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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

STABILITY AND DRAG CHARACTERISTICS AT MACH NUMBERS 

FROM 0.8 TO 1.5 OF A FREE-FLIGHT MODEL HAVING 

3-PERCENT-THICK, 600 TRIANGULAR WING AND 

HORIZONTAL TAIL SURFACES 

By Rowe Chapman, Jr., and Harvey A. Waliskog 

A flight test of a rocket-propelled model having 60 0 triangular 
wing and horizontal tail surfaces 3 percent thick was made and data were 
obtained on the drag and stability characteristics. Analysis of the 
data and comparison with other data on triangular-wing configurations 
indicated that no severe penalty in zero-lift drag was experienced 
because of the-addition-of - a horizontal tail and a single vertical tail 
to a low drag configuratio. 	 -—------- - - 

The trimmed drag for a lift coefficient of 0.125 at a Mach number 
of 1.4 is 57 percent greater than the zero-lift drag for that Mach 
number. 

The forcing of longitudinal motions by lateral oscillations can be 
a factor in causing a portion of the low a.mplitude.oscillations in the 
longitudinal plane.

INTRODUCTION 

A rocket-propelled model having a 3-percent-thick, 600. triangular 
wing and a 600 triangular horizontal tail was flight tested to obtain the 
stability and drag under lifting conditions. The design of the model 
used in this investigation parallled that of a general research vehicle, 
used for zero-lift drag investigations, on which low drag coefficients 
have been obtained (ref. i). The primary external difference between 
the present model and the general research model was the presence of a 
single vertical tail and a horizontal tail; hence, the present model 
more nearly represented a possible low-drag airplane configuration. 

A pulsing system for disturbing the model in pitch by movement of 
the horizontal tail at a preset frequency was incorporated for the 
purpose of obtaining the variation of drag with lift over the Mach
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number range. Difficulty was experienced with the unconventional 
pulsing system. The final result during flight test was one long pulse 
after which the horizontal tail returned and remained at zero incidence. 
This equipment failure limited the data obtained from the flight test. 

An analysis of the flight time history was made to obtain some of 
the basic aerodynamic coefficients that determine the performance and 
stability of the configuration. A portion of the flight time history 
evidenced coupled lateral and longitudinal motions; this motion is 
discussed in detail in regard to the frequencies present in the flight 
record.	 - 

The model was flown at the Langley Pilotless Aircraft Research 
Station at Wallops Island, Va.

SYMBOLS 

CN	 normal-force coefficient,
g qS 

CC	 chord-force coefficient, -	 -. 
g qS 

CL	 lift coefficient, CN cos a. - CC sin a. 

CD	 drag coefficient, C cos a. + CN sin a. 

Cm	 pitching-moment coefficient 

at w 
Cy	 side-force coefficient,

gqS 

Cn	 yawing-moment coefficient 

an	 normal acceleration as obtained from accelerometer, ft/sec2 

at	 longitudinal acceleration as obtained from accelerometer, 
ft/sec2 

at	 transverse acceleration as obtained from accelerometer, ft/sec2 

w	 model weight, lb 

g	 acceleration of gravity, ft/sec2 
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p	 free-stream static pressure, lb/sq ft 

Po	 standard sea-level static pressure, lb/sq ft 

V	 velocity, ft/sec 

q	 dynamic pressure, . 7pM, lb/sq ft 

M	 Mach number 

specific heat ratio (1.40) 

S	 wing area (including area within the fuselage), sq ft 

R	 Reynolds number, based on wing mean aerodynamic chord 

wing mean aerodynamic chord, ft 

x	 longitudinal distance along body axis from nose, in. 

re	 radius of equivalent body of revolution, in. 

