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,RESEARCH MEMORANDUM

WIND-TUNNEL INVESfIGATION OF EFFECT OF SWEEP ON ROLLING
DERIVATIVES AT AﬁbﬁES Of ATTACK UP TO 13° AND AT HIGH
SUBSONIC MACH NUMBERS, INCLUDING A SEMIEMPIRICAL
METHOD OF ESTIMATING THE ROLLING DERIVATIVES

By James W. Wiggins

SUMMARY

An investigation was performed in the Langley high-speed 7- by
10-foot wind tunnel in order to determine the rolling derivatives for
swept-wing—body configurations at angles of attack from 0° to 13° and
at high subsonic Mach numbers. The wings had sweep angles at the quarter-
chord line of 3.6°, 32.6°%, 45°, and 60°, an aspect ratio of 4, a taper
ratio of 0.6, and an NACA 65A006 airfoil section parallel to the free
stream. The results indicate a reduction in the damping-in-roll deriva-
tive Clp at the higher test angles of attack. Of the wings tested,

instability of the damping-in-roll derivative Clp was experienced over
the largest ranges of angle of attack and Mach number for the 32.60 swept-
back wing.

In general, the variation of the damping-in-roll derivative Clp

with sweep angle at zero angle of attack was only in fair agreement with
the predicted variation, inasmuch -as the 32.6° sweptback wing showed
more damping Clp at zero angle of attack in the Mach number range

from 0.85 to 0.93 than any of the other\plan forms. The predicted varia-
tion of Clp at zero angle of attack with Mach number was in good agree-

ment with the experimental trend up to the critical Mach number. Contrary
to predictions based on potential-flow theory, the yawing moment due to
rolling Cnp was positive and the lateral force due to rolling CYP was

‘negative at the higher test angles of attack throughout the test range

of Mach number for all configurations. Presented herein is a method of
estimating yawing moment due to rolling Cnp ‘and lateral force due to

rolling Cyp through the test-angle-of-attack range. The method is shown

to be applicable over large ranges of leading-edge radii, wing thickness,
and Mach number. The results indicate a loss of wing-tip suction within
the ranges of Mach number %?d angle of attack investigated.

E ENGINEERING DEPT. LIBRARY
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INTRODUCTION

The present investigation is a continuation of a program being con-
ducted in the Langley high-speed 7- by 10-foot tunnel in order to deter-
mine the effects of wing geometry and angle of attack on rolling stability
derivatives at high subsonic speeds. Reported herein are results on the
effect of sweep angle and angle of attack on the rolling derivatives for
a body in combination with various wings. The wings tested had sweep
angles of 3.6°, 32.6°, 45°, and 60° at the quarter-chord line and had a
taper ratio of 0.6, an aspect ratio of 4, and an NACA 65A006 airfoil
section parallel to the free stream. Tests were also conducted on the
450 sweptback wing with wing fences located at the 65-percent-semispan
station, since an appreciable loss of damping in roll Clp was noted

at the higher test angles of attack for the clean-wing configuration.

The longitudinal and lateral stability characteristics of the wing-
body and body-alone configurations are presented in references 1 to 3.
The wing geometry is designated as in reference 2. For example, the
designation 3.6-4-.6-006 denotes a wing with the quarter-chord line swept
back 3.6° with an aspect ratio of 4, a taper ratio of 0.6, and a 6-percent-
thick airfoil section with zero camber.

COEFFICIENTS AND SYMBOLS

The stability system of axes used for the presentation of the results,
together with an indication of the positive forces, moments, velocities,
and angles, is presented in figure 1. All moments are referred to the
projection of the quarter-chord point of the wing mean aerodynamic chord
on the fuselage center line.

