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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

SOME EFFECTS OF AILERON SPAN, AILERON CHORD, AND WING 

TWIST ON ROLLING EFFECTIVENESS AS DETERMINED 

BY ROCKET-POWERED MODEL TESTS AND 

THEORETICAL ESTIMATES 

~ H. Kurt Str ass and Warren A. Tucker 

SUMMARY 

The variati on of rolling effectiveness with spanwise aileron extent 
has been determined for full-chord ailerons on a sweptback wing over a 
Mach number range of approximately 0. 5 to 1. 5 by the Langley Pilotless 
Aircraft Research DiviSion utilizing rocket-propelled test vehicles in 
free f light. The test wings had NACA 65A006 a irfoil sections, an aspect 
r atio of 4 .0, 450 sweepback at the quarter-chord line, and a t aper r a tio 
of 0 .6 . These data were correlated with the results of a s imilar inves­
tigation concerning partial- chord ailerons. This correlation shows that 
the spanwise var i a tion of a ileron effectiveness for an aileron of given 
chord exhibited little variation with Mach number over a range of 0 . 6 
to 1.4, and also shows that 0.3-chord ailerons were relatively less effec­
tive near the wing tip than either full-chord or 0.15-chord a ilerons. 
In addition, tests were made by using models with twisted wings to pro­
vide a limi ted check upon the principle of aerodynamic superposition. 

Values of rolling effectiveness ca lculated for the full-chord a iler­
ons and the twisted wings by means of linear theory agreed well with the 
experimenta l data . 

INTRODUCTION 

A general investigation of wing- control rolling effectiveness is 
being conducted by the Langley Pilotless Aircraft Research Division uti­
li zing rocket-propelled test vehicles in free flight at transonic and 
supersonic speeds . In continuance of this program, the varia tion of 
rolling effectiveness with spanwise aileron extent wa s obtained for full­
chord ailerons and these dat a were correla ted with the results of a 
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previous similar investiga tion concerning partial-chord trailing-edge 
ailerons (ref. 1) to show some effects of aileron chord. 

The principle of aerodynamic superposition is frequently used in 
calculating the effects of aeroelasticity by assuming that the character­
istics of the twisted wing can be obtained by superposing the results of 
calculations made for unit deflection of partial-span segments (see 
appendix). A limited check upon this principle was made by comparing 
the results of the full-chord aileron with data obtained from flight 
test models which employed twisted wings . In addition, calculated values 
for all the test configurations are presented. 

A 

b 

c 

ca 

cr 

k 

L 

n 

M 

T 

m 

1 - " 
1 - k 

SYMBOLS 

aspect ratio, b2jS 

diameter of circle swept by wing tips, ft 

wing chord measured parallel to model center line, ft 

aileron chord, ft 

wing root chord, ft 

Cotangent of leading- edge sweepback 
Cotangent of trailing-edge sweepback 

rolling moment (positive when tending to depress right wing, 
as seen from rear), ft-lb 

section normal force 

Mach number 

twisting couple applied at wing tip in a plane perpendicular 
to the wing chord plane and parallel to the model center 
line, in-lb 

cotangent of leading-edge sweepback 
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CZ p 

Cp 

In 

KT)i 

rolling velocity, r adians/sec 

dynamic pressure, lb/sq ft 

Reynolds number based on mean exposed wing chord 

area of two wings t a ken to fusela ge center line, sq ft 

rolling effectiveness parameter (wing- tip helix angle), 
r adians 

velocity, ft/sec 

rolling-moment effectiveness for two a ilerons (~CZ) 
00 o~O 

value of eZ o for full-chord-a ileron configura tion when 

used in superposition equation 

damping-in-roll derivative (dCZ J 
d pb pb ~O 

2V, 2V 

pressure coefficient, 
Pressure difference between upper and lower surfaces 

q 

va lue of int egra l in region n (see eq. (A3 )) 

