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Pressure distributions are calculated for some symmetrical wing-body 
combinations at zero lift. The theory of the calculations is based on 
the assumption of extremely slender wings and bodies and yields results 
for both subsonic and supersonic speeds. The examples considered are 
swept wings of constant chord mounted on bodies of nearly cylindrical 
form.

Of particular interest is the effect of indenting the body on the 
distribution of pressure over the wing. When the indentation is such as 
to maintain a constant total area of the cross sections normal to the 
stream, the theoretical pressure disturbances remain small throughout the 
transonic range. With such indentation the isobars tend to remain smooth 
and nearly parallel to the sweep of the wing surface. 

INTRODUCTION 

In several papers, important extensions to the Munk-Jones slender-
body theory (refs. 1 and 2) for lifting wings and bodies have been made 
to include the theoretical effects of thickness on the aerodynamics of 
wings and wing-body combinations. Ward (ref. 3), solving the linearized 
differential equation for the perturbation velocity potential by opera-
tional methods, and employing asymptotic expansion of the solution, 
investigated the flow around bodies of general cross section at supersonic 
flight speeds. By a different procedure, similar results for a wing, 
body, or wing-body combination at subsonic speeds. have been developed 
by Heaslet and Lomax (refs. .4 and 5). An analysis for subsonic flow was 
also carried out independently by Adams and Sears (ref. 6) who, in addi-
tion, made an extension for not-so-slender wings. Confining themselves 
to wings at zero angle of attack, Keune (ref. 1) and Oswatitsch and Keune 
(ref. 8) have resently obtained a slender-body theory that is slightly 
different from those of references 4, 5, and 6. In a more recent report, 
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2	 CONFIDENTIAL	 NACA RN A5107 

Harder and Kiunker (ref. 9) have applied the basic ideas of the slender-
body approximation to the nonlinear transonic equation for the velocity 
potential. 

The principal object of the present investigation is to apply the 
general method of reference 4 in calculating the pressure distribution 
for some special cases of nonhifting slender wing-body combinations in 
subsonic and supersonic flow. The wing of the combinations is swept back 
and has a symmetrical section with rounded leading edges. Determination 
is made of the pressure for the wing alone and for cases when the wing is 
mounted on a circular cylinder or combined with a body indented such that 
the axial variation of cross-sectional area of the combination is constant. 
The effects of Mach number and sweep angle are included in the results 
presented.

LIST OF IMPORTANT SYMBOLS 

bo	 value of x at which s 0 = s(x) 

co	 root chord 

c	
-2u 

p	 pressure coefficient, -fl-- 

cp	 pressure coefficient on indented wing-body combination 

over-all length of the wing 

M	 slope of wing leading edge (See sketch (f).) 

M	 free-stream Mach number 

r	 polar distance in y,z plane<y2 -+Z2) 

Re	 real part of a complex quantity 

Ro	 radius of cylindrical portion of body 

R(x)	 radius of indented body of revolution 

sgn(x-)	 sign of (x-) 

S o	 maximum value of s(x) 

S(X)	 local semispan 

S(x)	 local cross-sectional area of wing alone 
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t(x)	 spanwise distance from x axis to wing trailing edge 

u	 perturbation velocity in the x direction 

U0	 velocity of free stream 

v	 perturbation velocity in the y direction 

yr	 radial component of velocity in yz plane 

w	 perturbation velocity in the z direction 

x,y,z	 Cartesian coordinates (x downstream, y to starboard, z 
upward) 

JIM21l 

0	 polar angle in yz plane 

A(x,y)	 slope of wing surface in x direction 

P	 perturbation velocity potential 

92	 part of potential satisfying p + cp = 0 

complex variable (y + iz) 

comp'ex variable ( yi + iz) 

constant related to 

maximum thickness of wing section 

Subscripts 

B	 body 

2	 lower surface of the wing (z = 0 plane) 

sub	 subsonic 

sup	 supersonic 

u	 upper surface of the wing (z = 0 plane) 

W	 wing
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ANALYSIS 

The thickness distribution of a symmetrical wing is prescribed. 
Under the restriction that the thickness is small and that the configura-
tion is slender, formulas to be applied later (see "Applications" section) 
will now be briefly presented for determining the pressure coefficients 
for particular nonlifting wing-body combinations. Equations are first 
given for the wing without a body, and are then modified for cases when 
the wing is mounted on a circular cylinder or on an indented body of 
revolution.