Rolling moment
aSb

Cy rolling-moment coefficient,

Yawing moment
gSb

Cpn  yawing-moment coefficient,

Lateral force
aS

Cy lateral-force coefficient,

Cp drag coefficient, Drag/aqS

C;, 1lift coefficient, Lift/qS
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dynamic pressure, pV2/2, lb/sq ft
mass density of air, slugs/cu ft
rate of roll, radians/sec

sweep angle at quarter-chord line, deg
free-stream velocity, ft/sec

Mach number

Reynolds number

wing area, sq ft

wing span, ft

wing chord, ft

mean aerodﬁnamic chord, ft

body length

body diameter

aspect ratio, b2/S

angle of attack, deg

wing-tip helix angle, radians

= —— per radian

b
3 B2
2v

oCn

= —— per radian

b
3 B2
oV

BCY

—— per radian
pb

o —
2V
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MODEL. AND APPARATUS

A sketch of the models investigated and details of the fence are
shown in figure 2. All wings except the 45° swept wing were constructed
of 24S-T aluminum alloy. The 45° swept wing had a steel core with a
bismuth-tin covering. The wings had a taper ratio of 0.6, an aspect
ratio of 4, and an NACA 65A006 airfoil section and were attached to the
fuselage in a midwing position. The geometric characteristics of the
body are presented in table I. '

The models were tested on the forced-roll sting-support system shown
in figure 3. Details of the operation of the roll sting and the technique
of recording the data are discussed in reference 4. Angles of attack were
obtained by means of offset sting adapters in the sting behind the model
(fig. 3). The forces and moments were measured on an internally mounted
electrical strain-gage balance.

TESTS AND CORRECTIONS

The forced-roll tests were made in the Langley high-speed 7- by
10-foot tunnel through a Mach number range from 0.50 to 0.95 and through
a maximum angle-of-attack range from 0° to 13°. Tests were also conducted
on the 450 swept wing with wing fences located at the 65-percent-semispan
station. The variation with Mach number of the mean test Reynolds num-
ber (based on the mean aerodynamic chord of the wing) and the maximum
test values of pb/2V are presented in figures 4 and 5, respectively.

The blocking corrections applied to the dynamic pressure and Mach
number were determined by the velocity-ratio method of reference 5. Drag
and angle of attack were corrected for Jet-boundary effects by the method
of reference 6, but an investigation of the jet-boundary corrections to
the rolling derivatives by methods similar to those used in reference T
indicated that these corrections were negligible. Tare tests were made
at zero angle of attack with and without a simulated offset sting adapter .
behind a similar model and the effects were found to be negligible.

The data presented have been corrected for inertia forces and moments
that were introduced as the model was rotated, with consideration being
given to deflections of the entire support system under aerodynamic loads.

In order to evaluate the aeroelastic corrections to Clp at zero

angle of attack, the wings were statically loaded in accordance with
theoretical load distributions obtained from reference 8. The resulting
incremental changes in wing-section angle of attack have been interpreted
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in terms of eqguivalent rotational velocities and the results are presented
in figure 6. Values of the equivalent linear twist distribution indi-

cated at E%E = 1.0 can be interpreted as correction increments

pb)
A\57

aCy

which can be applied to the measured values of pb/2V according to the
equation

C:
1 = (Cl)meas - ( p)meas
b b b
Doa2 | alpp/anygf G
v 2v qC; \pb/2V
meas
or
Cy \)
Cl = ( P meas
L k(Czp)
meas
where
, - Apb/aV)q
qCy

and is presented as a function of Mach number in figure 7.

Distortion effects on Cnp and CYP have been roughly estimated

and, since these effects appeared to be small over the test angle-of-
attack range for all wings, they have been neglected.

The angle of attack at the plane of symmetry has been corrected

for the deflection of the model and support system under load. All data
are referred to the stability axes system.
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RESULTS AND DISCUSSION

The results of the present investigation are presented as outlined
in the following table:

Results ' Figure

Cp against pb/2V . . . . . . ... ... .00 ... 8
Ch against pb/2V e e e e e e e s e s e e e e e e e e e e e e e 9
Clp Y= o 1= A« 2 [0

C;, against M (Clp boundaries> S b

Cnp against S

a
CYP against a e e s s e 4 s s e e s s s e e s e s e s e s e s 13
Clp against M (compared with calculations) . . « « « + « « « . . 1k
Clp against A (compared with calculations) . « « « « « « « ¢« « o 15
Clp against a (compared with calculations) . . « « « « « « . . . 16