°a span 

loca l angle of incidence of twisted wing 

average a ileron deflection mea sured in a plane perpendicular 
t o chor d plane and parallel t o model center line, average 
of three wings, deg 

avera ge tip angle of incidence of twisted wing, deg 
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angle of sweep measured at c/4, deg 

r atio of tip chord to extended chord at model center line 

rectangular coordinates, normalized with respect to wing root 
chord and wing semispan, respectively 

value of ~ at inboard end of aileron 

twist of wing mea sured in a plane perpendicular to the wing­
chord plane and parallel to the model center line, radians 

MODELS AND TECHNIQUE 

The genera l arrangement including some significant physical dimep­
sions of the test vehicles used in this investigation is presented in 
figures 1 and 2. Some typica l details of the test models are shown in 
t he photographs presented a s figure 3. The outer ·portions of the wings 
on models 1 to 4 were rota ted about the 40-percent-chord line (see 
fig. 3(c)). No attempt wa s made to seal the gap thus crea ted. The span­
wise locations of the inboard ends of the full-chord a ilerons are given 
in t able I in conjunction with other significant information. The aileron 
deflections of models 1 to 4 were increa sed a s the spanwise extent was 
decrea sed (see t able I), thus mainta ining sufficient rolling effective­
ness to insure good experimenta l accuracy. 

For reference, figure 4 presents a comparison of the spanwise vari­
a tion of the torsiona l s tiffness parameter ~ for all of the test models. 

Models 5 , 6, and 7 employed twist ed wings wherein the angle of inci­
dence wa s proportional t o t he cube of the distance from the fuselage cen-
ter line (Q = 5t~3 ). Model 5 wa s constructed with 4. 5-percent-thick wings 
which were made by sca ling down the ordinates of the NACA 65AOo6 airfoil 
section. 

The flight tests were made at the Langley Pilotless Aircraft Research 
Sta tion at Wallops Island, Va. The test vehicles were propelled to super­
sonic speeds by a two-stage rocket-propulsion system. During a period of 
approximately 12 seconds of coasting flight following rocket-motor burn­
out, time histories of the rolling velocity were obta ined with special 
r adio equipment (spinsonde) and t he flight-path velocity was obtained by 
use of CW Doppler r adar. These dat a , in conjunction with atmospheric data 
obta ined with r adiosondes, permi t the eva luation of the control rolling 
effectiveness in t erms of the paramet er pb/2V a s a function of Mach 
number. 
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Figure 5 presents the average variation of Reynolds number with 
Mach number for the models discussed in this paper. 

ACCURACY 

From previous experience and mathematical analysis it is estimated 
that the maximum experimental er ror is within the following limits: 

5 

Subsonic Supersonic 

pb!2V 
o 

M 

r adians .. ..... .. ..... . . . 

-to.Ol 

where 0 is either oa or Qt. 

DATA CORRECTIONS AND REDUCTION 

±0.005 

All of the data have been reduced to pb!2V in order to allow o 
direct comparison of the various wing modifications. No attempt was made 
to correct for the effects of test-vehicle moment of inertia about the 
roll axis on the measured variation of pb!2V with Mach number since 
previous experience has demonstrated that the effects are within the 
accuracy of mea surement . 

The data are presented two ways: 

1. Uncorrected for the effects of aeroelasticity 

2. Corrected to estimated rigid wing values 

The rigid wing estimates were made by the method given in reference 2 by 
using span load distributions obta ined from reference 3 and wind-tunnel 
da t a . 

RESULTS AND DISCUSSION 

Ailerons 

Figure 6 presents t he variation of the rolling effectiveness param­

eter ~i/oa with Mach number for the models employing full-chord 
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ailerons. These data are compared with values calculated by linear theory 
as described in the appendix and by strip theory . The agreement between 
corrected experiment and linear theory is excellent except for the super ­
sonic values for model 1. A contributing factor to this discrepancy may 
be the approximation of the actual three-wing model by a two-wing config­
uration for calculation purposes, and an additional factor may be the 
neglect of the effect of the body (see appendix); both these factors are 
relatively more important for modei 1 than for the other models. 

Reference 4 presents a simplified method for estimating the rolling 
effectiveness of all-movable wings (full-exposed-span full-chord ailer­
ons). This method (strip theory) was applied also to partial-span ailer­
ons and the resulting estimates are also presented in figure 6. These 
results show that strip theory underestimates the full - exposed-span ca se 
(model 1) slightly and overestimates the extreme outboard (model 4) 
a ilerons by a larger proportion . 

