag forces acting on finite
vertical portions of the body surface.

CONFIDENTIAL



6 CONFIDENTIAL NACA RM A54B15
Development of Optimum Body Shape

Consider the optimum body satisfying the given length, width, and
1lift requirements and let the angles made by its upper- and lower-surface
normals with the x and y axes be, respectively,

g P) u\X»
wl%¥) Nulx,y) (8)

§1(X:Y) T\Z(X:Y)

A second body, satisfying the given requirements of this section, will

be defined in terms of the surface-normal direction angles (eq. (8)). The
requirement that the drag force D of the optimum body be less than or
equal to the drag force D of the comparison body will specify geomet-
rical characteristics to determine the shape of the optimum body.' Let
the comparison body be two-dimensional, bounded laterally by the vertical
surfaces ¥y =:tw/2, and with no forward~facing vertical surface. Let the
cosines of the angles made by its upper~ and lower=-surface normals with
the free-stream-velocity direction be given by the root mean squares of
the corresponding quantities for the optimum body:

cos Eﬁ(x) =~//g_£§(x) cos® & (x,T) dr

w

(9)

cos £;(x) =/% fgr(x) cos® §,(x,7) ar
With the use of the lift-force expression (eq. (6)) and the definitions
of the direction cosines of the comparison body's surface normals (eq.
(9)), a direct computation verifies that the 1ift force acting on the
comparison body is equal to that of the optimum body. Similarly, the
drag force acting on the comparison body is obtained by use of the
direction cosines (eq. (9)) in the drag-force expression (eq. (7)):

1 s/ cos3 E,(x) cos® E,(x)
gkl f:'z e + : dy dx

M[i ~ cos® Eﬁ(x) 4/1 - cos® Z}(x)

D

= hq fohz,—’ [(cos® E,(x) + % cosS E (x) + . . )+

(cos® Ei(x) + % cos® El(x) # et o e ) ) A% (10)

1see footnote 1, p. k4.
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the last expression being obtained by use of the binomial expansion of
the radicals in the integral and by an integration.

In order to compare the drag force, D, of the optimum body with the
drag force, D, of the comparison body, the cosine terms in the expression
(10) for the quantity D are evaluated by use of their defining
expression, equations (9):

2n+1
2

cog2tl Eﬁ(x) = [ % Ly(x) cos® 8, (26 T) dT] (11)

Application of Holder's inequality® (ref. 7) then gives

n=1/2
0s2DH+L E (%) < y——————-(—-—-_]'y( eoaP L £ (x %) dr

(w/2) nt+1/2 ©
S_%_Lz(x) cog2BHl §u(x,T) av (12)

The following sequence of inequalities results by using inequality (12)
together with the corresponding expression for the lower surface, in the
drag-force expression (eq. (10)), and comparing the result with the
drag-force expression for the optimum body (eq. (7))

2yolder's inequality states that
m -1
| f2(x) a(x) ax|"< [|£(x) ["ax ( [|e(x)| BT dx)

for any value of m greater than one. Applied to the right side of
expression (11) with m = n + 1/2, Holder's inequality yields

n+1/2

|£Z(X) cos® &, (2,7) % ar|

n+1i/2

<700 ot g, (,m) arl (2 )R o) J/

n-1/z
< % { %%%l ] LZ(X) cog20+1 Qu(x,T) ar
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& cos® § cos3
~/1.- cos® éu '/vl - cos? &Z
l Y(X) cos® Ey
= by L) L) H
w/ 1 - cos® &, - cos® n,
cosS §
L dy dx (13)
v/l - cos® £y = cos? n1
D<D - Dy (1k)

Since the optimum body cannot have greater drag than another body with
the same 1ift, the inequalities (12) to (1l4) inclusive must be equalities,
and the drag force Dy on vertical surfaces must be zero. Thus, by
expression (12), the lateral boundary, y(x), of the surfaces of the
optimum body must also be w/2 throughout the entire length of the body
so that the plan-form shape must be rectangular, and by expression (13),
the surface normals must always be orthogonal to the lateral axis, that
is, the body is "two-dimensional." Finally, Dy = O states that the nose
of the body cannot have a finite forward-facing area of infinite slope.

By an analogous procedure, with the application of a second trans-
formation (see Appendix)

cos (3, )

cos (-E} ) V/% jﬁ [ - cos? Eﬁ(x) + cos® §Z(x)] dx

it can be shown that the upper surfaces may not project beyond the flow

shadow (hence, by impact theory, may not be subject to flow forces) and
the lower surface must be planar.