CYP against a (compared with calculations) . « + « « « « « « « o 17

CD against [0 e o 8 & 8 e e s & ® & e+ & & &2 " & ° o s+ o o . 18 and 19

Cnp against a (compared with calculations) . . . . . . . . 20 to 22
CYp against a (compared with calculations) . . . . . . . . 23 and 24

Results of C; and C, plotted against pb/2V are presented in-

figures 8 and 9 only for those angle-of-attack conditions for which pro-
nounced nonlinearities, with respect to pb/2V, were indicated. For all
conditions not covered in figures 8 and 9, the data were sufficiently
linear to permit adequate representations of the results by means of
derivatives with respect to pb/2V.

Experimental Rolling Derivatives

Rolling moment due to rolling.- In general, the damping due to roll
decreased above an angle of attack of about 6° (fig. 10), and in

C1
p
the region of low damping or positive values of Clp’ the variation of
rolling moment with rolling velocity was rather erratic (fig. 8). These
nonlinearities and ranges of uncertainties of C; against pb/2V are
difficult to analyze in quantitative terms of Clp (see shaded areas
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of figs. 10, 11, and 16, which are approximately average values of Clp)

and, therefore, the application of the data with respect to controlla-
bility, rolling, and dynamic stability should be carefully considered.
Some additional remarks on the damping for these wings are given in ref-
erence 9.

At an angle of attack of 11° and a Mach number of 0.85, the
3.6° swept-wing data (fig. 8(a)) show a pronounced hysteresis. The data
were obtained by rolling the model from the extreme negative values
of pb/2V to the extreme positive values of pb/2V, then back through
the pb/2V range. It should be pointed out that these nonlinearities
and hystereses occur above the angle of attack at which this wing indi-
cates a peak in the 1lift curve (ref. 1).

The results for the 32.6° swept wing (figs. 8(b) and 10) show that,
in general, at the higher Mach numbers and angles of attack, an unstable
condition (positive values of Clp) is apparent over a wide range of

rolling velocities; whereas a stable condition is indicated only at the

extreme rates of roll. The results presented in figure 11 show that, of
the wings investigated, the results for this plan form showed unfavorable
damping-in-roll characteristics (indicated by Czp) over the largest test

ranges of Mach number and angle of attack.

The 45° sweptback wing shows only a small region of zero or reverse
damping - occurring at a Mach number of 0.91, an angle of attack of
about 10.8°, and at low values of pb/2V. (See figs. 8 and 10.) Con-
siderable loss in damping did exist, however, at the higher test angles
of attack throughout the test range of Mach number. The configuration
with fences installed did not exhibit as much loss of damping at higher
angles of attack as did the clean configuration. As was shown in ref-
erence 10, the fences improve the lifting capabilities of the airfoil
sections near the wing tips on the 45° swept wing and, therefore, improve
the damping in roll as well as the high-1ift longitudinal stability.
(See refs. 9 and 11.)

The decrease in damping noted for all wings at the higher test
angles of attack is probably associated with tip-stalling as shown for
the 45° sweptback wing in references 10 and 12.

Yawing moment and lateral force due to rolling.- The variation of
the yawing-moment-due-to-rolling derivative Cnp with angle of attack

is presented in figure 12. The general trend of Cnp with angle of

attack is similar for all wings; that is, zero or slightly negative
values are obtained at the lower angles of attack and positive values
are obtained at the higher test angles of attack.
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In figure 13, the variation of CYp with angle of attack is pre-
sented. Negative values of Cyp (1lateral force due to rolling) are

indicated at the higher test angles of attack and at most Mach numbers
for all configurations tested. A discussion and possible explanation of
the behavior of Cnp and CYp through the test angle-of-attack and Mach

number range and a method for estimating these derivaf?3€S’are presented
in the following section.