The data of figure 6 are expressed a s a fraction of the full-expos ed­
span rolling effectiveness and are cross -plotted in figure 7 to show the 
spanwise varia tion of rolling effectiveness with extent of aileron span . 
Envelope curves enclose the total scatter experienced in the Mach number 
r ange from 0 . 6 ~ M ~ 1.4. In addition, comparison wa s made in a similar 
manner with the results of a similar investigation concerning partial­
chord tra iling-edge ailerons (ref. 1). For consistency with the present 
results, new rigid wing corrections were made for the partial-chord 
a ilerons utilizing the method of reference 2 . The spanwise varia tions 
t hus obtained exhibited little variation with Mach number. For this rea ­
son, faired averaged curves were prepared. These curves are presented 
in figure 8 and are applicable over a Mach number range of 0 . 6 ~ M ~ 1.4. 
This correlation which averages the effects of Mach number shows that the 
0. 3-chord ailerons were relatively less effective near the wing tip than 
either the full-chord or the 0 .15- chord ailerons . 

Twisted Wings 

Figure 9 presents a comparison of the rolling effectiveness resulting 
from cubic distribution of wing twist with severa l methods of estimation. 
A limited check upon the validity of the principle of superposition when 
applied to experimental data is presented in the comparison of the data 
for models 5 and 6 with the value estimated from the cross plot of fig­
ure 8. This estimate was made in a manner similar to tha t used in the 
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appendix for the swept cubic-twist configurations. In this instance, 
the rolling effectiveness of the twisted wing can be expressed as follows: 

where 

then 

(EE. \ fa. tip EE.. =2V')full-exposed span 
2V 

K~i da. 

pb!2V 
at 

aa ex, root 

( EE.) 1 
= 3 2V full-exposed span 1 K 11 2d 

a 11i i 11i 
a 0 

Models 5 and 6 agreed well when corrected for the effects of aero­
elasticity thus indicating that the effects of wing thickness are small 
in this thickness range as might be expected. The experimental estimate 
should be equally good at speeds lower than M = 0.6 as Mach number 
effects in this r ange are negligible. Good agreement was also obta ined 
from the linear and strip theory estimates. Little effect of wing sweep­
back is apparent as the results of the tests of the unswept wing (model 7) 
are in good agreement with the swept-wing results. 

CONCLUDING REMARKS 

A free-flight investigation employing rocket-powered test vehicles 
wa s made at Mach numbers ranging from 0. 5 to 1.5 to determine the vari­
ation of rolling effectiveness with extent of aileron span employing 
full-chord ailerons on a wing of aspect ratio 4.0, sweepback 450

, t aper 
r atio of 0.6, and employing NACA 65A006 airfoil sections. These data were 
correla ted with the results of a similar investigation concerning partial­
chord a ilerons. This correlation shows that the spanwise variation of 
aileron effectiveness for an aileron of given chord exhibited little 
variation with Mach number over a range of 0.6 to 1.4, and a lso shows 
t hat 0.3-chord a ilerons were relatively less effective near t he wing tip 
t han either full-chord or 0.15-chord a ilerons. 
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Additional tests using models with twisted wings showed good agree ­
ment with estimates based upon the full - chord a ileron tests thus providing 
a limited check upon the principle of aerodynamic superposition . 

Agreement of the test results with estimates using linear theory 
wa s good . 

Langley Aeronautical Labora tory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va ., June 24, 1954. 
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APPENDIX 

THEORETICAL ESTIMATIONS 

INTRODUCTION 

Because of the variety 'of the configura tions tested and the Mach 
number range covered, it was necessary to use several methods in calcu­
l ating theoretical va lues of pb/2V . For all cases, the following rela­
tion was used: 

pb/2V 
a (AI) 

The calculations were carried out a s if the models had two wing panels 
in one plane, r ather than three equally spaced panels, and the presence 
of the body wa s neglected. Past experience with models similar to the 
present ones ha s shown that this procedure is an acceptable one for esti­
mates of pb/2V. The various sources (refs . 3, 5 to 8) from which 
values of CIa and CIp were obtained are listed in table II . In most 
instances, the required quantities could be obtained from the references 
cited directly enough to require no further explanation . However, some 
addit iona l work was required in order to estimate values of CI5 at 
supersonic speeds for the full - chord-a ileron and the swept cubic-twist 
configurations. This work is described in the following sections. 