0

(15)

To show that the body so characterized is unique (insofar as the
lower surface is concerned, since this is the only surface subject to
air-flow forces) and actually presents less drag than any other body
satisfying the given conditions, it is noted that the consecutive appli=~
cation of the transformations (9) and (15) to an arbitrary body (satisfy-
ing the given dynamic and geometric conditions) always leads to a body
with the same lower surface. That is, substituting transformation (9)
in transformation (15) and using the lift condition (6) gives
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coff (T ) =30 2% | - cof ty00m) + cont t300m) Jar an

O

L
2q02w

(16)

and the inequalities

(D) <D <D

Thus, the optimum body characterized by the surface-normal direction

( £y ) (eq. (16)) possesses an absolute minimum drag characteristic.
From equation (16), the angle 6 between the free-stream direction and

the planar bottom is
'L
@ = arc sin {i7)
2q Wl

resulting in a drag force, at the given 1lift, of

- /L
e 2qwl - L L

The volumes of the bodies were not considered in the foregoing
optimizing procedure. However, above the flat bottom surface of the
optimum body and in the flow shadow there is a space

2
L 12 tan o = ¥L =
2 2 Jowlq - T

Thus, if it is desired that the optimum body have a volume V, with

wl2 T
Vi (19)
2 2wlg, - L

then the optimizing procedure applies for the additional condition of
prescribed volume.3 It should be noted that if the maximum available
volume is utilized, the optimum body is uniquely a simple wedge.

S comparison of several wedges and typical bodies of revolution showed
that for given lengths and width, the volumes of wedges were approxi=-
mately equal to those of corresponding bodies of revolution. Thus, it
does not seem probable that the bound on given volume (inequality (19))
will be appreciably exceeded by bodies of usual proportions.
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Expressions (6) and (7) show that according to impact theory the
dynamic forces on a flat bottom surface are unchanged by a redistribution
of plan-form area. If the geometric requirements of given length and
maximum width are relaxed, optimum bodies in inviscid corpuscular flow
may be characterized broadly (but precisely) as having flat bottom sur-
faces with shadowed upper surfaces. With plan-form area specified,
expression (18) shows that the drag force on a flat bottom surface, for
a plan-form area A and a 1lift force L, is

=LA/2 ff L
a A -

and expression (17) gives the angle 6 between the free-stream direction
and the flat bottom surface as

: L
6 = arc sin P —

2qOA

If it is desired that this body contain maximum volume, subject to the
dynamic condition of given 1lift and the geometric condition of given
plan-form area and shape, then the side and top surfaces of the optimum
body are generated by lines passing through the boundary of the bottom
surface and alined with the free-stream vector.

EXPERIMENT

The preceeding analysis, indicating that the wedge is a body with
minimum drag for a given 1ift, is based on the simplifying assumptions
of an inviscid fluid and, in effect, infinite Mach number. An experi-
mental program was undertaken, therefore, to determine if such a body has
improved lift-drag ratios in viscous air flow at moderately high but
finite supersonic airspeeds. To this end, 1lift and drag characteristics
of three optimum bodies of revolution? and three corresponding wedges

4The profile shapes of the 3]*;power bodles are defined by the expression

HON

where r 1is the radius of the body at a distance x downstream of the
nose. The 3/M-power body was shown to approximate the body of given
fineness ratio offering minimum drag at zero lift in hypersonic air
flow (ref. 5), and under the assumption that the pressure forces in
hypersonic air flow are negligible on the upper surface of a lifting
body of revolution, it can be shown by impact theory that the 3/#-
power body approximates the body of revolution of given fineness ratio
having maximum 1ift over drag.
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(fig. 1(a)) were investigated at a Mach number of 5 (Re per ft = Lx10°)
in the Ames 10- by lh-inch supersonic wind tunnel. The bodies of
revolution had a 3/h-power profile and were of fineness ratios 7, 5, and
3 (fig. 1(b)). The wedges had the same lengths as the bodies of revo-
lution and widths equal to their diameters. The wedge angles were
determined so that, according to impact theory, the 1lift of each wedge
with its upper surface in free-stream alinement was equal to the 1lift
force of the corresponding 3/h-power body at the maximum point on the
theoretical lift-drag curve of the latter. These wedge angles were such
that the volumes of the wedges were approximately 15 percent less than
those of the 3/4-power bodies. The testing was carried out in the

manner described in the experimental investigation reported in reference
8. A detailed description of the wind tunnel and its flow characteristics
may be found in reference 9. All forces are those on the forebodies only,
forces on the model bases having been eliminated by correcting measured
base pressures to free-stream static pressure. The estimated accuracy

of the measured maximum lift-drag ratios is approximately #5 percent.

RESULTS AND DISCUSSION

The theoretical results show that at high supersonic speeds the
flat bottom characterizes the best lifting shape. Moreover, it was shown
that the flat bottom must be rectangular for the geometric conditions of
given length and width. Thus, if it is desired to use all of the avail-
able volume above the flat bottom surface, the minimum-drag body for a
given 1ift force, in inviscid hypersonic flow, is a wedge. This finding
is supported by the experimental results® presented in figures 2, 3, and
4, These results show that for all 1ift coefficients within the range
of the tests, the drag of each wedge was significantly less than that of
the corresponding body of revolution. The lower drag resulted in
increased L/D and the maximum lift-drag ratios of the wedges were 100
percent, 42 percent, and 53 percent higher than those of the corresponding
3/4-power bodies for fineness ratios 3, 5, and 7, respectively.