Estimations of Rolling Derivatives

Rolling moment due to rolling.- A comparison of the expérimental and
calculated variations of Czp at zero angle of attack with Mach number

is presented in figure 1k. The calculated variations were evaluated by
the methods described in references 8 and 13. The predicted trend, at
least up to the critical Mach number, is in fairly good agreement with
experiment. The aerocelastic effects are seen to be of appreciable magni-
tude for the 45° and 60° sweptback wings.

The variation of JZP at zero angle of attack with sweep angle pre-

sented in figure 15 shows that, at the higher Mach numbers (0.85 to 0.93),

. the 32.6° sweptback wing has higher values of damping, corrected for aero-

elasticity, than the other test wings, although the calculations of ref-
erences 8 and 13 predict a decrease in Clp with increasing sweep angle.

A comparison of the variation of _Clp with angle of attack, for all

configurations tested, determined by experiment and calculations, is shown
in figure 16. Values of Czp at zero angle of attack were determined

from reference 8, and compressibility effects were evaluated from ref-
erence 15. Angle-of-attack effects were determined by the procedure of
reference 14 using experimental lift-curve slopes of references 1 and 2.
It has been shown in reference 15 that root-bending-moment data would
be more appropriate than 1ift data in evaluating angle-of-attack effects
on Clpi however, bending-moment data were not available at these angles

of attack for the wings of the preseht investigation. The quantitative
agreement shown in figure 16 is not very good; however, the experimental
and predicted values show similar trends.

Yawing moment due to rolling.- In references 15 and 16, methods are
presented for the prediction of Cnp through an angle-of-attack range

using corresponding experimental drag data. The method in reference 15
has been shown to predict Cnp through the test angle-of-attack range

s
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with considerably better results than the method described in refer-
ence 16. This result is probably due to the fact that the method of ref-
erence 16 predicts Cnp by extrapolating from the potential-flow theory

by use of experimental drag data and an empirically determined factor
that is proportional to a drag-center moment arm; whereas the procedure
of reference 15 predicts Cnp by using the experimental drag data to

proportion Cnp relative to two known conditions. Briefly, the method

of reference 15 consists of proportioning Cnp“relative to the condition

of potential flow where the resultant force is normal to the relative
wind and to the condition for which the resultant force is normal to the
wing chord. An eguation is presented therein for evaluating Cnp for

triangular wings. However, for other wing plan forms, this equation must
be modified as follows: the potential-flow value of Cnp for triangular

plan forms (ref. 17) must be replaced by the value for wings of taper
ratios other than O, and an additional term, shown in reference 16 for
low-aspect-ratio wings to be a result of wing-tip suction, must be con-
sidered. With these considerations applied, the following equation can
be written:

Cny -
Cnp = ~Cy_ ten a - K{-C; tan a = —2 cp +(cn) (1)
P P _ “CL-‘ tip suction

where the potential-flow values of CﬁR/Ci can be determined from ref-

erence 18 and either experimentalu6g“calculated values of Clp can be

used. The factor K 1is a dimeﬁsionless féctor that relates Cnp to

any intermediate flow condition that exists between the conditions where
the resultant force is normal to the relative wind and where the result-
ant force is normal to the wing chord and can be determined from the drag
data of figures 18 and 19 as follows:

3 > .
‘- a(CL tan G,) - -a:(CD - CDCL = O)exp

" The tip-suction contribution is expressed in reference 16 as

d

(Cnp)tip suction (-CYP>A:O° b
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where d 1is the longitudinal distance from the midchord point at the
wing tip to the coordinate origin and is defined as

d=—2 (A ionn+d)ax
2(1+ N\ 3 A

where X' 1is the longitudinal distance rearward from the coordinate
origin to the wing aerodynamic center. An attempt was made in refer-
ence 16 to account for ‘tip suction by correlating data obtained at low
speeds on l2-percent-thick unswept wings with the slender-triangular-body
theory of reference 17. Shown in reference 16 is an empirical expression,
determined from a limited amount of data, that expresses the tip-suction
contribution as '