Nonlifting Wing Alone 

The differential equation and boundary conditions. - Expressed in 
terms of the perturbation potential cp(x,y,z), the basic linearized par.- 
tial differential equation for subsonic as well as supersonic flow is the 
familiar Prandtl-Glauert equation 

( 1_Mo2 ) pxx +cpyy +1p z =0	 (1) 

where M0 is the free-stream Mach number. If the surface of a wing 
z(x,y) is given, solutions to the differential equation must satisfy the 
boundary condition that the flow is parallel to the wing surface. When 
the wing is thin, it is sufficient to satisfy this requirement in the 
plane z = 0. Analytically, the expression of the condition is 

zu 
= wu(x,y) = U. - = U(x,y)

 

((2) 

where U0 is the free-stream velocity and wu(x,y) is the vertical 
induced velocity on the upper side of the z = 0 plane. 

Velocity potential.- When the flow is supersonic, the formula for 
the perturbation potential subject to the boundary condition (2) is known 
to be (e.g., see ref. 10) 

it 6x ifwu
	 arccosh ____________ cp(x,y,z) - -	 --	 -	 d di1	 (3) -	 ________ 

T
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where the region of integration T is the portion of the plan form lying 
within the Mach forecone from the point x,y,z. In the case of subsonic 
flow fields, the solution of the differential equation (1) may be expressed 
in the form 

(x,y,z)= - -1- 	 arcsinh	
x -

	

ddr	 (14) 
Th

	

T	 J(y -	 + z2 

with T now extending over the entire plan form. These two solutions 
yield the potential due to a distribution of sources of strength propor-
tional to the slope of the wing surface A(x,y). 

f3J(y_ TI ) 2+z2 

	

When the wing is slender, that is, if 	 -	 is considered 

very small, further approximations to the linearized potential (3) and (14) 
can be readily made. In this event, one may employ the approximate 
relations

-	 -) 
arccosh	

x 
_____________ in	

2(x 

	

,J(y) 2 +z2	 /(y)2+z2 

	

x-	 2Ix-I	 I


arcsirth ___________ sgn(x - )ln 

	

+ z2	 /(y - )2 + z2 j 

where the symbol sgn(x - ) means that the sign of (x - ) is to be 
taken. 

Consider now a thin pointed wing 
of symmetrical section with straight 
or sweptforward trailing edges as is 
shown in sketch (a). Use of the 
relations (5) in equations (3) and (14) 

then gives the result (ref. 14) 

cp(x,y,z) = cp2 (x,y,z) + g(x)	 (6)

X 
Sketch (a)

(5) 
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where

13(x) p2(x,y,z) = 
	

? u(x,)1n[(y - 1.1)2 + z2]dTl 

S2(X) 

and
x

- g(x) = - U
0	 2(x 

f S)1n	 d 
0 

for supersonic flow, and 

U0 10	
2Ix-I 1' 

g(x) = - .- -J sgn(x - )S'()1n	 d	 (8b) 
0 

for subsonic flow. The function S t (x), the derivative of the cross-
sectional area of the wing in a yz plane, is found from 

S(X) 

S'(x) = 2 T  -f 	 zu(x,il)dfl	 (9) 

s2(x) 

It is seen from equation (6) that the slender-body approximation to 
the linearized supersonic and subsonic potentials consists of two parts. 
The first part (c)2) in each case is independent of Mach number and is a 
harmonic function in the transverse plane; that is, it satisfies the two-
dimensional Laplace equation

ipyy + 1P z z = 0
	

(10) 

The second part (g) depends on the cross-sectional area of the wing and 
is a function of x and 13 only. 

Inspection of equations (6) and (8) shows that the value of the 
potential for a particular wing at some Mach number Mi can be written 
in terms of the potential given at another Mach number M 0 . Thus

(7) 

(8a) 

CONFIDENTIAL
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sup	 = sup 0 +	 S'(x)ln f3	 I 

sub	 = sub	 S	

(ha) 

+ (x)ln - 
2i 	 00 

with	 . = 11M1 2 - 1 and 13o = JIMO2 - i. The supersonic and subsonic 
potentials may also be related. If one has already found an expression 
for the supersonic potential, he can then obtain the subsonic potential 
by means of the equation 

zo 
U0	 sub	 U0	 P	 s'() 

sub =	
+	 ( )	 d Tc S'xlfl	 + rJ (llb)

- 13 sup o 

Certain symmetrical wings whose trailing edges are swept back as in 
sketch (b) can also be treated by the simplified theory, provided the 
chordwise variation in shape of the 
cross sections is sufficiently smooth 
and gradual that the assumption of 
two-dimensional transverse flow may

0 reasonably be applied.	 Since the
—.y 

wing is at zero angle of attack and T	 =-() y s(x) the flow is symmetrical about the 
oj	 plane, the source distribution	

Co 

7u(x,y) in the plane of the wing in
/0 

region	 W	 between the axis and the B 
trailing edge is set equal to zero.

