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RESEARCH MEMORANDUM

THRUST AND PUMPING CHARACTERISTICS OF A SERIES OF EJECTOR-TYPE
EXHAUST NOZZLES AT SUBSONIC AND SUPERSONIC FLIGHT SPEEDS

By Donald P. Hearth and Alfred S. Valerino

SUMMARY

An investigation was conducted in the 8- by 6-foot supersonic wind
tunnel to determine the thrust and pumping characteristics of a series
of ejector exhaust nozzles. Data were obtained for various ejector diam-
eter and spacing ratios at free-stream Mach numbers of 0.10, 0.63, 1.50,
and 1.90 over a pressure-ratio range of 1 to 10 and secondary-primary
weight-flow ratios to 0.36.

Results of this investigation indicated that free-stream Mach number
had no effect on the pumping and jet-thrust characteristics of the ejec-
tors in the range for which the secondary flow was choked. The mass-flow
discharge coefficient of the primary nozzle was reduced as secondary
weight flow was increased for some of the shroud configurations. How-
ever, the flow coefficient was not affected by primary pressure ratio or
free-stream Mach number.

INTRODUCTION

It has been shown (refs. 1 and 2) that increases in the basic thrust
of a conventional convergent nozzle may be obtained when cooling air is
pumped through an ejector surrounding the primary nozzle. These ejector-
type exhaust nozzles also represent a form of variable-geometry Jjet exit
(ref. 2) which is desirable for engine operation over a wide range of
pressure ratios. Numerous investigations (refs. 3 and 4, for example)
have been made in quiescent air to determine the thrust and pumping char-
acteristics of various types of ejector nozzles.

In order to fully evaluate such exhaust systems, determination of
the interferences between the internal and external flows are required.
Investigation of this problem has been initiated; results concerning the
external flow influence on ejector pumping performance and the external
drag characteristics are reported in references S and 6. However, the
external flow effect on measured internal thrust for ejector configura-
tions has not been reported. ‘
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To provide information concerning this problem, an investigation
was conducted in the NACA 8- by 6-foot supersonic wind tunnel on a series .
of ejector-type exhaust nozzles proposed for use on supersonic airplanes.
Gross-thrust data, as well as the pumping characteristics, are presented
for various ejectors at free-stream Mach numbers of 0.10, 0.63, 1.50, and
1.90 and at primary pressure ratios of 1 to 10. The secondary weight
flow was varied from zero to 36 percent of the primary weight flow. The
primary nozzle was set for simulated afterburner-on operation. Analyses
of these data were made to provide an over-all comparison of the various
configurations and also to compare the net-thrust-augmentation character-
istics of the ejectors to those of conventional nozzles.

3350

APPARATUS AND PROCEDURE
Installation

The ejector configurations were mounted on an exit model which was
installed in the 8- by 6-foot supersonic wind tunnel, as shown in figures
1 and 2. Air preheated to 250° F was introduced into the model by means
of the two hollow support struts shown. Although a can-type combustor
was installed in the exit model (fig. 3), all data were obtained without
a hot primary Jjet.

Shown schematically in figure 3 are the internal details of the exit
model. For the purposes of the present investigation, the external after- <
body was gradually tapered from the maximum body diameter of 8.25 inches
at station 49.25 to a diameter of 5.86 inches at station 70.61. The ex-
ternal shrouds investigated were mounted at this station. A simulated
vertical fin was mounted on the afterbody as indicated. The combustor,
bleed valve (for varying the secondary weight flow), and inner liner were
attached internally to the outer shell. A more detailed discussion of
the basic exit model and its installation in the tunnel is included in
reference 7.

Ejector Configurations

Presented in figure 4 are schematic drawings and tables of intermal
coordinates for the various external shroud configurations. All the con-
figurations were investigated with the same primary nozzle, the throat
diameter of which was 3.75 inches. This sonic nozzle represented the
afterburner-on case (nozzle-entrance diameter, 4.10 in.), where the
collar shown simulated the mechanism for varying the nozzle-throat area.

