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WITH NONTRIMMING HYDRO-SKIS MOUNTED
ON SHOCK STRUTS

By Emanuel Schnitzer

SUMMARY

Theoretical equations are derived for the motion of aircraft equipped
with hydro-skis mounted on shock struts during take-off and landing opera-
tions on a water surface. The case considered involves a ski which is
fixed in trim relative to the aircraft and which translates upward during
impact, thus telescoping the shock strut. Two hydrodynamic force rela-
tions, one more accurate but more complex than the other, are considered.
Incorporation of suitable shock-strut spring and damping approximations
along with the simpler hydrodynamic-force term allows the equations to
be written in nondimensional form for design-trend studies. Such trend-
study solutions have been made for a broad range of practical water impacts
and are presented as dimensionless plots. The equations involving the
more accurate force term are usable only in the dimensional form as pre-
sented, but they allow any spring type, any exponential damping constant,
and a variety of ski bottom shapes to be included in the solutions. Thus
the trend-study solutions may be used for rough preliminary design and the
more accurate solutions for final design. An appendix is included which
gives a simple step-by-step procedure for solving any of the sets of equa-
tions derived in the paper.

INTRODUCTION

This paper deals with theoretical methods for treating oblique water
impacts of aircraft equipped with nontrimming hydro-skis mounted on shock
struts. The shock-mounted hydro-ski has become of interest in recent
years primarily as a landing device for high-performance aircraft capable
of operation from water, snow, ice, or sod bases. In addition to softening
the impacts encountered in operations from the solid-material runways,
the shock strut allows a wider ski to be used on the water runways with-
out increasing the loads over those encountered with the narrower rigidly
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mounted ski. Since the wider ski permits easier take-off because of its
increased lift-drag ratio, the shock strut indirectly improves take-off
performance without increasing the landing load.

Although several ways have been conceived to mount hydro-skis on
shock struts, such as, for example, the translating ski mounting, the
trimming ski mounting, and the varying-dead-rise ski mounting described
in reference 1, this paper is concerned only with the simple .translating
ski mounting. This design (see fig. 1) incorporates a ski which is fixed
in trim relative to the aircraft and which translates upward under load,
telescoping the shock strut. It is the purpose of this paper to derive
and solve theoretical equations for this case.

The theoretical equations derived in this paper employ the
hydrodynamic-force terms of references 2 and 5 in combination with the
shock-strut spring and damping terms. The equations employing the force
term of reference 2 are simple enough so that with suitable spring and
damping restrictions they can be solved and plotted in nondimensional
form for use in design-trend studies. Such a study has been made for a
broad, practical range of aircraft landing conditions and is included
herein. The more accurate equations employing the force term of ref-
erence 3 were too complex for expression in dimensionless form and so
are presented in the form suitable for dynamic calculations involving
a wide range of bottom shapes, spring types, and damping exponents. These
more accurate equations might be employed for final design calculations.

The paper 1s organized as follows: the equations of motion are
derived for shock-strut damping proportional to an arbitrary power of
the velocity, first for arbiltrary spring force, then for constant spring
force, and finally for linear spring force. The hydrodynamic-force term
is next developed using reference 3 or planing data, and then using ref-
erence 2. Following this, the motion equations employing the force term
of reference 2 are nondimensionalized for the arbitrary-, constant-, and
linear-spring-force approximations and for damping proportional to the
square of the strut compression velocity. A discussion of the trend-
study solutions of the dimensionless linear spring-force equations is
included. An appendix gives a simple step-by-step procedure for solving
any of the sets of equations derived in this paper.