A	 cross-sectional area in plane normal to body axis, in.2 

1	 body length, in. 

ly	 moment of inertia about Y-axis, slug-ft2 

Iz	 moment of inertia about Z-axis, slug-ft2 

Ix	 moment of inertia about X-axis, slug-ft2 

inclination of principal axis to longitudinal axis of model, 
deg 

a.	 angle of attack, deg 

angle of sideslip, deg 

angle of attack of principal longitudinal axis of inertia, 

0	 angle of pitch, radians 

6	 incidence of horizontal tail, deg 

P	 period of oscillation, sec 
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t	 time, see 

ji	 rate of change of angle of attack,
	

1 (Ia radians/sec 

rate of change of angle of pitch, dO/at 

dC Cm a, 
j 

= 

*	 static-directional-stability derivative as obtained from the 

formula C * =
qsiP 

T112	 time to damp to one-half amplitude, sec 

Subscripts: 

T	 -trimmed, or mean value 

The symbols a and 3 used as subscripts indicate the derivative 
of the quantity with respect to the subscripts. 

MODEL AND INSTRUMENTATION 

Model Description 

The general arrangement of the model is shown in figure 1(a), a 
three-view drawing of the model. Figure 1(b) is an area-distribution 
plot for the model, showing the geometric relationship between the model 
and its equivalent body, of revolution. Photographs of the model are 
presented as figure 2. Pertinent geometric and mass characteristics of 
the model are given in table I. 

Fuselage construction was of laminated wood with metal rings from 
station 25 to station 120.5 and housed an ABL Deacon sustainer rocket 
motor, the principal power plant. A spun metal nose and tail completed 
the fuselage. The space inside the nose cone was utilized to house the 
telemetry. Batteries, hydraulic accumulator, and accelerometers were 
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located in compartments routed into the wooden fuselage and accessible 
through metal hatches. The hydraulic actuator for the tail surface was 
located inside the hollow rear portion of the vertical tail. 

The wing was of composite wood and metal construction, aluminum 
overlays, and trailing-edge inserts. The horizontal tail surface was 
geometrically similar to the wing and was machined of solid aluminum.. 
The vertical tail was a constant thickness of 7/8 inch at the juncture 
of the straight trailing edge and the contoured forward portion. 

The pulsing system for the horizontal tail was designed on the 
principle of an unbalanced force existing between a spring and the 
hydraulic fluid acting on a piston. Since no measurements pertaining 
to the operation of the pulsing system were telemetered, reasons for 
improper operation during flight could not be ascertained. 

Instrumentation 

The model contained a standard NACA eight-channel telemeter which 
transmitted continuous flight measurements of angle of attack, normal 

- acceleration at theQenter of gravity, normal acceleration at the nose, 
transverse acceleration, longitudinal acceleration, -horizontal tail 
position, free-stream total pressure, and a reference static pressure. 

Model position in space was determined from an SCR 584 radar 
tracking unit and model velocity was obtained by use of a CW Doppler veloc-
inieter unit. Atmospheric data were obtained from a radiosonde released 
just prior to model flight.'

TEST AND ANALYSIS 

Test 

The model was launched at an elevation angle of approximately 600 
utilizing a mobile launcher. Figure 2(b) is a photograph of the model on 
the launcher and shows the 5.0-inch high-performance air-to-ground (EPAG) 
rocket motor used for a booster. The boostr propelled the combination 
to a Mach number of approximately 0.3 at which time the sustainer rocket 
motor fired, separating the model and booster. The model attained a 
maximum Mach number of 1.51 at sustainer burnout. 

The velocity of the model from radar was corrected for the curved 
flight path and this in conjunction with the atmospheric data from the 
position radar plots was used to compute the Mach number. The static 
pressure from radiosonde data and radar position plots was used for all 
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data reduction. A check on the Mach number by use of the total pressure 
and static pressure was made and a maximum disagreement in Mach number 
of 0.05 was obtained from peak Mach number to a Mach number of 1.42. 
Data corrections were applied in accordance with the accepted procedures 
as are given in references 2 and 5. 

Figure 5 gives the variation of the test conditions with Mach num-
ber for the power-off portions of the flight. In figure 5(a), the 
Reynolds number is based . on the mean aerodynamic chord of the wing. 