The various ejectors are designated by two numbers; the first re- -

fers to the diameter ratio, while the second refers to the spacing
ratio. The "basic configuration" had a diameter ratio ds/dp of 1.16
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and a spacing ratio S/dp of 0.80. Ejector 1.16-0.80-S consisted of
the basic configuration with simulated stiffener rings installed on the
inside of the shroud downstream of the primary nozzle such that the exit
shroud diameter was not restricted. Cutting 0.98 inch from the mixing
length of the basic ejector resulted in an ejector (1.29-0.54) having a
larger diameter ratio and a smaller spacing ratio. The base bleed con-
figuration, ejector 1.48-0, was obtained by cutting the basic ejector at
the plane of the nozzle exit so that the diameter ratio was 1.48. Ejec-
tor 1.16-0.38, which had the same diameter ratio but a smaller spacing
ratio than the basic configuration, was obtained by increasing the boat-
tailing of the external shroud.

Data Reduction

Symbols are defined in appendix A. The method of thrust measurement
is described in appendix B. This method differs from that of reference 7
in that the momentum of the entering nozzle air was measured by the
strain gage along with the external body drag and the internal drag.
Thus, the balance measured the jet thrust minus external drag directly.

Gross ejector force F, 1is defined as the jet thrust minus total

external drag for the given configuration plus the jet-off external drag
of the basic configuration. This latter value was obtained from the
balance with no flow passing through the basic configuration. Thus, the
gross ejector force for any given configuration consisted of its Jjet
thrust, the change in external drag due to the jet exhaust, and any dif-
ference in Jjet-off external drag between that of the configuration under
consideration and the basic configuration. Such a parameter permitted
an over-all comparison of the configuration. Force data are presented
in terms of the primary nozzle-jet thrust (fig. 5), which was obtained
from a thrust calibration with the primary nozzle only installed on the
exit model. A check of the force data on a bench test indicated accuracy

tartZ pereent .

Total weight flow through the nozzle was obtained from the sharp-
edged orifice shown in figure 1 and a rotameter which measured the pre-
heater fuel flow. Primary-nozzle weight flow Wb was calculated by
subtracting the amount of weight flow through the calibrated bleed valve

WS from the total weight flow. Primary-nozzle total pressure Pp was

obtained from continuity relations at the nozzle entrance where the
weight flow, the static pressure, the area, and the total temperature
(measured in the support struts and assumed constant throughout the
model) were known. Secondary total pressure Ps was measured by means
of the total-pressure rake shown in figure 3. Mass-flow coefficients
for the primary nozzle, defined as the ratio of actual to ideal mass
flow, were calculated with the equation shown in appendix A and are
accurate to 1 percent.
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DISCUSSION OF RESULTS
Primary-Nozzle Mass-Flow Coefficients

The effects of free-stream Mach number and pressure ratio on the
primary-nozzle mass-flow coefficient are indicated in figure 6. Data
are presented only for the basic configuration, ejector 1.16-0.80-5,
since the same effects were obtained for the other configurations. As
noted in reference 5 for a cylindrical ejector and in references 7 and
8 for other types of nozzles, there was little or no effect of either
free-stream Mach number or pressure ratio on the primary-nozzle mass-
flow coefficient.

Figure 6 does indicate, however, that there was an effect of sec-
ondary weight flow on the mass-flow coefficient. This trend, which was
also noted in reference 5, can best be seen in figure 7 in which data
for all five configurations are presented as a function of only the sec-

Ws+/Ts

ondary weight-flow parameter ——==. As indicated, all the configura-
b vTP

tions yielded the same mass-flow coefficient, 0.995, for secondary weight-
flow ratios up to 0.15. Above this amount of bleed, however, the sec-
ondary flow appeared to have restricted the primary nozzle for ejectors
1.16-0.80, 1.16-0.80-S, and 1.16-0.38, and the flow coefficient decreased
rapidly. No decrease was noted for ejector 1.48-0 in the range for which