) 2 -Y t(x) 
If the limits of integration are W 
properly adjusted, equation (6) will 
then formally still apply and yield 
expressions for the potential in the So_I 
two regions 1 and 2 of the sketch. X 
Thus for region 1, in the 	 z = 0 plane, 
one obtains	 Sketch (b)

U0 5 

sup =	 f u( x , ) ln I y2 - 2 td - 
0

fXt()	

(x -	 (x	 c)	 (12a) 
0

CONFIDENTIAL
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and in region 2 

U •S	 Uo	 co 

sup =	 f x( x , TI) ln I y2 - 2 I dn -	 Si'(01(x - )d - 

t	 0 

x 
a1 rs2 '()in (x -	 (x ^ c) 

Tit TX 
Co

(12b) 

(13) 

where

s(x) 

Si '(X)	 Ii.	 z(x,r1)dr,	 0	 x :^ co 

S ( X) 

S2' (X) = L

	

	 f z ( x , ) d ,	 c0	 x.^ t o

 t(x) 

The subsonic solution is obtained from the supersonic solution by using 
equation (lib). 

Pressure coefficient.- After determining the potential for a wing 
from the equations in the foregoing section, the pressure on the surface 
of the wing is found by differentiation. The pressure coefficient is 
related to the perturbation velocities by the equation (ref. 4) 

r2 cp	 1 ( 6T2 3cp\2I 
cp(x,y,O) = -
	 ; +	

y)	 +	 (\) 
=0	

(14a) 

which is an approximation to the complete Bernoulli equation consistent 
with both the linearized differential equation (1) and the assumption of 
slenderness. For planar problems, further simplification achieved by 
neglecting the nonlinear terms (cp/y) 2. and (6T/6z)' yields satisfactory 
estimates for the coefficient.

CONFIDENTIAL
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Thus

	

cp(x,y,O) 
= -j 2 ti	

(14b) 

where P is obtained from equations (llb) and (12). 

It should be pointed out, however, that equations (lib), (12), and 
(14) will not furnish realistic results for the pressures' for a wing in 
either subsonic or supersonic flow unless certain restrictions are imposed 
on the gradient of cross-sectional area and its derivative S tt (x). Con-
sider, for example, the pressure found along the line AB where regions 
1 and 2 in sketch (b) join. In supersonic flow, one finds from equa-
tions (12) and (i ll-b) that at this line there is a jump Lcp in the pres-
sure coefficient given by

1 lim _______________ cp = cp1 - cp2 = 	 fl^l
s"(co)ln	

S2(C0) - Y2 + 

4 [dt 
u(x,t)

n 
-	 Coc+€	

(15) 

where

= S11?( CO)- S2"(c0) 

and where the usual assumption that S'(o) = S'(c0 ) = 0 has been made. 
Evidently, along the line AB a logarithmic singularity will occur in 
the pressure distribution in going from region 1 to region 2 if 
Sj"(co)	 S2 "(c0). (The infinity would of course be higher than loga-
rithmic if LS"(c 0) is singular.) The formulas for the pressure coef-
ficients presented in this report and in reference 4 are therefore good 
only for cases where the plan form and the slope of the wing surface are 
sufficiently smooth so that there are no abrupt changes in either S' or 
S t'. (This holds true also for the formulas given in references 3, 6, and 
7. The restriction on S.", however, may be somewhat relaxed in employing 
the slender-body theory of reference 8.) 

'Although the theory may give spurious infinite pressures on certain 
portions of the wing, the results obtained for the wave drag by integrat-
ing the product of pressure and surface slope over the wing may be finite 
and reasonable.  

CONFIDENTIAL
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Even if there is no jump in the pressure coefficient at the line AB, 
the slope of the pressure curve may not be continuous. It can be shown, 
for instance, that a singularity will occur in the slope of the curve for 
the pressure coefficient in case S" T (c0) is discontinuous. 

Wing on a Cylindrical Body 

The equations presented in the foregoing sections for the wing alone 
now be modified to yield formulas for calculating the pressure dis-

tribution on a combination composed of a 
symmetrical wing zu( x,y) = -z1(x,y) 
mounted on an infinite circular cylinder 

Y . having radius R0 (see sketch (c)). The 
surface of the wing chosen here will also 
be considered symmetrical about the xz 
plane, but the method applies equally well 
if this is not the case. The procedure 
followed is essentially the same if the 
fuselage is any body of revolution instead 
of a circular cylinder. 