Analysis 

The analyses are based on the assumption of constant coefficients 
in the differential equations of motion which in turn are for small 
disturbances from trim conditions. 

Oscillations of the normal acceleration and angle of attack were 
analyzed by use of the method presented in reference 11.. Oscillations 
of the lateral accelerometer were analyzed by the use of the formula 
presented in reference 5. 

The periodic motion recorded by the normal' accelerometer after the 
horizontal tail returned to the zero incidence position was not easily 
identified.. A repetitive pattern on the accelerometer trace indicated 
that a steady-state type of motion was occurring. Since the lateral 
motion was of sinusoidal character, any forcing of the motion in the 
normal plane should also have sinsuoldal characteristics. A harmonic 
analysis of the normal accelerometer trace Was made in order to separate 
and identify the frequencies present on the record. The numerical 
method, Runge's schedule, presented in reference 6 was used to accomplish 
the harmonic analysis.

Accuracy 

The telemetered data are believed to be accurate to within ±1 percent 
of the full-scale range of the respective instruments. Converted to 
coefficient form, the probable errors in the basic coefficients and angle 
of attack are as follows: 

M 16CN C &, deg 

0.8 

1.5

0.025 

.008

0.002 

.0007

0.15 

.15
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A portion of the errors presented in the aforementioned table are 
introduced by possible errors in dynamic pressure. The error in dynamic 
pressure is estimated to be less than 0.28 lb/sq in. at subsonic speeds 
and less than 0.50 lb/sq in. at supersonic speeds. The possible error 
in Mach number is of the order of tO .02. This error can in part explain 
the discrepancy in Mach number between that computed from total pressure 
and that obtained from radar. 

RESULTS AND DISCUSSION

Performance 

Figure ii- presents the variation of the horizontal tail incidence 
with Mach number. The solid line is for power-off flight and the broken 
line is for power-on flight below M = 1.06 the tail incidence remained 
at zero for the power-on condition. Analysis of the data was made from 
various portions of the record where the model maneuvered. 

Longitudinal trim. - Figure 5 shows the trim characteristics of the 
model. The solid lines are the CL and a, trim for the power-off 
portion of the flight. The broken line is the trim angle of attack for 
the power-on condition, and, at Mach numbers less than 1.1, it represents 
thetrim attitude necessary to counteract the pitching moment caused by 
the rocket motor. The power-on curve is shown for the purpose of 
relating the attitude of the model to the lateral stability during the 
accelerating portions of the flight. 

The changes in trim angle of attack for the power-off condition are 
a primary result of the changing incidence of the horizontal tail. The 
changes in trim lift coefficient as contrasted to the changes in trim 
angle-of-attack are additionally affected by a changing lift-curve slope. 
The transonic region was traversed with no abrupt changes in trim for 
the low angles of attack of this test. 

Lift.- Figure 6 is a plot showing the variation of CL and 

with a, during the two maneuvers caused by the moving horizontal tail. 
The Mach number and horizontal-tail position corresponding to the lift 
and angle of attack are shown in the figure. 

Figure 7 is a plot of the slopes of the CL against a. curves as 
a function of Mach number. Additional points of CL a, were obtained 

from low-range a.. variations at the subso!ic Mach numbers and are also 
shown in figure 7.
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For comparison a curve of Cj for an airplane configuration 

having a 600 triangular wing but no horizontal tail is shown in figure 7. 
This curve is from reference 7 and is for a model with a 6.5-percent-
thick wing, 6 =	 and power-off conditions. An additional comparison 
is provided by the curve labeled reference 8, which is for the wing plus 
wing-body interference. This curve is for configuration A from refer-
ence 8 and these data agree very well with the low-lift data from the 
present test. The supersonic CL, seems to agree in level with the 

data from reference 7; however, the transonic level is somewhat higher. 

Drag. - Presented in figure 8 are the power-off drag coefficients 
plotted as a function of lift coefficient.for M = 1.32. The lift 
coefficient and tail-incidence values correspond to those shown in 
figure 6(b) and additional points for M = 1.49 are included. 