W~/ Ty
L
1.29-0.54 occurred at the very high amounts of bleed. Thus, eJjector

diameter ratio appears to have been the governing criterion on this
phenomenon.

data were obtained (Pp to = O.Z%). A small effect on ejector

A one-dimensional analysis of this phenomenon has been made in ref-
erence 9 in which it was assumed that equal static pressures exist at
the primary nozzle and the shroud exits, and that isentropic flow exists
in the primary and secondary flows. By applying these assumptions to
continuity relations, contraction of the primary-nozzle vena contracta
due to excess secondary flow can be determined as a function of the var-
ious physical areas. The mass-flow coefficients obtained by this ana-
lysis are shown in figure 7 for all configurations. Although very good
agreement of absolute values was obtained, it is probably more signifi-
cant that the analysis adequately predicted the amount of secondary
weight flow at which further increases in bleed flow would result in
reduction of the primary-nozzle mass-flow coefficient.
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Performance Comparison of Configurations

Pumping and gross ejector force data for all the configurations are
presented in figure 8 at free-stream Mach numbers of 0.10, 0.63, 1.50,
and 1.90. Secondary-primary total-pressure ratio Ps/Pp and gross

F
are shown as a function of the weight-flow

e jeector forece ratio

R
WSW/TE il

for constant values of prima ressure ratio P .
e primary p /2o
p P

Pumping characteristics. - These data indicate that cutting back
the contour of the basic external shroud to obtain ejectors 1.29-0.54
and 1.48-0 from 1.16-0.80 resulted generally in an improvement in the
pumping characteristics, that is, for the same total-pressure ratio,
more secondary weight flow was obtained. This advantage increased with
bleed flow and primary pressure ratio but was lost at the very low values
of these operating conditions. Ejector 1.16-0.38, for which the diameter
ratio of the basic configuration was maintained at a smaller mixing
length, exhibited essentially the same pumping characteristics as the
basic ejector. Thus, the improved pumping for the cut-back configura-
tions is believed to have been due to the increase in minimum secondary-

flow area.

parameter

Gross ejector force characteristics. - A comparison of the various
configurations on an over-all (thrust minus drag) basis is made in fig-
ure 8 by the use of the gross ejector force ratio Fe/Fj p The gross

J

ejector force has been defined as the thrust minus drag obtained from
the balance plus the jet-off external drag of the basic configuration.
Thus, this parameter includes the jet thrust of that configuration, any
difference between the jet-off external drag of the configuration under
consideration and that of the basic ejector, and the change in external
drag due to the jet exhaust.

These data (fig. 8) indicate that the gross ejector force charac-
teristics of the basic configuration were improved by cutting «the shroud
back about one-third of the mixing length, which resulted in a larger
diameter ratio. This improvement was more noticeable at the high pri-
mary pressure ratios and/or high secondary weight flows. Slight improve-
ment was also obtained by reducing the mixing length of the basic shroud
without changing the diameter ratio (achieved by increasing the amount
of external boattailing). The simulated stiffener rings had no effect
on the basic ejector pumping characteristics and little effect on the
force characteristics except in the very low pressure-ratio range.
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The trends shown in figure 8 are influenced by the effect of sec-
ondary weight flow on the primary nozzle shown in figure 7. Because &
ejectors 1.29-0.54 and 1.48-0 did not have a decreasing primary-nozzle
mass-flow coefficient, it would be expected that the gross ejector force
ratio for these configurations would increase relative to the other con-
figurations as secondary weight flow was increased.

Effect of Free-Stream Mach Number on Ejector 1.16-0.80-5

3350

To determine the influence of free-stream Mach number on ejector
performance, the data for the various configurations as presented in
figure 8 have been cross-plotted as a function of primary pressure ratio.
Presented in figure 9, as an example of these cross plots, is the varia-
tion of the gross ejector force ratio for the basic configuration,
ejector 1.16-0.80-S, at weight-flow ratios of 0.05, 0.10, 0.15, and OR308
This figure indicates that except for the anomalous 4.4 pressure-ratio
data at Mach number 1.50, there appears to have been no effect of free-
stream Mach number, although the gross ejector force parameter shown
consisted of external drag changes (due to the jet) as well as the
nozzle-Jjet thrust.