In studying such combinations, it is 
usually convenient to introduce a second 
coordinate system. Let the yz plane be 
represented by a complex variable 

y + iz = re e	 (16) 

and then consider a ti plane 

-plane	 t i = y1 + iz1 = r1e-61 

-	 -H,	 R	 5,
obtained from the 	 plane by the 
Joukowski transformaion 

Sketch (c)	 2 

1= (17) 

The transformation (17) maps the t plane onto the	 plane so 
that a circle representing a section of the body in the 	 plane is 
mapped onto a portion of the real axis in the t, plane, while the part 
of the real axis outside the circle is transformed into an adjoining part 
of the real axis of the ti plane. (See sketch (c).) It can easily be 
shown from the equation that the geometric relations 

will 

1110
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R1 =2R0 

Yi = Y	 Yi ?Ri2 2

'	 (
(18) 

Yi = 2R0cos e,	 Yi2 R12 

Si = S + s	 ) 

hold for z1 equal to zero. 

The technique employed is to transform the boundary conditions from 
the	 plane to the tj plane and to find a solution in the latter 
plane. The solution is then transformed back to the physical plane for 
the completion of the problem. 

Perturbation velocity potential at the wing surface.- A consequence 
of the conformal transformation is that the complex velocities in the 
two planes t and tj are related by the equation 

d1 
v - iw = (vi - 'w1)	 (19) 

or, in polar coordinates (ref. 11), 

111 [i	
(R0'\2	 /R \2	 I 

=	 - (--) cos 2e] + w1 (\ _ 2) sin 2 

w
(R0 2 	 (Ro\2

= 
	

cos 28] - vl) sin 28	 (l9a) 

yr = [ 1 cos e + w1 sin e] [

	

	

(

L)2 I
 

2wi (	 sin  
ro 

From these equations it follows that the boundary conditions in the z1 = 0 
plane are

CONFIDENTIAL
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Vr	 U0(dRo/dx) 
w1 = 	 =	 = 0, 

2 sine	 2 sine 

w Wi = 
1 - R 0 2/y2
	 '

2..-1-) 2 Yl - ni

(20) 

R12 < r1 2 < s2 

with w related to the streamwise slope of the wing surface by equa-
tion (2). 

The two-dimensional solution P2 in the tj plane at z1 = 0 is, 
from equation (7), 

2 (x,y1 ,0) = 1:f w1 (x, i )lny1 - 1I d 1 	 (21) 

Putting now
R02 

r i = TI + 

and using relations (18) and the boundary conditions (20), one finally 
has for equation (21) 

U
s ( x)

I 
(y2 - T12) 

(12TI2 - R04 )

 I 
2(x,y) =f	 u( x TI )lf I 	 di	 (22) 

R0 

If one of the functions g given by formulas (8) is then added to this 
equation for cp2 , the velocity potential on the wing may be obtained for 
either supersonic or subsonic flow. Thus, for the supersonic perturbation 
potential on the upper surface, there results 

S(X) 
U0 p	 (y2 - 112) ( y2 12 - R04) 

sup =	
u(x, TI) ln	

y2112	
(111 - 

Ro

x 
U0	 r S'()ln	 (x - )d	 (23) 
21t ax  

and for the subsonic potential

CONFIDENTIAL
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s ( X) 

= Tf 
u Psub	 (X) TO	

(2 - 
ii2 )('2ii2 - B 4 ) I 

y2ii2	
Jdii - in ________ ________ 

R0

10 u0 	 r 
_- j sgn(x - )S'()1n 2 (x - Id	 (24) 

Pressure coefficient at the wing surface.- The pressure coefficients 
on the surface of the wing of the combination are obtained by differenti-
ating equations (23) and (24) with respect to x and then employing 
relation  (14b). Thus 

s (x)
•I ( 2 - 

2)(22 - R04) 
cpsup = -	 u(x,71)1n	

Y2 T1B0 

	

1 2 pX	 2 - - I S' ( ^ )ln - (x - 
x2J 

0 

and

dii +

(25a) 

1 
62

f 
s(x - )S' ()in	 Jx -J d	 (27b) 

0 

or, with the aid of equation (lib),

sub 1  
cp5Ub = cp 5	 -	 S"(x)ln	

-	
d 

0 

2 A in the case of planar problems, the squared terms in the pres-
sure relation can be neglected in considering a combination whose body 
is a circular cylinder. (See ref. Ii-.) 

uIvu

(26)



and

-Win -	 (27b) 
TC	 01 

C	 =c 
sub131	 sub0 

lii-	 CONFIDENTIAL	 NACA RM A54J07 

The coefficient for a particular wing at some Mach number M I , written 
in terms of the coefficient at another Mach number M 0, is 

cp	 = cp 5 l!t 
- (x)in -	 (27a) it	 13i 

where 13i = 11M12 - ii and 10 = /JMO2 - ii. 