Full-Chord-Aileron Configura tions 

Briefly, the rolling moment for the full - chord -aileron configurations 
wa s found by determining the pressure in the various regions of the wing 
influenced by the aileron, integrating this pressure in the chordwise 
direction to obta in the span load distribution, and finally integrating 
the span load distribution to arrive a t the rolling moment . 

The axis system and rotation used in the c alculations is shown in 
figure 10. The full-chord a ileron, represented by the shaded area, is 
at an angle of incidence oa; the rest of the wing is at zero angle of 
incidence. The pressure in regions I, 2, 3, and 4 is given by equa­
tion (6.4) of reference 9. In t he notation of the present paper, the 
pressure coefficient is expressed a s follows: 
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(A2) 

The pres sure in region 5 can be shown to be zero. Therefore the span 
load distribution is found by integra ting equation (A2) with respect to 
S over each of the regions 1, 2, 3, and 4, using the limits appropria te 
to each region. Thus, if n is t he section normal force, then the span 
l oad is given by the following equation: 

8 K l uPIler limit n 6 2 
qC r == ~n K3 lower limit 

(A3 ) 

wher e the upper and l ower limit s are those approllriate to the particular 
region a s shown in figure 10, and In is the result of the integration, 
the subscript n corresponding to the number of the part icular region. 
The expressions for In -are a s follows: 

12 == Y[l - K1(1 - k )rt + K3 (rt - Ttl)] [1 - Kl(l - k)rt] + 

1 - Kl(l - k)T) 

K3 (T) - T)i) 

14 == V [1 - Kl (1 + k) rt - K3 (Tl i - rt D [1 - K 1 (1 + k) TlJ -

K3 (T)i - 1') ) cosh- l \/'1 - Kl (1 + k)Tj 
K3 (1')i - 1)) 

The calcul a t i ons for 1')i == 0 . 918 (model 4 ) r equired the consideration 
of a.n addit i ona l type of regi on, itS shown i n f igure 11 (compare wit h 
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figure 10). The pressure is zero in regions 7 and 8, and the regions 1 
and 3 are the same as those in figure 10. Region 6, however, has no 
counterpart in figure 10; the value of 16 is a s follows: 

cosh-l , ~J 
~TJi - TJ 

(A5) 

8 K2 
Plots of the quantity - -- I are presented in figure 12 for a va lue 

11: K3 n 

of Sm = 0. 765, for the values of TJi corresponding t o the models tested. 

After the span load has been obta ined as just described , an 
tional integration with respect to TJ gives the va lue for CZa. 

final result has the following form: 

addi­
The 

(A6) 

The int egr.ation was done graphica lly, using the va lues shown in figure 12. 
The span load for TJi = 0.139 is not correct for values of TJ less 
than -0.78 because the ef fect of the left wing tip was neglected; the 
error incurred can be shown to be less than 2 percent in the fina l 
CZ

a 
value. 

Swept Cubic -Twist Configurations 

For the swept cubic-twist configurations (models 5 and 6) the va lue 
of the rolling moment wa s ca lcula ted by superposition of the preceding 
results for the full-chord - a ileron configurations. If ~ is the angle 
of incidence at any spanwise sta tion and (CZa)f the corresponding value 
of CZ a for the full - chord- a ileron configuration, then for an arbitrary 

di stribution of angle of incidence the following equation applies: 

For the particular case of the cubic-twist wing, 

(A8) 
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where at is the tip angle of incidence, so that for this ca se 

The integration was performed graphically to arrive at the numerical 
values of C2a for the svept cubic - twist configuration. 
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TABLE 1.- DESCRI PTION OF TEST MODELS 