A single value of the induced drag parameter dCD/dCL2 = 0.51 
at M = 1.32 was calculated by utilizing the curve presented in figure 8. 
This value of induced drag corresponds to the trimmed value since the 
tail deflection 8 was changing slowly. Untrimmed induced drag 
measurements were presented in reference 7 for a delta-wing configuration 
where the elevon controls were changed abruptly from 6 = 0 to 6 = _90 
and in reference 9 for a delta-wing model which had an unswept horizontal 
tail that was pulsed abruptly from 8 = -1.16 0 to 6 = -5 .430. From 
these data estimates of the trimmed dCD/dCL 2 were obtained. 

The untrimmed value of dCD/dCL2 for the tailless delta-wing model 
of reference 7 (6.5-percent-thick wing) varied from approximately 
0. 35 (6 = 00 ) to 0.40 (8 = .-90 ) and the estimated trimmed value was 
about 0.6. For the delta-wing model with an unswept tail (ref. 9), the 
untrimmed dCD/dCL2 varied from about 0.2 (8 = -1.160 ) to 0.3 (s = _5.1430) 
and the estimated trimmed value was approximately 0.4. Hence, it appears 
that, although the induced drag obtained from the present model was high, 
it compares favorably with other tests, since it is lower than the 
corresponding value estimated for a tailless model and higher than that 
obtained from a model which had an unswept tail that was relatively 
larger and placed farther rearward. 

The maximum L/D obtained from the present test was Ii. . 14. at a 
value of CL of 0.12 compared with 7.0 reported in reference 1 for a 
model with the same wing-fuselage combination but with a different 
empennage. The low value of (L/D)max from the present test was a 

result of the high trimmed induced drag, whereas the reference data 

utilized untrimmed values of dCD/dCL2. 
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Illustrated in figure 9 are the measured drag coefficients plotted 
against Mach number. Corresponding trim lift coefficients are shown in 
figure 5(a). The point on figure 9 labeled zero-lift drag was obtained 
by extrapolating the drag polar of figure 8 to CL = 0. At Mach numbers 

below about 1.5 the measured drag data presented correspond very nearly 
to zero-lift drag. The dashed line in figure 9 . labeled reference 1 is 
the zero-lift drag of the general research vehicle which was the same 
configuration as that of the present test except for the empennage. The 
solid line in figure 9 is the estimated zero-lift drag for the present 
test and was obtained by drawing the curve through the zero-lift drag 
point (from the drag polar) and parallel to the drag curve of the refer-
ence model. From figure 9 it is apparent that the zero-lift drag 
penalty caused by the change in the empennage was about 0.0020. Fin 
drag for the reference model was experimentally determined to be about 
0.0012 at supersonic speeds. The increments in drag from the estimated 
zero-lift drag and the measured drag points are indicative of the drag 
due to lift for 6 = -80 of the present model. The trimmed drag and 
lift coefficients which resulted from a tail deflection of B = -80 at 
a Mach number of 1.1 were 0.0282 and 0.125, respectively. This drag 
increment corresponds to 57 percent increase in drag to obtain a lift 
coefficient of 0.125.

STABILITY

Longitudinal 

Three primary motions occurred during the flight that provided data 
amenable to the linear analysis technique. When the sustainer motor 
fired, a transient oscillation was induced because of the pitching moment 
incurred from the thrust line not passing through the center of gravity 
of the model. From this oscillation the period of the model was measured 
and adjusted to the power-off inertia of the model. This period is 
plotted in figure 10 and is labeled power on. When the motion of the 
horizontal tail occurred, a transient oscillation followed and the period 
of this oscillation is plotted in figure 10 and is labeled as the power-
off, period. 