SYMBOLS

b beam of ski

Ca beam-loading coefficient of ski, M/pb3
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cr planing 1ift coefficient based on ski beam, Fy /g *2p2
Cy speed coefficient, )'c/\/gb
c damping constant of shock strut
F hydrodynamic force on ski
1.1
£(7) trim function, 0.0067 where T 1is in degrees
5/2 2 ‘
sin”™’ "t cos T
g acceleration due to gravity
H constant shock-strut spring force
K spring constant
M effective mass of aircraft attached to each shock strut
n damping exponent
z
T nondimensional time variable, t 7?
t time after contact
u generalized displacement of ski normal to water surface relative
to its position at water contact, z/q
a generalized velocity of ski normal to water surface, du _ éi
aT Zg
u generalized acceleration of ski normal to water surface,
a%u _ . 1
ate 32
v resultant velocity of aircraft
X forward velocity of ski parallel to undisturbed water surface

CONFIDENTIAL



Cs

: oo: : P [ X s o "C 'N‘F.I]SENT.IAL NACA RM L514-H10‘

vertical displacement of ski normal to undisturbed water surface
relative to its position at water contact

vertical velocity of ski normal to undisturbed water surface
vertical acceleration of ski normal to undisturbed water surface
flight-path angle relative to undisturbed water surface

g hcosT

Méo2

constant spring-force parameter,

displacement of ski keel normal to itself relative to its posi-
tion at water contact

displacement of ski-step normal to its keel relative to the
undisturbed water surface

z + Kig
velocity of ski normal to its keel, —m —
cos T

acceleration of ski normal to its keel
3/2|2/3
CAP

nondimensionalizing length, ——z—;—
f(r

2
linear spring-force parameter K =

ZM

" sin T
cos(T + 76)

approach parameter,
sin 7y,

ratio of mean wetted length to beam for a flat rectangular plate

based on the undisturbed water surface, R
b sin T

ratio of mean wetted length to beam based on the elevated water
surface

arbitrary spring-force parameter, n/cos T
forward velocity of ski parallel to its keel

forward acceleration of ski parallel to its keel

CONFIDENTIAL



:oo oo: .....'."::'00000..
:-. :oo .oo Eo. E'E .:' .:0 : b : :‘ E E
NACA RM L54H10 CONFID; 0 s e e 5
p mass density of water
g ski cross-sectional shape factor
T trim of ski relative to undisturbed water surface
¢ arbitrary spring-force coefficient, L S08 T
ZoM
. n=2
. Nz,
¥ strut damping parameter, ¢ =
M cos T
Subscripts:
e at exit
m maximum value
N normal to ski keel
o} at water contact
P planing
v normal to water surface
Superscript:

' referring to fuselage of aircraft instead of to ski

THEORY FOR IMPACT OF SHOCK-MOUNTED HYDRO-SKI

Equations of Motion

In the following derivation of the equations of motion for the hydro-
dynamic impact of shock-mounted hydro-skis, a system is considered in
which the ski keel is oriented parallel to the plane of symmetry and nor-
mal to the axis of the shock strut (see fig. 1). The ski is assumed to
remain fixed in trim and since its weight is usually less than 5 percent
of the weight of the airplane, the ski mass is neglected. Since the beam-
loading coefficient of hydro-skis is usually large, the force due to
acceleration of the virtual mass of water is also neglected (ref. 3).

In order to further simplify the problem, an additional idealization is
made that the aircraft is rigid. '
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The selection of a shock absorber with desirable force character-
istics is a difficult problem in view of the many variables involved in
hydro-ski landing operations. The selection of the proper character-
istics is therefore left open insofar as possible by writing the equa-
tions of motion first for a shock strut having a general type of springing
as some arbitrary function of the strut telescoping displacement; two
approximate forms for the spring-force function will be considered later.
In the derivation the assumptions are made that the shock-strut damping
force varies as some arbitrary power of the velocity of compression, that
the wing 1ift of the aircraft is balanced by its weight, and that fric-
tionless flow exists in the water lmpinging on the ski.

On the basis of the foregoing assumptions, the equation governing
motion of a shock-mounted hydro-ski normal to its bottom and neglecting
strut telescoping friction (see fig. 1) is