Axis of aileron yo/a f/ol? ( 04 churd) 

Full -chord odero/) \ 

c/ 4, 
deg 

45 
45 
45 

I 
45 
45 
45 
0 

f 

1, -
I 

21/ 
b 

aa., 
TJi deg 

0 .139 1. 41 
.487 1. 63 
·705 2 · 77 
. 918 4 · 75 
.139 ----
.139 ----

.139 ----
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1 
l2.- :: 181n 
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NACA airfoil 
secti on 

65A006 
65A006 
65A006 
65A006 

65(06)A004 . 5 
65Ao06 
65A006 
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Type of wing 

Full - chord a ileron 

Cubic t wist (swept ) 

Cubic twist (unswept) 

c 

TABLE II . - REFERENCES FOR THEORETICAL ESTIMATES 

Subsonic Supersonic 
Model 

Cl e and Clp Cle Cl p 

1, 2, 3, 4 Reference 3 Present Reference 7 
paper 

5, 6 Reference 3 Present Reference 7 
paper 

7 Reference 3 References 5 and 6 Reference 8 
--- - -- ---
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1 
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l--"""''---------- 56.00 -------,r-------.:a--l 

3 wi/l9S spaced al lt7/ervals of' 

/20 0 aroul7d tv:tlf, 

3.25 a /rcrol/ rocke! ---,. 

5pimo17d e 

--------------

(b ) Model 7. 

Figure 1 .- Genera l arrangement of flight tes t vehicles . All dimensions 
are in inches . 
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(a) Models 1 to 6 . A = 45°. (b) Model 7. A = 0°. 

Figure 2 .- Wing plan-form geometry of test vehicles. All dimensions are 
in inches. 
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(a) General arrangement . Model 5. 
L-76734.1 

Figure 3 .- Photographs of test vehicles . 
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(b) Rear quarter view . Model 3 . L-76461.1 

Figure 3 .- Continued . 
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( c ) Detail showing rotated wing segment . Model 4 . 

Figure 3.- Concluded . 
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.Ie )( 10 - 3 ---, ____ -,---____ ,-____ y--___ ----, 

.08 r-------~------_r-------+--------r-----~ 
Model 5 

-if 
T 

.04 

7 

o 
o .6 .8 /. 0 

1 

Figure 4. - Variation of the torsional stiffness parameter with span. 
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8 x /0 6=-------.------.--___ ---r ____ ---r-____ .,.---/ ,--~ 
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o 
.4 .G .8 1.0 

M 
/.2 1.4 1.6 

Figure 5 .- Variation of test Reynolds number with Mach number. Reynolds 
number based on mean exposed chord (0.72 foot). 
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Experiment (l1eKlole) 
Expe,ll77enf(coaecfed 10 ri9id) 
S/rljJ theoY(I 

Linea r fIJeo rfj 

Model / ( 1 ,-0.139) 

Mortel .J (17i =0. 706) 

.{J 1.0 

IV! 
1.2 1.4 

23 

1.6 

Figure 6.- Rolling effectiveness due to unit aileron deflection of full ­
exposed- span full - chord ailerons . A = 45°; A = 0 . 6; NACA 65A006 air­
foil section . 
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Figure 7 .- Fraction of full - exposed- span r olling effectiveness r etained 
by outboard partial- span ailerons . Envelope curves enclose total 
scatter experienced in the Mach number range 0.6 ~ M ~ 1 . 4 . NACA 
65A006 airfoil section; A = 45° ; A = 0.6; corr ected to rigid wing 
values . 
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Figure 8 . - Variation of rolling effectiveness with extent of aileron 
span for ailerons extending to the wing tip. A = 450 ; A = 0 .6; 
NACA 65A006 airfoil secti on; corr ected to rigid wing values . 
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Figure 9 .- Compar i son of rolling eff ecti veness resulting from cubic 
di str i bution of wing twist with sever al methods of estimation . 
A = 00 and 45~ ; A = 0 .6 . 
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Figure 11 .- Regions associated with model 4. 
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Figure 12.- Span load distribution for models tested. ~m = 0.765. 
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