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SPEEDS OF A FI GHTER MODEL EMPLOYI NG A LOW-ASPECT

RATIO UNSWEPT WI NG AND A HORIZONTAL TAIL 
MOUNTED WELL ABOVE THE WING PLANE -

LATERAL AND DIRECTI ONAL STABILITY1 

By Benton E. Wetzel 

SUMMARY 

The static lateral- and directional- stability characteristics of a 
high- speed fighter - type airplane , obtai ned from wind-tunnel tests of a 
model , are presented . The model cons isted of a thin, unswept wing of 
aspect ratio 2 . 5 and taper ratio 0 . 385 , a body, and a horizontal tail 
mounted in a high position on a vertical tai l. Rolling-moment, yawing
moment, and cr oss -wind-force coeffici ents are presented for a range of 
sideslip angles of -50 to +50, for Mach numbers of 0 . 90, 1.45, and 1.90 . 

Data are presented wh i ch show the effect s on the lateral and direc 
tional stability of : (1) component parts of the complete model , (2) mod
ification of the empennage so as to provide different heights of the 
horizontal tail above the wing plane , (3) angle of attack , and (4) dihe 
dral of the wing . 

I NTRODUCTI ON 

A model of a high-speed fighter airplane has been the subject of an 
investigation at subs onic and supersonic speeds in the Ames 6- by 6-foot 
supersonic wind tunnel . The model is representative of current designs 
for airplanes with unswept -wi ng plan forms and with horizontal tails 
mounted well above the wing-chord plane . In order to determine which 
design arrangements offer promise from the standpoint of static l ongitu
dinal and directional stability, various combinations of the model com
ponents have been tested . The results of these tests provide infor mation 
regarding the effect of mutual interference on the contributions of the 
components to the stability of the complete model . 

lThe information pr esented herein was originall y made available to 
the U. S . military air services in a report dated August 26, 1954. 
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This report presents the results of the lateral and directional 
investigation of that model , and is a companion paper to an earlier 
research memorandum (ref . 1) which was concerned with the l ongitudinal 
stability characteristics of the model . The primary purposes of this 
papeF are to point out some of the important interference effects, espe 
cially those between the horizontal - and vertical - tail surfaces, and to 
show their contributions to the static lateral and directional stability . 

NOTATION 

All force coefficients presented herein are referred to the wind 
axesj all moment coefficients to the stability axes . The moment center 
was placed at the projection of the 25 -percent mean aerodynamic chord 
point on the longitudinal axis of the body . 

b 

Cz 

Cn 

Cy 

c 

h 

The fol l owing notation has been used in this report : 

model wing span, in . 

rolling-moment coeff i cient, rolling moment 
qSb 

yawing moment 
yawing-moment coefficient, 

qSb 

cross -wind force 
cross -wind- force coefficient, 

qS 

local chord of the wing, in. 

Jb/2 
c 2 dy 

o , in . 

Jb / 2 
a c dy 

mean aerodynamic chord of the wing, 

height of the horizontal tail above the body axis, in . 

Zt horizontal-tail length, measured between the 25-percent mean aero -
dynamic chord stations of the wing and the horizontal tail, in. 

Lv vertical- tail length, measured between the 25 -percent mean aero -
dynamic chord stations of the wing and the vertical tail, in . 

M free - stream Mach number 

q free - stream dynamic pressure, lb / s q in. 

R Reynolds number, based on the mean aerodynamic chord 

.. 
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S model wing area, formed by extending the leading and trailing 
edges to the plane of symmetry, sq in . 

Sv area of vertical tail, including port i on enclosed in body by 
extending leading edge to body axis, sq in. 

y spanwise distance from plane of symmetry, in . 

IT angle of attack of the body, deg 

~ angl e of sideslip, de g 

r angle of wing dihedral, deg 

In addition) the foll owing notation has been used in order to denote 
various components of the model : 

B body 

Hl horizontal tail, when located 7.13 inches above the body axis 

H2 horizontal tail, when located 8 .15 inches above the body axis 

Vl vertical tail used with horizontal tail Hl 

V2 vertical tail used with horizontal tail H 2 

W wing 

APP MATUS AND MODEL 

The experimental investigation was performed in the Ames 6- by 6-foot 
supersonic wind tunnel . This wind tunnel, which has a closed section 
and is of the variable -pressure type, is operated at Mach numbers varying 
from 0 . 60 to 0 . 90 and from 1 . 20 to 1 . 90 . A complete description of the 
wind tunnel and the characteristics of the air stream at supersonic speeds 
can be found in reference 2 . I n this wind tunnel, models are sting-mounted 
and the forces on the models are measured with internal electrical strain
gage balances . The balance used for the present tests was of the flexure
pivot type . A photograph of the model mounted in the wind tunnel is shown 
in figure 1. 