It should be noted that formulas (25a) and (25b) are not uniformly 
valid for all values of R0 .	 If the radius	 R0	 is equal to zero, the 

equations reduce immediately to those 
IU. given previously for the wing without 

a body.	 As the radius approaches 
infinity, however, one finds that for-
mulas (27a) and (25b) yield a value of 
the pressure coefficient that differ 
from the results for the wing alone by 

ys(x)

J
a term equal t0 	 in 

S"(x)	 1 .	 Employing 
co 2 

the equations for values of	 R0	 that 
y=f(x) b are large violates the assumption of 

/0	 slenderness according to the approximate 
I	 theory used herein.

x

Sketch (d) 

Region 1:

When the wing mounted on the com-
bination is swept back, as shown in 
sketch (d), the slope Au(x,ri) is taken 
equal to zero in the gap between the 
trailing edge and the body. The for-
mulas obtained in regions 1, 2, and 3 
for the supersonic pressure coefficient 
on the upper surface of the wing are 
then as follows: 

s(x)


2	 f 
= -
	

2j(x,T)in 

Ro

(y2 - i)(yi	 - R04)


y212
dr1 + 

62f  
x2 
	
Si'()ln	 (x -
	

(0	 x :!^ co)	 (28a) 
0
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Region 2:
s(x) 

2 6P Cp2 
= - ;. .;J	 7'u(x,i)1n 

t(x)

(y2 - 2)(22 - Ro4)
d + 

12	 O	 l2f 
S 1'()1n(x - )d +	 S2'()1n	 (x 

0

(CO S x	 b0 ) (28b) 

Region 3:

SO	
(y2 -	 )(yi	 - R04) di1 + I 

Cp	
2 

3 = - 	 f u(x,)1n	
y22	 I it 6x 	 I  

t(x) 

1 2 f
Co bo 

S1 '()1n(x - )d +	 f S2 '()1n(x - )d + 

0	 co 

x 
62
2 fsatin (x -	 (b0 ^ x ^	 (28c) 

bo 

where b0 is the value of x at which so = s(x). Use of the relation 
(26) in conjunction with the above three formulas will furnish equations 
for the pressure coefficient in subsonic flow in the various regions. 

Wing on an Indented Body 

In the previous formulas for the pressure distribution attributable 
to thickness, the coefficient becomes infinite  when the Mach number 	

2 approaches unity because the formulas contain a term involving St(x)ln 

It is thus possible to construct slender configurations which will give 
a theoretically finite pressure coefficient even at the speed of sound. 
Under the assumptions of slender-body theory, this may be achieved if the 
gradient of cross-sectional area of the configuration in a yz plane 
vanishes identically. Combinations constructed in this manner on an 	 - 

3This of course is not a property of slender-body theory alone. 
Except in particular cases, steady-state linearized theory also in general 
yields infinite pressures at 3 = 0. 

CONFIDENTIAL
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infinitely long fuselage are slightly indented in the vicinity of the 
wing and possess, according to the theory, the important property of 
having zero wave drag. 

Velocity potential at the wing surface.- Let the surface 

zu( x,y) = -z(x,y) of a symmetrical wing be specified and assume that 
the indented fuselage is a body of revolution which deviates slightly 
from a basic circular cylinder of radius R0 . The cross-sectional area 
S(x) of the exposed wing is then given by 

X 
Sketch (e) 

or

(x) 
S(x) =	

,sz
u( x , rI) thI 	 (29) 

R(x) 

wheie R is the radius of the indented 
body. (See sketch (e).) In order for 
the streainwise gradient of cross-
sectional area of the entire combina-
tion to be zero, the relation 

'OR 2 (x) =	 - S(x),	 S(x)< <iR02 

(3Oa) 

must hold. Since the quantity S(x) is known from formula (29), equa-
tion (30a) can thus be solved for the radius R of the body. 

Now the perturbation potential in the 	 plane at z1 = 0 has the 
form

2(x,y1,O) = L:w11)	 I yi -	 di	 (31a) 

or

Si 
1P2 ( X ' y1' O )	 ;'Tj wi (x, i )lnyi -	

+ f wi(x,i)lnIyi2 - 12Id11 
r 	

(3m) 

CONFIDENTIAL
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with
R2 

S i = S + --•
R2 

Yi Y+y	 r1= 2R (32) 

The term corresponding to the g(x) of equations (8), which is to be added 
to this Cp2 , is zero since there is no change in the cross-sectional area 
of the specified shape of the yz plane. 