The measured 1ift and drag forces and lift-drag ratios for the
fineness ratio 7 wedge are compared in figure 5 with predictions based
on impact theory and friction drag estimates (cf. Monaghan, ref. 10).

It is seen that theory underestimates 1lift for a given angle of attack.
Lift-drag ratio is underestimated. by as much as 25 percent at the higher
angles of attack. It follows that the underestimation of the drag forces
is not as great, percentagewise, as the underestimation of 1ift forces.

SThe force coefficients are referred to the body length times the base
width, two of the given conditions, in preference to the customary base
reference area used in connection with bodies of revolution.
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The greater accuracy of the drag estimate is due to the fact that the
drag of the wedge at the lower angles of attack is predominantly the
result of skin friction. The skin-friction estimate is, apparently,
more accurate than the estimate of pressure forces. It is evident,
however, from figure 5 (as had been mentioned previously) that although
impact theory may be somewhat inaccurate in the estimation of quantita-
tive forces at finite Mach numbers, it is qualitatively useful for
determining optimum body shapes .

CONCLUDING REMARKS

- It was undertaken to determine by use of Newtonian impact theory the
shape of the general minimum-drag body satisfying conditions of given
1ift, length, and width. It was found that the lower surface of such a
body must be flat, thus verifying Sanger's speculation, and rectangular,
and that if the maximum available volume is utilized, the minimum-drag
body satisfying the given conditions in hypersonic inviscid air flow is
a wedge. The shape so determined was tested at a Mach number of 5 for

‘three numerically different sets of given conditions, together with

corresponding optimum bodies of revolution. Results of the tests showed
that the optimum shape determined by impact theory had, for three
different fineness ratios, measured lift-drag ratios 100 percent, 42

percent, and 53 percent higher than those of the corresponding optimum
bodies of revolution.

Ames Aeronautical Laboratory _
National Advisory Committee for Aeronautics
Moffett Field, Calif., Feb. 15, 1954
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APPENDIX
APPLICATION OF THE SECOND TRANSFORMATION

The drag force (D) for the body resulting from the transformation
(15) may be put in a form similar to that of expression (10) for D.
Integration then gives

(T;:). = 2q lw l:cos3 _;Z—)qmé‘-coss <_.é-_z-) et J (A1)

Because of definition (15), the representative cosine term on the right
of equation (Al) satisfies the inequality '

2n+1

cog2ht+l (El> < [ % fol cosz_ E-L('r) ar :l ® (A2)

Application of Holder's inequality to the right side of equation (A2)
results in '

cog?h+l <E1> S_% j;z cog@h+l El('r) -dT : (A3)

Substituting equation (A3) in (Al), comparing with expression (10) for
the drag force D, and.using the inequality (14), there results

(D) <F<D (Ab)

However, D represents the drag force of an optimum body so that
inequalities (Ak4), and hence inequalities (A2) and (A3), must be equali-
ties for all positive integral values of the index n. This fact,
together with equation (15), requires that coa-Eu(x) = 0 and there=-
fore, by equation (9), that cos &,(x,y) = O. Thus the optimum body
may not have upper surfaces subject to flow forces. In addition, the
equality (A3) for n =1 yields the requirement (squaring each side and
applying the definition (15) to the left side)

3 2
(%- f;‘ cos® &, (1) ar > = <%fc} cos® Ez (1) d-r> (A5)
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By the Schwarz inequality® (ref. 7)

2 3 N

( f gl (T) d'r> <_% foz cos3 El(’r) ar -Zl-foz cos El(-r) ar

2
<%foz cos &, (7) d'r> < %fl cos? gz('r) ar

(e}

Using equation (A6) to evaluate the left side of equation (A5)

(31} cor Bt ar§ - (%1 o By ar) .
%fol cos® &y () ar

2 2
(%f;’coss'g'l(n')d-o <%- fgcos EZ(T)G.T>
<

= >(A7)
%foz cos® é—z('r) dr

= (% fol cos3 El('r) d'r>

2

GSchwarz's inequality states that

<fz £(x) g(x) dx) ffz f(x) dx fz g(x) dx

with the equality holding if and only if

& ] -0 .

in the interval of integration.
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Equality (A5) requires that the expressions (A7) be equalities, from which
it follows that expressions (A6) must be equalities. But the expressions
¢ (A6) can be inequalities if and only 15y

By equation (9) this requires that

|
O

% cos Ez(x) =

Thus, the optimum body must have a planar bottom surface.
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Volume = .789 cu in.
=3
Volume = .943 cu in.
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Volume = 1.30cu in. }
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(b) Dimensions of models.

Figure |.— Concluded.
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Lift-drag ratio, L/D
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O Experimental data
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Lift coefficient, ¢,
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Angle of attack, a, deg

Figure 5- Comparison of impact theory and skin-friction prediction with
experimental lift-drag, drag, and lift curves for the wedge of fineness

ratio 7.
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