Fy = cy(f' - )+ £1(8s" - 8s) (1a)

when the shock strut is compressing and

Fy = ~cp(t - £ + £1(8s" - &) (1b)
when the shock strut is extend . In these equations FN is the hydro-
dynamic force on the ski, f1{{s - tg) is the spring or air compression

force in terms of the strut telescoping displacement §g' - (g, ey

and co are the damping constants, n 1s the damping exponent, and é

and {' are the normal velocities of the ski and aircraft, respectively.
Although, for convenience, the full damping force is sometimes assumed
to reverse on shock-strut extension so that c, = c,, actually in practice

a fluid-return dump valve might be employed so that the strut damping
force would approach zero on shock-strut extension, and if the ski were
in the water during this time the normal load extending the ski would
approximate the spring force. Since the lower mass (ski and lower part
of shock strut) is neglected, the hydrodynamic normal force of equa-
tions (1) is communicated directly to the aircraft fuselage, and since
the wing 1ift is assumed equal to the weight of the aircraft the equa-
tion of motion of the fuselage is expressed by Newton's third law as

Fy + M{' = 0 (2)

where M 1is the mass of the aircraft and E' is the acceleration of
the fuselage normal to the keel. If equation (2) is substituted into
equations (l), the following equations result:
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M'g" + c(ig" T g')n + fl(gs' -¢) =0 (3)

where the upper signs signify strut compression and the lower signs strut
extension. Equations (2) and (3) may be rewritten in terms of the coor-
dinate system normal to the water surface by means of the following sub-
stitutions (see velocity diagram in fig. 1).

£ =2 (ba)
cos T
£ - 23 5% (4b)
cos T
oz
ST cos T (4e)
where
k= 3 s.in T - sin T COS(T + 70) ()-}»d)
Zo sin yo

and E 1s taken equal to O Dbecause of the assumption of frictionless
flow and no external force, thus rendering ¢ a constant. The rela-
tionships between the primed quantities are expressed by similar equations.
The substitution of equations (4a), (4b), and (k4ec) and the primed equiva-
lents into equations (2) and (3) leads to the following expressions:

z' + Y =0 (5)

and
1
'z'l + Cn - (ii' T i)n + fl(z - Z)COS T =0 (6)
Mcos T cos 7/ M
since zy' = zg. In these equations F, is the vertical component of

the hydrodynamic force, z and z' are the vertical velocities of the
ski and fuselage, respectively, and Z' is the vertical acceleration
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of the fuselage. Specific solutions of equations (5) and (6) can be
effected, provided that suitable expressions for Fy and fq are avail-

able and the constants M, ¢, n, T, and 7y, are given.

Spring Force

In some instances it is believed that a shock strut having a constant-
force spring exerting a force of slightly greater than 1 g may be desir-
able. Such a strut would be extended between impacts and during planing.
It would therefore make available its entire stroke for impact load reduc-
tion. For this case and for those cases where the spring force may be
approximated by a constant with reasonable results, the spring term in
equation (6) may be written

z' -z
£)(2—=2) = ® ()
cos T
where H 1is defined as a constant spring force. It should, however,

be remembered that when z'< g cos T and §g' - {5 = 0, equation (6)

modified by equation (7) for constant spring force no longer applies,
since the shock strut behaves as a rigid link zg = 2zg', 2z = 2', and

z = z'. In this region, equation (5) and its integrated form will yield
solutions for the acceleration of the aircraft.

The air springing force on some existing landing-gear shock struts
may be roughly approximated by a straight-line force-deflection curve
for some applications. For this approximation the force curve is assumed
to intersect the origin of zero force and zero strut compression, although
in the actual air-spring case a substantial force exists for negligible
strut compressions which enables more rapid reextension of the strut for
subsequent impacts. This linear springing reaction is defined as

ﬂ<z' : ) _ K<__> ®)
COsS T COS T »

where K is the spring constant and 2z' and 2z are the respective
displacements of the fuselage and hydro-ski normal to the undisturbed.
water surface.
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Hydrodynamic Force

The hydrodynamic impact force for use in solving the equations of
motion can be obtained from theoretical or experimental high-speed planing
data for the case of the usual heavily loaded hydro-ski under considera-
tion in this paper. An empirical formula for the instantaneous planing
1ift may be derived from reference 2 or planing experiments, and a theo-
retical one from reference 3. The application of these formulas to the
impact case is given in the subsequent sections following the expression
of the impact force in terms of the planing reaction. Although the equa-
tions of motion involving the hydrodynamic force from reference 3 or
planing experiments are believed to be more accurate than those using
the hydrodynamic force from reference 2, the latter equations are simpler
and so can be applied in nondimensional form to trend-study solutions.