Static.- The values of C, reduced from the period curve shown 

in figure 10, are plotted as a function of Mach number in figure 11. 
Data from reference 7 (for a tailless configuration having a different 
fuselage) are presented for comparison. These data from reference 7 for 
center-of-gravity locations of 0.20n and 0.25E bracket the curve obtained 
from the present test which is for a center-of-gravity location of 0.237. 
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Dynamic.- Two data points of C + C 	 were obtained from 

analysis of the damping of the transient oscillation. These data points 
and a comparison with data from reference 7 are shown in figure 12. The 
comparison shown in figure 12 indicates that the horizontal tail was 
effective for increasing the damping of a triangular-wing configuration 
at M=l.3.

Lateral 

For the power-off condition and the trim attitude shown in figure 5, 
the model experienced dynamically unstable, neutrally stable, and stable 
conditions in traversing the Mach number range. The model oscillated in 
yaw from M = 0.75 to M = 1.3 where the trim attitude of the model was 
changed by the horizontal-tail motion and the model became dynamically 
stable. The data obtained from the model oscillations in yaw at the 
power-off conditions are presented in figures 13 to 16. 

The measured period as a function of Mach number, presented in 
figure 13, shows an abrupt shift at M = 0.96. This change in period 
is more evident and distinctly present on a plot of period against flight 
time.

Static.- The static-directional-stability derivative Cn*, obtained 

from the measured period, is shown in figure lii as a function of Mach 
number. This C1* curve indicates that a rearward shift of the lateral 

aerodynamic center occurs in going from subsonic to supersonic Mach 
numbers. Also indicated by the C1 * curve is a stability increase 

between M 1.0 and M = 1.15; this increase is in a region which 
corresponds with that in which an increase in lift-curve slope for sur-
faces normally occurs. The Cn for the wing-fuselage combination, 

obtained from reference 10 for zero c, is shown in figure 14. The 
abrupt change in period and reflected change in Cr j * which occurred 
at M = 0.96 corresponds to a changing lateral trim at the same Mach 
number. 

A computation was made to determine the difference in Cn* 

obtained from a one-degree-of-freedom analysis and a reduction utilizing 
estimated derivatives by the three-degree-of-freedom assumption. The 
results indicate that C1 * is approximately 8.4 percent lower than Cr1. 
References 11, 12, and 13 were used for estimating the derivatives and 
for computing the lateral motions. 
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Dynamic.- For the power-off conditions the lateral dynamic stability 
as a function of Mach number, given in figure 15, shows a region of 
neutral dynamic stability from N = 0. 75 to M = 0.88 1 a region of 
dynamic stability from M = 0.88 to M = 1.0, and a region of dynamic 
instability from M = 1.0 to M = 1.3. Between M = 1.3 and M = 1.5, 
the model was trimmed to a higher angle of attack and was apparently 
dynamically stable. 

For the power-on conditions and the model trim-as shown in figure 5, 
no dynamic instability was apparent as the model traversed the Mach 
number range in accelerated flight. 

Apparently two factors were of primary influence in the dynamic 
stability for the power-on conditions. The inclination of the principal 
axis was favorably changed by the additional mass of the rocket grain. 
The power-on trim attitude of the model was more positive below M = 0.90. 
Other factors believed to be minor are jet effects, small center-of-
gravity change, effect of angle of attack on the derivatives, and so 
forth. A plot of T1 as a function of Mach number for the power-on and 
power-off conditions is shown in figure 16. 

Lateral trim. - The trimmed side-force coefficient of the model is 
shown in figure 17. A significant factor of the lateral trim character-
istics is that a change in lateral trim occurred at M = 1.33 when the 
inclination of the horizontal tail was changed. This trim change, which 
corresponds to a sideslip angle of approximately 1P , is not large in 

magnitude but introduced a transient lateral disturbance for rapid motions 
of the horizontal tail. Another change in Cy trim occurs between 
M = 0.88 and M = 0.98. This transonic lateral trim change is estimated 
to be of the order of O.li-° sideslip. 