From the last relation in equation (19a) it follows (upon putting B 
in place of B0 ) that in the interval T112 < r 2 the boundary condition 
may be expressed

	

______	 (dR/dx)U0 
w1 = 	 = _________

	
r = R	 (33) 

	

2 sin 0	 2 .f3i - 

For very thin wings, and for deviation R 0 - R of the same order as the 
wing thickness, the condition in the interval r 12 < Til < s 12 is approxi-
mately

w	 Uo(zu/x) 
=
1 - R/T1 = 1 - R2/112 

Making use of equation (33), one can then write the first term on 
the right in equation (31b) as 

	

lf	
1y1 - 1Id1 = U0R	 my,	 y2 l 	 >R	 (35) 

where, from equation (30b), the quantity R(dR/dx) may be replaced by 
-1/2it times the gradient of cross sectional area S(x) of the wing. 
In the second integral in equation (31b), set 

B2 
11 1 = Ti + 

and use relations (34). The final forri for the velocity potential at the 
upper surface of the wing thus becomes 

U0 

	

p(x,y,O) = -	 S'(x)in y +

(311.) 

Uo

I

S
u(x,Ti)ln (y2 - 

2)(22 - R4) 

3 2 -112-

y > R	 (36) 

CONFIDENTIAL



18	 CONFIDENTIAL	 NACA RM A54J07 

Formula (36) for the velocity potential for a slender combination 
whose body is indented according to the area rule (ref. 12) is evidently 
independent of Mach number and therefore holds (within the assumptions 
of the simplified theory) for subsonic, transonic, and supersonic speeds. 
If the limits of integration are adjusted, the equation may also be used 
for combinations with sweptback wings. 

Pressure coefficient at the wing surface.- On the surface of the wing 
the pressure coefficient can be found from relation (14a), that is, 

r2 3p	 1 (\2 1	 (6ZU 2 
c =L_+___) J (37) p

z=O 

where the potential (P is obtained from equation (36). 

APPLICATIONS 

The formulas which were given the preceed.ing part of this report will 
now be applied for the purpose of performing detailed calculations of the 
pressure distribution for some particular nonlifting combinations having 
a symmetrical wing with constant chord. 

Wing Mounted on a Body of Circular Cross Section 

Pressure coefficient on the surface of the wing.- The wing of the 
combination 4 considered here is mounted on a circular cylinder and has 
an upper surface defined by 

	

zu(x,y) = T(c0m - s + y)'i(s - y)(c0m - s + y)	 (38) 

5 = mx + H0 

zu(x,y) = z(x,_y) = -z1(x,y) = -z1(x,_y) 

8To 
T

	

	 () 
3m2c02.J 

4mis combination will be referred to as the basic combination. 

with 

and
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the constant T0 being the maximum thickness. The profile resembles a 
Joukowski section and is the same for all values of y. On the starboard 
side of the wing, the slope of the surface is given by the relation 

Zu w(x,y) -  
= Au (X,Y) =	 -	 (cam - s + 

y)j com5__ sy+ Y __ 

From this equation it is seen that the slope possesses a square-root 
infinity at the leading edge and is zero at the trailing edge.

(1o) 

The gradient of cross-sectional area of the wing is 

	

S 1 1 (x) = 4rm3(c 0 - x)4x(c 0 -	 x) = ll-mzu(x,Ro),	 (0	 x	 co)
	

(1.la) 

in region 1 in sketch (r) and is' 

	

S2 '(x) a 0,	 co	 x	 (s 0 - R0)/m	 i.1b)


in region 2; for region 3, 

	

S 3 '(x) = -4m zu(x,so),	 (5 - R0 )/m	 x	 (s 0 - B0 + c0tn)/m 

Since 5" is not continuous across 
the line AB, the approximate theory 
employed here will give unrealistic 
results in the regions of the tips. 
In calculating the pressures for the 
wing-body combination, attention will 
therefore be confined to regions 1 
and 2 only. The calculations to be 
given in subsonic flow will be based 
on the assumption that, the tips are 
located 'far downstream and have no 
effect on the other two regions. 