The complete model consisted of an unswept wing of aspect ratio 2 .5, 
a horizontal tail mounted in a high position on a vertical tail, and a 
body with a circular cross section modifi ed by the addition of a canopy 
and protuberances Simulating side inlets . A dimensional sketch of the 

____ -1 
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model and its parts is shown in figure 2, and a compilation of the geo
metric characteristics is presented in table I. The model was designed 
to permit tests of the wing and body as a unit and in combination with 
various components of the empennage. Two different vertical tails were 
built, which allowed mounting the horizontal tail in two different posi
tions above the plane of the wing. All parts of the model were made of 
steel, with the exception of the body, which was constructed of aluminum. 

TESTS AND PROCEDURES 

Range of Test Variables 

Rolling moment, yawing moment, and cross-wind force were measured 
throughout a range of sideslip angles varying from -50 to +50 at Mach 
numbers of 0.90, 1.45, and 1.90, at a Reynolds number of 2.4 million. 
Although most of the tests were performed at zero angle of attack, some 
data were obtained at an angle of attack of 50. Tests were made of a 
number of combinations of the components of the model. The various com
binations and test conditions are enumerated in table II. 

Reduction of Data 

Data presented herein have been reduced to NACA coefficient form. 
The reader is referred to the section on notation for complete descriptions 
of the coefficients used. It should be noted that the cross-wind-force 
coefficient is referred to the wind axes, while the rolling- and yawing
moment coefficients are referred to the stability axes. 

Corrections have been made to the data to account for differences 
known to exist bet~een measurements made in the wind tunnel and in a 
free-air stream. Corrections made to the data presented herein account 
for the following factors: 

1. The increase in airspeed in the vicinity of the model at subsonic 
speed as a result of constriction of the air stream by the 
walls of the wind tunnel. 

2 . The change in angle of attack of the model induced by the ~alls 
of the wind tunnel at subsonic speeds as a consequence of the 
lift on the model. The correction amounted to: 6a = 0.315 CLo 

It should be pointed out that, for the lateral tests, the model was 
mounted in the wind tunnel with the wing horizontal. As a result, non
uniformities of the air stream had a greater effect on the data presented 
in this report than on those of reference 1. The reader's attention is 

.-
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directed to reference 2, wherein he will find detailed information about 
the characteristics of the air stream at supersonic speeds. 

RESULTS AND DISCUSSION 

Results are presented herein which show the effects of the following 
on the lateral and directional stability: 

1. Various components of the complete model 

2. Modification of the empennage so as to provide different heights 
of the horizontal tail above the wing plane 

3. Angle of attack 

4. Dihedral of the wing 

Although all of these results will be discussed, the primary purpose 
of this report is to discuss some of the important effects of interference 
between component parts on the lateral-. and directional-stability char
acteristics of the complete model. The interferences discussed are some 
of those which affect the contributions of the tail surfaces to the s ta
bility and not those which affect the contributions of the wing and body. 
Although the tests performed did not allow a complete quantitative sepa
ration of these interference effects, they did provide an instructive 
qualitative study. 

Effects of Model Components 

The effects of various components of the model on the variation with 
sideslip angle of the rolling-moment, yaWing-moment, and cross-wind-force 
coefficients are shown in figure 3. The wing-body combination was unstable 
both laterally and directionally. When the vertical tail was added to the 
wing-body model, the large cr-oss-wind force carried by the vertical tail 
resulted in rolling- and yawing-moment contributions large enough to pro
vide lateral and directional stability. 

With the addition of the horizontal tail, the model was provided with 
additional lateral and directional stability, as a result of two effects 
arising from the mutual interference between the hori20ntal- and vertical
tail surfaces. Consider, first, the effect of the addition of the hori
zontal tail on the characteristics of the vertical tail. ThiS, the so 
called end-plate effect of the horizontal tail in increasing the effective 
aspect ratio of the vertical tail, resulted in an increased rate of change 
of cross-wind force with sideslip angle at a Mach number of 0.90. This 
effect increased both the lateral and the directional stability at that 

_________ -1 
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Mach number. At supersonic speed, the influence of the horizontal tail 
decreased with increasing Mach number s ince the influence of the tai l 
was confined within the Mach cone from the tip of the vertical tail. 