In order to express the hydrodynamic impact force on a heavily loaded
prismatic hydro-ski in terms of the planing reaction, this force, which
is directed normal to the keel, is first written in the form

- Fy = pb2é2f2(%,T,0) (9)

!

where p 1s the mass density of the fluid, o is the cross-sectional
shape factor, and the effect of flight-path angle on the pressure distri-
bution is considered secondary. The hydrodynamic-force term proportional
to the normal acceleration of the ski is neglected since it is usually
small for large beam loadings. The vertical component of the normal
force .can be expressed as :

Fy = pb22e5 (%,T, c) | (10)

or

F

. . \2
= pbe gf_i;ffgl_ fs(f’T’g) (11)

v
COSET

through the introduction of equation (4v) into equation (10).

The function f3 can be evaluated for the case of steady planing

. (y = 0) for which £ =% sin T (see fig. 1), where x 1is the forward
velocity parallel to the undisturbed water surface. Substitution of
this expression for { in equation (10) results in the equation
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P FV
_ f3(-z-,r,o> = —2P (12)
b 2,2 2
pb X~ sin T

Hydrodynamic force from planing experiments or reference (3) .- For
the flat or V-bottom ski, f5 can be evaluated by means of the theoret-

ical equations in reference (3) (see especially equation (11) in that
reference), while for the prismatic bottom of arbitrary cross section
experimental planing data obtained with a ski model may be used as in
reference (4). 1In order to make specific solutions of shock-mounted
hydro-ski landings, the force term defined by equation (11) is substi-
tuted into the equations of motion. Thus equation (5) is replaced by
the equation of motion

' . . \2 Z
oo, (& o+ wio) (5 m0) o (13)
Z =
bCA cosr

where the beam-loading coefficient CA“ _EL_

ob3

Solutions may be obtained, by any of the usual numerical methods,
for equation (13) in combination with equation (6) for arbitrary spring
force or with modifications of equation (6) which incorporate equation (7)
for constant spring force or which incorporate equation (8) for linear
spring force. One method of solution is illustrated in the appendix of
this paper.

Hydrodynamic force from reference (2).- In order to obtain non-
dimensional solutions of the equations of motion, a simple expression
for the vertical hydrodynamic force on an impacting rectangular flat plate
must be derived for substitution into equation (13). This expression is
obtained from the empirical equation for the planing 1lift coefficient
given in reference (2) as

FVp 1/2 o
C = ———— = t1-110.0120;/< + 0.0095( X (14)
P x2p2 ' Cv

2
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where A, 1is defined as the ratio of the mean wetted length to the beam

of the model, C; 1is the speed coefficient defined as %yafgb, and T

is expressed in degrees. Since values of Cy encountered in landing
impact are usually large, the second term in equation (14) becomes quite
small and may be neglected. The hydrodynamic planing force may therefore
be expressed as .

Fy, = 0006052027 L - 1pyL/2 (15)

. 8ince the equations of motion are written in terms of the time deriva-
tives of 1z, it is desirable to write equation (15) in terms of these
variables. If the water rise in front of the model is neglected, the
error introduced will not be excessive for many applications (see ref. 3)
and the mean length-beam ratio may be expressed as

M ™A= —2% 16
v b sin T ( )

A combination of equations (12), (15), and (16) yields the value of
f3(z/b,T,o) which upon substitution into equation (11) gives the vertical

hydrodynamic force

' . 1.1
Fy = 21/2(3 + w3o)2an?/2 _0.0067
. 5/2_ 2
sin"” T cos T
or
1/2/. . 2
Fy =z / (z + Kzo)zpbB/ (1) (17)
: 0.00671-1
where f(7) = T and T 1s expressed in degrees of angle.
2 2
sin5/ T COS T
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Substitution of equation (17) into equation (5) results in the
equation of motion

z' + zl/z(i + Kio)z —fig%g =
Cpb

0 (18)

Solutions may be obtained by numerical methods for equation (18) in com-
bination with equation (6) for arbitrary spring force or with modifica-
tions of equation (6) which incorporate equation (7) for constant spring
force or which incorporate equation (8) for linear spring force. One
method of solution is illustrated in the appendix.