Use of the equations (40) and 
(lj) in formulas (28a) and (28b) yields 
the following final results for the 
supersonic pressure coefficient on the 
upper surface of the wing for regions 
1 and 2:

(li.lb) 

X

EEl1'1	 E 
Sketch (f) 
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Region 1:

T	 _1 /_X + 2m(co - x)jcox x 
cpsup	

- x) 
in	 + =-;_ - R02) 

RIO	 0 F(x,y) + F(x,_y) - 2F(x,0) + F(x+ F(x, _!)J, 

(a < x < co)	 (42a) 

Region 2
Is - c0m 

SU	 +	 ( x - co) J 	 + 2(s - c0m)	 + cq_s	 =111

/ s - c0
in + y + (com -	

+ Ro\. R02/y + 
(c0m -	 -	 + JI s - R/y 

/ s - c + R02/yl

4 
R02

m 4s -	 -	
m 

+ R/y j 

(co < x, s - c0m < y < x; s = mx + R0) 

(li.2b) 

where

j 
 F(x,l1) = (c0m -	 - 4	
S - c m + i 

)	
+ 11 

- tan- 
1an' (co - x)(2s + 1]) - ( lix + R0c0) 1 	 (43a)

T 2	 2(c0 - X) (s + li)( s - c0m + 11) J 

when c0m - s - i < 0, and 

F(x;li) = (c 0m - 1s - 4TI)i com
S - S - Tj

c0(li + R0) 
in  

(CO - x)(2s +	 - (lix + R0c0 ) + Jx(c0 - x)(s + 'rl)(c 0m - s - 

(l13b) 
when c 0m - s - r > 0
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It is seen from equation (26) that the formulas for the pressure 
coefficient in subsonic flow can be obtained by adding two terms to the 
above equations for the supersonic pressure coefficient. Since the value 
of St in region 2 is identically zero, the terms to be added for region 
1 become

	

1	 P s' () 

	

- .;	 J	 -	 d = Tm[ LIx - 3co],	 (x < co)	 (44a) 

0 

and for region 2 

Co ________ 

- 

I s,
() 

d = Tm3 [x - 3c0 + (c0 - 4x)jX_-_C (x ^ CO) 
2.ix 6x x X	

(44b)0 

The subsonic pressure coefficient on the upper surface of the wing can 
therefore be written in region 1 as 

m 3r [	 /c0 - x

	
sub 

+ - t( lix - 3c ) + 2#x - c0 )J	 in ,
	 ]	

(115a) cpSUb = Psup	 I( L	 sup 

and in region 2 as 

c	 =c	 +m 

	

sub	 sup	
3T[x - 3c0 + (co -4x)j- x COJ	 () 

where c 
psup 

is given by equations (2). 

Formulas (42) and (15), which give the pressure coefficients on the 
wing of the combination indicated in sketch (f), will be plotted and the 
results discussed in a later section. An obvious result noted now is 
that in region 2 the formulas do not depend on Mach number for either 
supersonic or subsonic flow, but that the subsonic coefficient in this 
region is always greater than the supersonic coefficient because the 
inequality

m3T[Ix - 3c + ( co - 1x)J X - 
co] 

0	 (46) 

holds for all values x 2! co.
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As a check, let us now consider the asymptotic behavior of equa-
tions (38), (42b), and (45b) far outboard along the wing. For this pur-
pose, we introduce a change in coordinate system by means of the trans-
formation

X = XnSlfl e + ynslfl e
(47a) 

y - R0 = -xncos e + YnSir1 B 

(See sketch (g).) Setting tan B rn, 
one can then write 

- Th.X + y 

- •Ji + m2 

myn - xn 
y - R0 =  

.Jl + m2

7b) 

mx - (y-R0) 
x  

fl	
..Ji+m 

x + in(y - Ro) 
yn	 y11= 

x
Sketch (g) 

and

cn = c0m/'Jl + 

Mn = m/./i m2 

U. = Uiu/./l + 

+ 

Equation (38) thus becomes 

Z
8TO	 3/2	 1/2 

fl 

= 77 =31- 2 
(cn - X) (Xc) 

CONFIDENTIAL
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which agrees with the approximate equation employed in two-dimensional 
section theory for a thin Joukowski base profile of thickness ratio 

TO	
. ( See ref. 13.) The pressure coefficient for such a two-

3 
dimensional airfoil is

8	

I

0
(119a) cp= -i:i; 

	 3%/cp 	
- ((xn




cn,JJ 

or, written in terms of the xy system, 

8 
cp	

To 
= -
	

[ 3 

	

3%1_3CO2o2 c
0m - 4(mx - y + R0 )]	 (9b) 

This equation is in agreement with the asymptotic expression of the pres-
sure coefficient for region 2 obtained far outboard along the wing from 
either equation ( 1 2b) or (45b). 

Pressure coefficient on the body.- The formula for determining the 
pressure coefficient on the surface of the body is (ref. .) 