In order to show effects on only the jet thrust, it was necessary to >
subtract the interference drag from the gross ejector force. Sufficient
instrumentation was not installed on the model in the present investiga-
tion to determine the change in drag due to the jet. However, an inves- ~
tigation of the same external shroud configuration, but with a smaller
primary nozzle, has been conducted for which changes in external drag
were obtained. Although the drag characteristics for the two investiga-
tions may not have been exactly the same, as a first approximation, the
drag values obtained with the smaller primary nozzle (fig. 10) were
used. The resulting jet thrust ratios are shown in figure 11 and agree
within +2 percent with the results of a quiescent air investigation
(ref. 10) of conical shroud ejectors with approximately the same spacing
ratio and diameter ratios.

Included in figure 11 are the pumping characteristics for ejector
1.16-0.80-S obtained from cross-plotting figure 8. The secondary-to-
primary total-pressure ratio PS/Pp decreased for increasing primary
pressure ratio until the secondary flow "choked" (reached sonic velocity
in the secondary passage (see ref. 11)). Above this value of primary
pressure ratio (approximately 3.0), the secondary total pressure remained
constant.

Figure 11 indicates no effect of free-stream Mach number on either
the pumping characteristics or the ejector jet thrust characteristics. &
Similar results were obtained by cross-plotting the data of the other
configurations. The absence of free-stream Mach number effects is i

CONFIDENTIAL




0see

o0
.

®see
®ocee
.
®eooee
eee
esee

NACA RM ES54H19 o 'CCmmﬂﬂﬂm%iiilr--' soe ‘dae §°° .5. 5::. 5..’7

probably due to secondary flow choking over the pressure ratio range in-
vestigated at supersonic free-stream conditions (except 1.48-0 for which
no supersonic data were obtained). Supersonic external flow could pos-
sibly influence internal ejector performance if the secondary flow were
unchoked, as was noted in reference 12 for a base bleed configuration.

Net Thrust Characteristics for Ejector 1.16-0.80-S

Although figure 11 indicated a continued increase of ejector jet
thrust with secondary weight flow, the net effect of bleed, if free-
stream air is utilized in the ejector, can only be shown if the inlet
momentum of the secondary flow is considered. Therefore, net thrust

F
ratios ﬁgzg (fig. 12) were calculated in which the total inlet momentum
n,p
of the primary and secondary flow was subtracted from the ejector jet

thrust and the primary-flow inlet momentum was subtracted from the pri-
mary jet thrust. This parameter was computed from the ejector jet thrust
ratio as shown in appendix C. The following assumptions were made:

(1) Altitude = 35,000 feet

(2) T, = To
(3) T, 3500° R

The general results were not influenced by the values assumed. Also
shown in figure 12 are the maximum secondary weight flows obtainable for
inlet pressure recoveries PS/PO of 1.00 and 0.50. Since weight flows
above those shown for 100 percent recovery could not be obtained without
compressor bleed, calculations of the net thrust ratio were terminated at

Pg/Pg = 1.00.

For the supersonic Mach numbers, an optimum bleed flow is evident.
As would be expected, the value of the optimum bleed decreased as Mach
number was increased because of the increasing inlet momentum penalty
of the secondary flow. The maximum bleed flow (Pg/Py = 1.0) increased
as free-stream Mach number was increased because of the higher potential
ram recovery of the secondary flow. The maximum obtainable pressure
recovery, of course, would be less than 1.0 and would decrease as free-
stream Mach number was increased, thereby influencing the maximum sec-
ondary flows that could be obtained.
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Comparison with Conventional Nozzles

Presented in figure 13 is the variation of the net thrust ratio

Fnze
Fn;P
1.29-0.54. These curves are for a weight-flow ratio of 0.15, or, if the
flow were limited by pressure recovery, for that weight flow at