Nondimensional Equations of Motion

Nondimensionalizing the equations of motion allows a large number
of specific solutions to be represented by a smaller number of nondimen-
sional plots. In this section nondimensionsl variables are derived and
in the following sections of the paper the arbitrary-, constant-, and
linear-spring-force equations are nondimensionalized in that sequence
through substitution therein of these new variables.

In the nondimensionalizing process, new dimensionless independent
variables are formed through division of the basic independent variables
of displacement 2z and time t by physical constants of like dimension.
Thus, the nondimensional vertical displacement wu 1is obtained through

division of the displacement =z by the constant 17 which has the dimen-
sion of length, or

u=2 (19)

and the nondimensional time T 1is obtained through division of the
time t Dby the constant n/io which has the dimension of time, or

= L | 20
ﬂ/io (20)

The nondimensional variables of higher order are obtained by taking
successive derivatives of the nondimensional displacement with respect

to the nondimensional time. Thus, the nondimensional vertical velocity
is defined as
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u = ili = g’l‘l. it. (21)
aT dt 4T
and the nondimensional vertical acceleration becomes
. y 3 2 2
u=@=d_uit_=d_u<d_t (22)
dT dt aT ate\ar
Since %%-= 2 and g%-: ;L3 equation (21) for the vertical velocity can
] Zo

be restated

= 2 (23)

and since —— = =, equation (22) for the vertical acceleration can be

restated

u =

zZn_ (24)
202

Equations (19), (20), (23), and (24%) define the dimensionless variables
of the problem which permit nondimensionalization of the equations of

motion. An exactly parallel set of equations for u', u', and U' may
be obtained in terms of the quantities z', 2', and z'.

Arbitrary-spring-force equations.- Equations (6) and (18) are the
equations of motion for the arbitrary-spring-force case. These equa-
tions are nondimensionalized through substitution therein of equations (19),
(23), and (24) and the primed equivalent expressions. The resulting
relations are, from equation (6):

Bxoy(ed’ @)D 4 ¢flE(u' - EI _ 0 (25)
and from equation (18):
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i+ ul/2(+ k)2 =0 (26)

if the arvitrary constant 1 1is defined as

2/3
. CAb3/2
o G
T ,
and where
z n-2
y=c¢c—ob - (28)
M cos? 1t
4 = 7 cos T (29)
5o M
p= —— (30)

COosS T

and u and u' are functions of T. (Note, in these and the following
generalized expressions, that 25 = Zo', that ugy, us', Uy, and iy' =0,

and that U, = Uy' = 1.) Thus the nondimensional motion equations (25)
and - (26) completely define the time histories of the nondimensional vari-

ables u, u, u', u', and U' in terms of the arbitrary parameters n,
n, ¥ ¥, @, and u.

Constant-spring-force equations.- Equations (6), (7), and (18) are
the equations of motion for the constant-spring-force case. If equa-
tions (19), (23), and (24), the primed equivalents, and equation (27) are
substituted into these motion equations the following relations are
derived:
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Ut y(h' gt + 8 =0 (31)
and (eq. (26))
u' + ul/z(d +x)2 =0
and

Mzo2

Equations (31) and (26) completely define the dimensionless time histories
‘for the constant-spring-force case.

Linear-spring-force equations.- The equations of motion for the
linear-spring-force case are nondimensionalized exactly as were the
constant-spring-force equations, with the result that equations (6) and
(8) become : _

U y(x" F Q)2+ 8(u' - ) = 0 (33)

and equation (18) becomes equation (26) :
u' o+ ul/e(ﬁ +K)2 =0

where

2

8 =K (34)

202M

Equations (33) and (26) completely define the dimensionless time histories
for the linear-spring-force case.