The second interference effect, that of the verticai tail on the 
characteristics of the horizontal tail, occurred at both sub sonic and 
supersonic speeds. Because the horizontal tail was located near the 
tip of the vertical tail, only its lower surface was influenced by the 
loading on the vertical tail. The pressure differential between the two 
surfaces of the vertical tail induced an asymmetric loading on the hori 
zontal tail which resulted in additional lateral stability for the complete 
model. 

Effect of Modifying Empennage 

The effect on the lateral and directional stability of modifying • 
the empennage so as to mount the horizontal tail in a higher position 
above the wing plane is shown in figure 4. The results showed that the 
model with the higher horizontal tail was more stable both laterally and 
directionally. Although a first appraisal of these data might indicate 
a significant effect of horizontal-tail height, analysis of the data 
indicated that most of the increased stability could be accounted for 
by the larger span and greater aspect ratio of the vertical tail used with 
the higher horizontal tail . Since the nondimensional tail height (the 
ratio of horizontal - tail height h to vertical - tail span) was not sig
nificantly different for the two empennages , no difference in the end
plate effect at subsonic speeds should be expected . 

Effect of Angle of Attack 

The effect of angle of attack on the lateral and directional stability 
of the wing-body and the wing-body- tail combinations is presented in 
figure 5. As in the case at zero angle of attack, the wing-body combina
tion was unstable both laterally and directionally at an angle of attack 
of 50. The lateral instability was, of course, decreased when the model 
was tested at a = 5° . 

The lateral and directional stability of the complete model increased 
as angle of attack increased except at M = 1.90, where this effect was 
reversed. The increase in directional stability at M = 0.90 and M = 1.45 
resulted from an increase in cross-wind force carried by the vertical 
tail, believed attributable to the sidewash component of the vorticity 
discharged from the wing. At M = 1. 90 , however, the vertical tail lies 
outside the Mach cones from the wing t:_ps but wi thin the region bounded 
by the waves from the leading and tratling edges of the wing. Since the 
vertical tail was no longer influenc ~Q by the vorticity from the wing 

---~ -- -------------
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tips but was primarily influenced by the flow field above the wing, it 
is not surprising that the cross-wind force and the attendant rolling 
and yawing moments produced by the tail were reduced . 

Effect of Dihedral 

7 

The effect of variation of wing dihedral is presented in figure 6 for 
the wing-body and wing-body- tail combinations . As would be expected, 
variation of dihedral affected primarily the lateral stability of the 
models. The variation of wing dihedral caused only small differences in 
the contributions of the tail surfaces to the lateral and directional 
stability of the complete model . 

CONCLUDING REMARKS 

Wind-tunnel studies of a model of a fighter airplane with an unswept 
wing showed that mutual interference between the vertical- and horizontal
tail surfaces played a significant role in the contribution of the empen
nage to the stability of the complete airplane . The horizontal tail, 
mounted near the tip of the vertical tail, acted as an end plate and 
increased the loading on the vertical tail, resulting in an increase in 
the contribution of the vertical tail to both the lateral and directional 
stability at a Mach number of 0 . 90 . The presence of the vertical tail 
resulted in an asymmetric loading on the horizontal tail which provided 
a small amount of additional lateral stability at both subsonic and super
sonic speeds. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif . , Aug . 26, 1954 . 
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TABLE I.- GEOMETR I C CHARACTERI STICS OF THE MODEL 

Wing 
Aspect ratio • • • • • • • • • 
Taper ratio •• • • • • • • • • 
Airfoil section (streamwise) Modified biconvex with ell iptical 

leading edge 
Thickness - chord ratio~ percent chord 

Area, S, sq in . • •••••••• 
Chord at plane of symmetry, in . 
Chord at tip, in . ••••• 
Mean aerodynamic chord, in . 
Span . . . . . . .. . . . 
Dihedral, deg • • • • 
Incidence, deg 
Sweep of leading edge, deg • • 

Body 
Length, in . 