Coupled Motion 

Figure 18 presents a typical time history of the model flight for 
the low lift attitude, power-off condition. The sustained motion in the 
transverse direction can be explained by a dynamic instability for the 
low lift attitude. The motion in the normal direction as shown by the 
normal accelerometer and the angle-of-attack measurements is of the 
order of	 sustained angle-of-attack disturbance. 

In order to determine the cause of the disturbance in the normal 
plane, the angle-of-attack motion was broken down into its two harmonic 
components. Figure 19 shows the experimental data points taken from the 
flight time history at a Mach number of 0.92. The two sinusoidal compo-
nents, curves A and B. can be added to give the compounded motion which 
agrees very well with the experimental data. Curve A has the same 

CONFIDENTIAL



12	 CONFIDENTIAL	 NACA FM L54G23a 

frequency as the lateral motion but there is a phase shift between this 
motion and the motion indicated by the transverse accelerometer. Curve B 
hasa frequency twice that of the lateral motion and is also shifted by a 
phase angle. 

The occurrence of motions in the normal plane that have frequencies 
twice that of the lateral motion can be satisfactorily explained by 
either the derivative C	 or by terms present in the equations of 

motion before linearization, such as the pr term in the equation for 
pitching motion. However, the frequency of the motion labeled curve A 
is different from the natural pitch frequency of the model ( p = 0.31). 
The time history shows the horizontal tail to be oscillating, but only 
within 2 percent of the full-scale range of 80 . The correspondance of 
one pitch-plane frequency with the natural frequency in yaw remains 
unexplained and what, if any, part the elastic (spring and mass) control 
system plays in causing the oscillation is unknown. 

CONCLUSIONS 

A large-scale rocket-propelled model was tested in free flight at 
Mach numbers up to 1.5. The model which represented a possible low-drag 
airplane configuration had a 3-percent-thick, 60 0 triangular wing and a 
geometrically similar horizontal tail located on top of a sweptback 
vertical stabilizer. The horizontal tail was located approximately at 

.50 percent mean aerodynamic chord above the wing chord plane and had a 
tail length of 125 percent mean aerodynamic chord. From analysis of 
the flight test data and comparison with data from similar configurations, 
the following conclusions are presented: 

1. No severe penalty in zero-lift drag was experienced because of 
the addition of a single vertical and horizontal tail to a low drag 
configuration. 

2. The trimmed induced drag parameter of 0.51 obtained from the 
present test at a Mach number of 1.32 and values of lift coefficient up 
to 0.13 was high in comparison with the untrimmed values obtained from 
tests of similar configurations with and without tails but compared 
favorably with estimated trimmed values. 

3. The trimmed drag and lift coefficients which resulted from a 
tail deflection of -80 at a Mach number of 1.4 were 0.0282 and 0.125, 
respectively.
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Ii-. The forcing of longitudinal motions by lateral oscillations can 
be a factor in causing low amplitude oscillations in the longitudinal 
plane. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics. 

Langley Field, Va., July 2, 1954. 
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TABLE I 

PHYSICAL CHARACTERISTICS OF THE MODEL 

Geometric 

Wing: 
Area (included), sq ft ..................... 15.9 
Span, ft ............................. 575 
Aspectratio .......................... 2.31 
Mean aerodynamic chord, ft ................. . . 3.50 
Sveepback of leading edge, deg .................. 60 
Dihedral .............................. 
Taper ratio	 ...........................o 
Airfoil section ..................... MACA 65Aoo3 

Vertical tail: 
Area (included), sq ft ..................... 
Height (from center line), ft ................. 1.67 
Aspect ratio .......................... 0.60 
Sweepback of leading edge, deg .................. 66.7 
Taperratio	 .......................... 0.28 

Horizontal tail: 
Area, sq ft	 .......................... 1.59 
Span, ft ............................ 1.92 
Aspect ratio .......................... 2.31 
Sweepback of leading edge, deg .................... 60 
Taper ratio	 ............................c 
Airfoil section . . . . . . . . . . . . . . . . . . . . .. NACA 65Ao03 