C
c ) I
<Yp A=0° A

The tip-suction contribution to Cnp can be written now in terms of the

empirically determined suction force and moment arm as

C C-v
(Cn > == L /é * N pana s M) L X

P/tip suction 2A(1 + A)\ 3 A A b
For the wings of the present investigation, X' 1is equal to 0. The
results presented in figure 20 at a Mach number of 0.70 show that values
of Cnp evaluated by use of equation (1), using calculated values

of CZP; are in better agreement with experiment than values determined

independently of the consideration of tip suction by the method of ref-
erence 16. It should be pointed out, although not shown, that a similar
comparison of the two methods was obtained for the other wings tested.
Better agreement is indicated when the tip suction in equation (1) is
assumed to be 0; however, this result is not surprising inasmuch as the
experimental values of CYP for the unswept wing (which are due primarily

to tip suction) presented in figure 17 indicate that, within the test
ranges of Mach number and angle of attack, the tip-suction contribution
can be neglected. The data for a Mach number of 0.15 (fig. 17) were
obtained from reference 19.

The leading-edge contribution to Cnp

considerably with leading-edge radii; consequently, in figure 21 low-speed

would be expected to vary
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results are presented for 12-percent-thick wings (ref. 20) whose leading-
edge radii vary from a very sharp one to a very blunt one. The wings
reported in reference 20 had an aspect ratio of 2.61, a taper ratio

of 1.0, and 459 sweepback. A comparison of experimental Cnp with cal-

culated values evaluated by use of equation (1) is presented in figure 22
for the wings of the present investigation at wvarious Mach numbers where
both experimental and calculated values of 'Czp were used; the tip=-.

suction contribution to Cnp was assumed to be O. The agreement is con-

sidered good for all wings tested where either experimental or calcu-
lated Czp are used in eguation (l), and the results presented in fig-

ures 21 and 22 indicate that the present method of estimating Cnp

(eq. (1)), without tip-suction effects, is applicable over large ranges
of leading-edge radii, wing thickness, and subsonic Mach numbers.

Lateral force due to rolling.- An expression for determining CYp

for the potential-flow case can be obtained from reference 18 and written
as .

/A + cos A tan A

C =C
Tp \A + 4 cos A ),

and, for the nonpotential case, when the resultant force is normal to
the wing chord plane, CYp would be equal to O. By considering the

tip-suction contribution and by applying the factor K, the equation can
be written

A+ cos A
Cy. = k(op, 2 X958 4ona +(c ) (2)
T (I’A.+ L cos A > T tip suction '

where the tip contribution to CYP can be expressed as

o
A

Cy )
( P tip suction

In figure 23, values of CYP evaluated by equation (2) and values

determined by the potential-flow methods of references 16 and 18 are
compared with low-speed data of reference 20. In the application of
equation (2), the contribution of the tip was assumed to be zero; how-
ever, the order of magnitude of the tip-suction contribution is indicated
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in the comparison of the values determined by the procedures described
in references 16 and 18. Better agreement is indicated when equation (2)
of the present paper is used; however, this agreement is not surprising
inasmuch as the methods of references 16 and 18 do not account for any
nonpotential-flow effects on the leading-edge contribution. The results
of the present investigation are compared with values evaluated by use
of equation (2), without tip-suction effects, in figure 24. The agree-
ment shown is reasonably good, particularly the negative trend indicated
at the higher test angles of attack.

CONCLUSIONS

An investigation conducted to determine the effects of sweep angle
on the rolling derivatives at high subsonic Mach numbers and high angles
of attack for a series of swept wings of aspect ratio 4, taper ratio
of 0.6, and having NACA 654006 airfoil sections indicates the following
conclusions:

1. The results show large reductions in the damping-in-roll deriva-
tive Clp at the higher test angles of attack for all wings tested. Of

the wings investigated, the results for the 32.6° sweptback wing showed
unfavorable damping-in-roll characteristics (indicated by Czp) over the

largest ranges of angle of attack and Mach number.

2. Wing fences on the 450 sweptback wing at the 65-percent-semispan
station are shown to improve the demping-in-roll derivative Clp at the

higher test angles of attack relative to the clean-wing configuration.