A numerical step-by-step procedure for obtaining solutions of any
of the foregoing sets of equations of motion is described in the appendix.
¢
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DISCUSSION OF NONDIMENSIONAL SOLUTIONS

In order to provide trend studies for use in preliminary design of
shock-mounted hydro-skis, solutions were made of equations (26) and (33)
on a Reeves Electronic Analog Computer for a wide range of parameters.
The equations for the linear-spring-force case were chosen since they
were easier to handle than the constant-spring-force equations and since
preliminary solutions indicated that differences in the results between
the linear- and constant-spring-force cases and the exact air-spring case
were small in the practical region. The value of 2 was selected for the
damping exponent n. In order to apply these solutions to a practical
problem, a set of scale factors may be obtained by evaluating equation (27)
in terms of the constants of the actual problem. New scales may be com-
puted for any given aircraft and written in over the existing scales on
the plots of figures 2, 3, 4, and 5. The parameters k, V, and 6 may
be evaluated for the cases of interest by substitution of the appropriate
approach conditions and design constants into equations (4d), (28),
and (34).

Figure 2 presents nondimensional acceleration time histories for
most of the region embraced by the values of K, V¢, and 6 from 0.1
to 100 and n equal to 2. These curves give the variation of the accel-
eration of the aircraft normal to the undisturbed water surface for dif-
ferent approach conditions and shock-strut spring and damping constants.
The general trends which are apparent are as follows.

(a) The effect on the acceleration of varying the damping constant
becomes smaller as 6 1ncreases, since the ratio of the spring force to
damping force increases.

(b) The acceleration time history has the appearance of a combina-
tion of two separate curves. One, arising from the strut damping reaction,
has an early peak, and the other, arising from the strut spring reaction,
has a later peak. This 1s reasonable since the highest strut compression
velocity occurs early in the impact, making for large damping force, while
“the maximum strut compression displacement occurs later in the impact,
giving the large spring force. For intermediate spring and damping
reactions the peaks approach equal heights, resulting in a flat-topped
or rectangular force curve.

(¢) As « increases (approaching the planing condition) the effect
on the acceleration of varying V¢ 1s increased over that of varying 6.
This probably is the result of very small strut compression displacements
at substantial compression velocities.

The maximum values of the dimensionless acceleration -u' are
plotted against the damping parameter ¢ 1in figure 3 for the different
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values of spring parameter 6 and the approach parameter x. The
damping parameter rather than the spring parasmeter was chosen as the
abscissa since damping is usually the more important factor in shock-
strut design. For a given aircraft at a given trim and vertical velocity
at contact, the scale values on the plots of figures 3, 4, and 5 can be
used directly for depicting relative trends of the dimensional quantities,
as their magnitudes bear the correct ratios to each other. For example,
in figure 3 the acceleration is proportional to —ﬁ', the spring constant
to 6, and the damping constant to +V, while k approximates 7/70 for

the low trim angles.

From this figure it is evident that, in general, the maximum accel-
eration increases with the spring constant and the damping constant and
decreases with increasing flight-path angle. From a dimensional viewpoint
this last result may be explained by assuming the sbove conditions of con-
stant initial vertical velocity and trim, for which a reduction in Yo

would mean an increase in resultant velocity at contact with correspondingly
larger loads.

The effect of variation of shock-strut and approach parameters on
the vertical velocity at water exit, which affects the severity of sub-
sequent impacts, may be observed from figure 4. It does not appear that
any general comment can be made regarding the trends in this figure,
although such trends would probably become more pronounced for a given
aircraft with its more restricted practical range of «k, 6, and V.

An idea of the required shock-strut length for an aircraft may be
obtained by means of figure 5. This figure presents the maximum strut
stroke utilized in impacts for the ranges of k, ©, and V¥ covered by
the previous figures. The general trends apparent from figure 5 are
that the strut stroke decreases with increasing damping constant, spring
constant, and initial flight-path angle. The decrease with increasing
flight-path angle is probably a result of the lower loads arising from
the reduction in horizontal velocity occurring at the higher flight-path
angles. From the foregoing figures the designer may reach the best engi-
neering compromise between a rectangular shock-strut force-time curve,
minimum rebound velocity from the water surface, and shortest required
strut stroke.