Mass and Inertia 

Fully Grain 
loaded expended 

Moment of inertia: 
About X-axis,	 slug-ft2	 .............. '5.5 5.37 
About Y-axis,	 slug-ft 2	 .............. 83.9 68.2 
About Z-axis,	 slug-ft2	 .............. 83.7 68 

Principal axis inclination, deg	 .......... i.li.6 1.82 
Weight,	 lb	 ..................... 11.31.0 333.6 
Center of gravity, percent C ............ 21.7 23.6
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Figure 1.- Concluded. 
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(b) Model on launcher.	 L7751 

Figure 2.- Concluded. 
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(b) Static-pressure ratio. 

Figure 3.- Test conditions. 
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(b) Trim angle of attack. 

Figure 5.- Model trim characteristics. 

CONFIDENTIAL



NACA BM L54G23a 

.20 

16 

.12 

CN

.08 

01

0
0

CONFIDENTIAL 

1	 2	 3 
a, deg 

(a) Power on.

23 

-8

5, deg 

0 

5 

o	 CN	 S varying 
0 

o	 CN	 S=-u
0

 

A	 Tail incidence, 6 M = 1.38-

M = 1.1
0 

0 

000
_'.35 

6_____ i— - 
0 A1 A 

----- - 

-M=1.21 0 A 

\ 00 

LiAAAA'

.12 

.08 

CL

• 01

-/---------
_I , _

------------
----

0	 CL,	 .5 varying 

CL,	 S = -1.80 
Tail incidence, 5.

-8

5, deg 

0	 0 
0	 1	 2	 3	 5a, deg 

(1D) Power off. M = 1.2. 

Figure 6.- Variation of lift, normal force, and tail incidence with angle 
of attack. 

CONFIDENTIAL 



211.	 CONFIDENTIAL	 NACA RM L511.G23a 

.08 

06 

CItL	 .01 

.02 

0

.7

Reference 8
I. 

Reference 7, 0 power off,	 S = 0 

0	 Power off,	 C L 
(low range)	 a 0 	 Power off,	 C 

LM 

0	 Power Ofl) 

.8	 .9	 1.0	 1.1	 1.2	 1.3	 1.4	 l. 
M 

Figure 7.- Lift-curve slopes. 

CD	 .02 

03 

ME

L

o	 CD,	 5 varying. 
o	 CD,	 &=8°,	 M=1.14.9 

Tail incidence,	 B. 

m	 34 

M=12 ' 

—'

-	 0 
.oI	 .08	 .12	 .16 

CL 

Figure 8.- Variation of drag with lift. 

-8 

_14.	 8,. deg 

CONFIDENTIAL 



cd 

I C11 	I	 r1 

-1 0 C 
H 

I	 a) 
o	 N 

-

cd 
a)	 -i 
NH'd 
rd	 Q)1) 

-

a)	 O-

o 

cd 
Id 

rd

-1 

H

H 

0 
H

a) 
N 

a) 

oJ 

H
4.) 
U) 

rd 

cc 
H

U) 

a) 

0 
•r-4 
c-I 
cl-I 

0 a) 
0 

H C.) 

tto 
cd 

rd 

C/) 
Cd 

co

Q) 

tto 
r4

S 

NACA RM L51+G23a	 CONFIDENTIAL	 25 

-	 C\J	 H	 0 
o	 o	 0	 0 

C)

CONFIDENTIAL 



-.03 

Reference 7 (e.g. at .20) 

Reference 7 (c.g. at .25)

-.02 

- .01 

0 
.7 .8	 .9	 1.0	 1.1	 1.2	 1.3	 iJ-	 1.5 

M 

Figure 11.- Static longitudinal stability. 
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Figure 10.- Period of normal oscillation. 
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Figure 12.- Dynamic longitudinal stability. 
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Figure 14.- Lateral static stability. Power off. 
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Figure 17.- Lateral trim characteristics. Power off. 
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Figure 19.- Harmonic analysis of longitudinal motion.
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