3. In general, the variation of the damping-in-roll derivative Clp

at zero angle of attack with sweep angle was only in fair agreement with
the predicted variation with sweep angle, inasmuch as the 32.6° sweptback
wing showed more damping in roll in the Mach number range from 0.85

to 0.93 than any of the other plan forms.

L. The predicted variation of Clp at zero angle of attack with

Mach number was in good agreement with the experimental trend up to the
critical Mach number.

5. Contrary to predictions based on potential-flow theory, the yawing»

moment due to rolling Cnp was positive and the lateral force due to

rolling CYP was negative at the higher test angles of attack for all

=

wings tested.
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6. The results indicate a loss in wing-tip suction within the test
ranges of Mach number and angle of attack investigated.

T. Presented herein is a method of estimating Cnp (yawing moment

due to rolling) and Cyp (1lateral force due to rolling) through the test

angle-of-attack range. This method is shown to be applicable over large
ranges of leading-edge radii, wing thickness, and subsonic Mach numbers.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., March 11, 1954.
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TABLE I.- FUSELAGE ORDINATES

[Basic fineness ratio 12, actual fineness ratio 9.8
achieved by cutting off rear portion of bodi]

‘ 1 = )-|-9.20 in. P
e————— 60981 ——
| |

— dma.x —

Ordinates, percent length
Station Radius
0 0
.61 .28
.91 .36
1.52 .52
3,05 .88
6.10 1.47
9.15 1.97
12.20 2.40
18.29 3.16
2k.39 3.77
30.49 k.23
36.59 k.56
42.68 4.80
48.78 4.95
54.88 5.05
60.98 5.08
67.07 5.0k
73.17 k.91
79.27 4.69
85.37 4. 34
91.46 3.81
100.00 3.35
Leading-edge radius = 0.00061
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Lateral force
Y )
* .
/ Yawing moment
X __—— &V >
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Figure 1.- System of axes used showing positive direction of forces,
moments, angles, and velocities.
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Reynolds number,R

~ NACA RM L5LC26

4x/0°
3 -
//r/
w”’fd?f,E
’/,,/“

b4 :

/

0

) 6 N4 8 9 /.0

Mach number, M

Figure 4.- Variation of mean test Reynolds number with Mach number for
wings tested.
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.5 .6 7 X 9 10
Mach number, M

Figure 5.- Variation of maximum test values of pb/2V with Mach number
for wings tested.
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Figure 6.- Aeroelastic characteristics for wings.
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Figure 7.~ Aeroelastic correction factors for wings tested. o = 0°.
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Figure 9.- Variation of yawing moment with wing-tip helix angle pb/2V -

in high test angle-of-attack range.

3.,6-4~,6-006 wing.
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NN C}p =Qor positive

— 0 =1
——~—Test limits

Lift coefficrent,Cy,

| 5 6 7 .8 .9 0 5 6 7 8 9 /10
| - Mach number, M

| Figure 11.- Boundaries for Czp for test ranges of 1lift coefficient and

Mach number.
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(o] Experiment

Experiment corrected for
aeroelastic distortion

—— — Predicted values,refs.8 and /3

4
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36° 0
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45-4-06-006
G - -2
‘p
-3
326-4-06-006
-4
36-4-06-006
-5
5 6 7 8 9 10

Mach number ,M

Figure 1hk.- Comparison of experimental and calculated variation of CZ

p
with Mach number. o = 0°.
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Figure 17.- Comparison of experimental CYP with calculated values
for 3.6-4-.6-006 wing.
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Figure 19.- Variation of low-speed drag due to lift for untapered l+'5° swept
wings of aspect ratio 2.61.
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Figure 20.- Comparison of experimental values of C;.  with various methods
of calculation for 32.6-k-.6-006 wing.
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Figure 21.- Comparison of low-speed experimental Cnp with calculated

| ) "values for untapered 450 swept wings of aspect ratio 2.61.
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oo o Data from ref. 20, M=.17
——— Without tip suction]

— — With tip suction | Rer 16
——— Without tip suction , equation(2)
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Figure 23.- Comparison of low-speed experimental CYp with calculated

values for untapered 45° swept wings of aspect ratio 2.61.
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