Ps/Po =N EON

with primary-nozzle pressure ratio for ejectors 1.16-0.80-S and

3350

Figure 13 indicates the attainment of net jet augmentation over the
convergent primary nozzle at subsonic free-stream conditions. At super-
sonic Mach numbers, however, the net thrust augmentation decreased and
in some instances a penalty resulted. This trend was a result of the
larger penalty encountered in taking secondary flow aboard. The better
performance of the 1.29-0.54 configuration compared with the 1.16-0.80-S
configuration at the higher pressure ratios is probably due to the in-
creased diameter ratio (ref. 2).

Reexpansion of the convergent primary nozzle would also cause
thrust augmentation. The maximum net thrust augmentation obtained in
this manner would result from complete isentropic expansion of the pri-
mary flow in a variable expansion ratio nozzle. This case is indicated
in figure 13 by the dashed curve, where the jet thrust was obtained by
adding to the calibrated primary jet thrust the divergent thrust incre-
ment for complete isentropic expansion (ref. 13). It would appear that,
within the accuracy of the ejector force data shown in figure 13, a fixed
ejector would have net thrust augmentation features comparable with those
of a variable convergent-divergent nozzle. The comparison shown in fig-
ure 13 could, of course, be altered by the matching of an auxiliary in-
let to the ejectors as well as the inlet external -drag.

The amount of jet thrust developed by the ejector is compared in
figure 14 with the maximum or ideal jet thrust which could possibly be
realized by the primary and secondary flows independently. The ideal
thrust for each of the two systems is defined (same as in ref. 2) as the
product of the mass flow and the ideal velocity resulting from complete
isentropic expansion at the given pressure ratio (Pp/po or Ps/po).
This figure indicates a peak value of approximately 0.985 at a pressure
ratio of 4.0 with 10 percent bleed flow. The parameter shown in figure
13 may be useful for comparison with conventional nozzles if the cooling
air pumped through the ejector was obtained from the engine rather than
from free stream. The peak obtained with this ejector was approximately
the same as for a convergent-divergent nozzle (ref. 14).

CONFIDENTTIAL




: : :‘.E :.c. E :o.. goce LT see soee *e0 soee eee
NACA RM ES4H19 o0 ¢ ¢ "GeNFTDENMAL... ... L3, ST 3 it 89

SUMMARY OF RESULTS

The following results were obtained from an investigation conducted
on a series of ejector configurations with the primary nozzle in the
afterburner-on position at free-stream Mach numbers of 0.10, 0.63, 1.50,
and 1.90 over a pressure-ratio range of 1 to 10 and secondary-to-primary
weight-flow ratios to 0.36:

1. Free-stream Mach number had no effect on either the measured jet
thrust or pumping characteristics in the range for which the secondary
flow was choked.

0s¢e

2. Neither free-stream Mach number nor primary pressure ratio had
any effect on the mass-flow coefficient of the primary nozzle. For the
smaller diameter ratio configurations, however, a decrease in the flow
coefficient resulted from an increase in secondary weight flow.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, August 20, 1954
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APPENDIX A
SYMBOLS

The following symbols are used in this report:

A area, sq ft
B strain-gage-balance reading, 1b @
Db 39
CD boattail drag coefficient, ——
Ao
CF. ratio of measured primary to computed sonic jet thrust
J,P
W.
C mass-flow discharge coefficient, L
f Y+1
2 ziv—li
. 4’&
PPAP(; + i) RTp
jo jet-off external drag, 1Db
Djo jet-off external drag for basic configuration, 1b
Di reduction of external drag due to jet exhaust (interference A
drag), Dio -~ Dj,e
Dj,e total external drag,‘DjO - Di, 1b
ds . : :
55 ejector diameter ratio
. !
F, gross ejector force, F;  + D, (Djo = Djo)’ 1b
Fj jet thrust, mV + AAp, 1b
Fj,e ejector jet thrust, 1b
F. primary Jjet thrust, 1b
J,P
Fn,e  ejector net thrust, Fy o - (mgVs + mpVp), 1b
Fn,p primary net thrust, Fn,e - mpVO’ 1b
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g acceleration due to gravity, 3z.2 ft/sec2
J total momentum, mV + Ap, 1b
M Mach number
m mass flow, pAV, slug/sec
§ i total pressure, 1b/sq ft
O
Ps
N secondary-to-primary total-pressure ratio
b
js) static pressure, lb/sq ft
PP
v —_ primary-nozzle pressure ratio
(o] po
@
. 2
X q dynemic pressure, yYpM®/2, 1b/sq ft
1
=
& S mixing length, in.
2 spacing ratio
dp
It total temperature, OR
t static temperature, °R
) velocity, ft/sec
W weight flow, 1lb/sec
We /T
ﬁi—jfi weight-flow ratio
pVv'Pp
i ratio of specific heats for air
o) static density, slug/cu £t
Subscripts:
¥ 3t ideal, complete expansion to free-stream static pressure
m max imum
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(63}

secondary

0 free stream
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APPENDIX B

EVALUATION OF EJECTOR FORCES FROM RALANCE

The strain-gage balance was connected to the model as shown sche-
matically in the following sketch:

Ay J
k) .&T
Ag
Station 1 Station 2
Ejector jet thrust is defined as
Fj,e = F2 = sz p pzAz = poAz (Bl)
Equation (Bl) is equivalent to
Fje = J2 - PoA2 (B2)

The momentum at station 2 is related to the momentum at station 1 by

Jp = J7 - AJq_ (B3)
Since
dy = Bihy
equation (B2) becomes
Fije=rh - M2 - Pofp (B4)

The strain-gage balance as indicated on the sketch measured the
following:

B = Bl & Pobo -~ Bobasloln it Byje 5 Bz (5)

CONFIDENTIAL
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Substitution of AJj_, from equation (B5) into equation (B4)
yields

Fj o =P1Ay + B+ Dohy + Dy o + DAy - Pghy - Pohe - Pohy  (BE)

Since A.l -+ Ab = AC + Az
Fie - Dje=B+A(p -p,) (B7)

Thus, the ejector jet thrust minus the total external drag was
measured by the balance and was calculated as shown in equation (B7).

Gross ejector force is defined as

F, = (Fj,e - Dj’e) + D, (B8)

since for any configuration,

D, o= D5 =D (B9)

The gross ejector force and ejector jet thrust are, therefore, related
as

F.=F, +Di+(DjO—D (B10)

e Siye jo)

The gross ejector force and ejector jet thrust have been presented as a
function of the calibrated jet thrust of the primary nozzle:

F F.
—< and fJLE
J,P J,P

CONFIDENTTAL
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APPENDIX C

EVALUATION OF NET THRUST RATIO
Ejector net thrust and primary net thrust have been defined as:

LW W (mpVO + mgVg) (C1)

Fn,p = F3,0 - V0 (c2)

The net thrust ratio can thus be written as:

Fje o [ *(EXWSVTS)”FE]
Fnle FJ,p Fj,p W wb"Tp Ts (c3)

Fn,p Y myVo

Fj,p

The momentum term can be written as (Mp = 1.0):

Yp+l
Sy et G R
o +
m Vo, Pohp | Vp¥o o Yo 2 2
Fj,p y e = —fEI
Y -1 :
T =1\ P [P TR 5 R
D s
T TRTE R AW Ao
ofp p( 2 Po a Po CFJ,p
(ce)
) ; 4 measured
where Cgp. is the calibrated thrust coefficient computed sonic)

J,P
the primary nozzle and is included so that the momentum term is based

on the same jet thrust as the ejector jet thrust ratio. Thus, the net
Wa/ Tyt P i3

thrust ratio was calculated for a given Mg, =2 Be B end -2E. by
WpvTp PO J,p

making the following assumptions:

(1) Altitude = 35,000 ft

(2) T 3500° R
(3) Ty = Ty

CONFIDENTIAL
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