Vertical tail , Vl 
Stabilizer 

. . . . • 3. 4 
. • • • . 202 . 50 

13·00 
5.00 
9·59 

22 . 50 
. . -5 or -10 

• • • • 0 
. . . . . . . . 27 · 1 

. 45.39 

Aspect rat i o . . . . . . . . . . . . . . . . . . . . . . . . 1. 07 
Airfoil section (parallel to body axis) •••• Modified biconvex 

Thickness - chord ratio for section 2. 32 
body axis , percent chord • • • . • . 

witb sharp leading edge 
in . above 

Thickness - chord ratio for secti on 7.13 in . above 
body axis , percent chord • • • • •• 

Area, Sv, including portion encl osed in body by 

4.25 

5·00 

extending leading edge to body axis, sq in . . • •• •• • 59 .51 
Chord of airfoil section 2. 32 in . above body axis, in . • 9 .65 
Chord of airfoil section 7.13 in . above body axis, in . • 4. 46 
Mean aerodynamic chord, in . . • • • 0 • • • 7. 93 
Span, ino . . . . . . • • . 0 0 • • 7.98 
Tail length, Lv, in . •••• • • • • • 12.93 

Lv Sv 
Tail volume, -- -- o . • • • • • 0.1689 

b S 
Sweep of leading edge , deg . • 

Dorsal fin 
in . 

• • • • • 44 

Area, exposed, sq 
Total exposed area, 

Vertical tail, V2 
Stabilizer 

stabilizer and dorsal fin, sq in . 
2.17 

. ,44. 64 

Aspect ratio • • • • • • • • • • • • • • • • • • • • . • •• 1.26 
Airfoil section (parall el to body axis) •• •• Modified biconvex 

with elliptical leading edge 

9 

body axis , percent chord •.•••••••• . •• •• •• 4. 5 
Thickness - chord ratio for section 2. 32 in . above I 

__ ____ ____ ________ ~_J 
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TABLE 1.- GEOMETRI C CHARACTERI STI CS OF THE MODEL - Concluded 

Thickness - chord rat i o f or section 8 . 15 in . above 
body axi s , percent chord . • • • • • . • • . . 

Area, Sv, including portion enclosed in body by 
5 . 25 

extending leading edge t o body axis , s q in . •••• . 60 . 60 
Chord of airfoil secti on 2 . 32 in . above body axis, in . . 9 . 18 
Chord of airfoil section 8 . 15 in . above body axis, in . • 4 .12 
Mean aerodynamic chord, i n . • .•••• 7 . 35 
Span, in . • • • . . • . • 8 . 75 
Tail length , lv, in . • • • • • 1 3. 24 

I v Sv 
Tail volume , b S . . 
Sweep of l eading edge , deg • • 

Dorsal fin 
Area, exposed, s q in . . • • • 

Total exposed area, stabili zer and dorsal fin, sq in . . . . . 

0 . 1761 

38 

2 . 38 
44 . 88 

Hor i zontal tail (both Hl and H2) :; 

2 . 89 
0 . 326 

Aspect ratio • • • • . • • • . 
Taper ratio • . • • . . . • • 
Airfoil section (streamwise) • Modified biconvex with ell iptical 

l eading edge 
plane of symmetry, percent chord • • • 5 
tip, percent chord . . • • . • • • 3 

Thickness - chord ratio at 
Thickness - chord ratio at 

Area, sq in . • . . • • • • 
Chord a t plane of symmetry, in . 
Chord at tip, in . •.• •• 
Mean a erodynamic chord, in . 
Span , in . • • • . 
Tail length, It, in . 
Dihedral, deg • • • • 
Incidence , deg • . • • . 
Sweep of 50 -percent - chord line , deg 

49 . 80 
• • • • 6 .26 

2 .04 
4.51 

. • 12 . 00 
17 .22 

• • • 0 
o 

• • 0 

TABLE 11 .- MODEL COMBINATIONS AND TEST CONDITIONS 

Model r, a , Figure no . 
deg deg 

- 5 0 6 
WE -10 0 3, 5, 6 

- 10 5 5 

WBVl - 10 0 3 

WBVlHl -10 0 3, 4, 5 
- 10 5 5 

-5 0 6 
WEV2H2 -10 0 4, 6 

-_ .. ___ J 
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Figure 1.- Three-quarter front view of fighter model in the Ames 6- by 
6-foot supersonic wind tunnel. 
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Figure 2 .- Dimensional sketches of models . 
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Figure 3.- Effect of model components on the variation with sideslip angle of the roll ing-moment, 
yawing-moment, and cross -wind- force coefficients for a model of a fighter airp l anej r = - lOOj 
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Figure 4.- Effect of modifyi ng the empennage on the variation with s ideslip angle of the r olling
moment, yawi ng moment, and cross -wind-force coefficients for a model of a fighter airplane ; 
r = - 10°, a ~ 0°. 
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Figure 5.- Effect of angle of attack on the variation with sideslip angle of the rolling-moment, 
yawiRg moment, and cross -wind- force coefficients for a model of a fighter airplane; r = -100. 
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