CONCLUDING REMARKS

Theoretical equations have been derived for treating oblique water
impacts of an aircraft equipped with a flat-plate hydro-ski mounted on
a shock strut. These equations were nondimensionalized and solved, and
the results were plotted for the case of velocity-squared damping and a
linear spring reaction for a wide range of design parameters. On these
plots the following trends may be observed. .
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A tendency toward a double peask exists on the acceleration time
histories, mainly because of shock-strut characteristics. The early
peak results principally from the large damping force at high initial
telescoping velocity while the later one results principally from the
large spring force at large telescoping deflection.

The effect on the acceleration time history of varying the damping
constant becomes smaller as the spring constant is increased.

The effect on the acceleration time history of variation of the
damping constant becomes greater than the effect of variation of the
spring constant as the initial flight-path angle 1s decreased.

For a given initial vertical velocity and trim, the maximum accelers-
tion increases with the spring and damping constants and decreases with
increasing flight-path angle. Also the required strut stroke decreases

with increasing damping constant, spring constant, and initial flight-
path angle.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., July 27, 195L4.
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APPENDIX
NUMERICAL SOLUTION OF EQUATIONS OF MOTION

The equations of motion derived in the body of this paper may be
solved by any of the standard numerical procedures (refs. 5 and 6). One
such step-by-step process involving incremental linear extrapolation of
vertical velocity with a correction to this velocity at each step is
described below. 1In order to avoid duplication, any of the sets of equa-
tions proposed in this paper can be replaced by two equivalent expressions
for which the numerical procedure is set up. These expressions are as
follows:

v+ £ (v) (v + Kﬁo)e =0 (A1)

and
V' ARV F )+ f5(v - v) = 0 (A2)

where v and v' are functions of some sort of time, say t, for example.
In these equations v, V, and V are, respectively, the dlsplacement
velocity, and acceleration of the ski normal to the water surface while
the primed equivalents refer to the fuselage motions. These equations

are used for illustrative purposes and the actual solutions should be
carried out with the specific equations of the problem after the proper
functions have been evaluated and substituted therein.

The step-by-step computation can be carried out by selecting several
successive values of Vv designated Vg, Vp, and V., for values of

time t separated by increments designated At. The values of vy

and ﬁb will be considered known from previous steps or from initial
values of the variables. Since Vb = 0, the velocity can be assumed to
be constant over the first increment; hence vy = v, = V,. It is desired

to obtain successive values of some of the derivatives of v and v'
with respect to t, and especially accurate values of ﬁc since this

quantity is extrapolated. The equations selected to accomplish this are

Vy = 2% - Vg (A3)

. + . =
Ve = Vp + x T % > Yo At (Ak)
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ve! = “fh(vc)(vx + KVp) (a5)
Vo! + W'
Vel= v v B g (46)
2
1 V.'C' + ‘}b' .
ve'! = w' o+ -——Er—-—-cm : (A7)
| 1/n

. Vv, Ffe(ve' - va) i

Vo= Vo' % c AR z (A8)

A

where x 1ndicates a trial value at point c¢ obtained through extra-
polation, and the upper and lower signs refer, respectively, to strut
compression and extension. A switch 1s made from the upper to the lower
signs when V' becomes equal to or less than V.

The value of ﬁc is the required accurate value which for the next
increment becomes Wy, the previous v, becoming V,. Although the

operations carried out with equations (A3) to (A8) could be repeated for
the same increment of time At with v, substituted for vy, one cor-
rection for each step is believed to be sufficient, provided a small
enough incremental time is chosen. For many applications, it is believed
advisable to select very small increments for the first four or five
steps and larger increments from there on, although it must be remembered
that in all cases the time increment from a to b must equal the time
increment from b to ec.

The correct increment size may be established by experience acquired
in making several solutions for a given problem and using different incre-
ment sizes for each solution. The increment size may be increased until
the point is reached where the solutions diverge from the more accurate
curve obtained with a very small increment size. If a small-period oscil-
lation is present in the curve, too large an increment size is also indi-
cated. The values determined from the repeated application of equa-
tions (A3) to (A8) when plotted against t give the motions of the ski
and fuselage throughout the impact.

If it is assumed that a dump valve exists in the shock absorber,
then the damping on strut extension becomes considerably less than on
compression. When this condition exists, the value of A, and possibly
of n also, will become different during the extension part of the stroke.
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