[2 cp 
(\2JB - (\2 

	

= -	
U2R 
	

(50a) 

When the body is a circular cylinder, this relation reduces to 

cPB = U X}B	 (5ob) 

It is apparent that application of equation (50b) requires a knowledge 
of the value of the potential p in space, so that formulas (28), which 
hold for z = 0, must be "analytically continued." One way that will in 
effect accomplish this is as follows: 

Set

= y + iz = R0e 16 

and form the function

= cp(x,,O) + i*( x,, O )	 (i) 
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where cp(x,,o) is taken from equations (23) and (24), with the function 
* defined by5

8(x) 

*(x,,O)	 wu(x,T1)d1	 (72) 

The constructed function (71) will obviously satisfy Laplace t s equation 
in the yz plane; and it can be verified without difficulty that the 
boundary condition yr = 0 is also satisfied. The coefficient on the 
body can then be calculated from the formula 

	

C	 Re =-- 

	

p	 jj0  
(^x

(73) 

where the symbol Re means that the real part is to be taken. 

For region 1, the final result obtained for the pressure coefficient 
on the body in supersonic flow for the basic combination considered in 
this part of the report is 

m2T	
' 

______X Cp	 =	 l6Rotanj_	 - 2F(x,O) + F(x,R0e') +
c0 - x

-10 F(x,RoelO) + F(x,-Roe 
10 ) 

+ F(x,-Roe	 ) + 

Re [(co	
/c0 - x

in
8x(co - x)e 

iG
 

pco(e
 210

- 1)R0 

i(c0m - s + Roei0)jC0 - 
s + Roe le 1 

8 - Re0	 ]	

(x ^ co). 

(5l.a) 

where the function F(x,Ti) is given by equations (43). The result found 
for the supersonic pressure coefficient in region 2 can be put in the form 

5An arbitrary real function E(x) may, in general, be added to the 
right side of equation (52). Such a function, however, would in no way 
affect the real part of 60Ax, since iE is purely imaginary. 
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'S - cm 
c	 = m2TL8R + 2m(x - co)JX 

C0 
+ 2(s - com)J	 +


psup

FL 
R0e - c0m

(corn -	 - Roe19)
	 +

+ 

c0rn - - Roe)F
s+ R0e 

S	

- c0m + 

 + 

S -Rae - c0m
+ (c 0m - s + Roe1e)J s - 

R

ie 

oeie 

(corn -	 + Roe_16)J- Roe
	 - c0m1 

S -
	 ( x > co)	 (54b) 

Corresponding formulas for the pressure coefficient on the body in sub-
sonic flow are obtained from the above two equations by adding to them 
the terms on the right of equations (44a) and ( l ib), respectively. For 
any fixed value of y in region 2, relations (45b) and (46) furnish the 
inequality

c	 >c 
Psub	 Psup 

which, as mentioned before, is also true for the coefficients on the wing. 

Wing Mounted on an Indented Body 

The constant-chord wing whose thickness distribution on the starboard 
side is given by 

z ( x , y ) = r(c0m - s + y)J (s - y)(c0m - s + y),	 R(x) < y	 s 

s = mx + Ro	 1(56) 

8i-

3m2co2J
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will now be combined with an indented body of revolution which deviates 
slightly from a basic cylinder in the manner that makes the local cross-

sectional area of the configuration 

U. a constant. The wing has the same 
profile along EE as the one in the 
previous example. (See sketch (h).) 

(f1k	

Since the gradient of cross-sectional 
area of the combination is set equal 

0	 to zero, the wave drag, according to T	 the slender-body theory, is also zero. 

co I

# P0 - cm
and the radius of the indented body 
in this region is therefore the con-
stant 

R2 = 
RoJi - S2(x) 

= RoJi
c03m3 

icR02	 -

(58) 
Corresponding equations for region 1 are 

5 

S 1 (x)	 fzu(x)d =	 {3m3co3Cosl c0m - 2s + i + 
c0m 

R1 

2[2(s - R 1 )(7c0m - s + R) - 3c02m]J(s - R 1 )(c0m - s + R, 4 (59) 

and

R i (x) = Roji E^2
	 0 <R2 R1 <Ho
	

(60) 

The cross-sectional area of the 
wing in region 2 is equal to the con-
stant

S 
P t 

s2 (x) = 1 j z ( x,)d	 co
c = 
	

TT[ 

(57)
s-c0m 

x

o EE 

Sketch (h)
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Equation (60), however, does not give an explicit value of the radius 
in region 1 because the function S 1 itself involves R 1 . Moreover, 
the function S 1 is a transcendental function of B 1 , so that equa-
tion(60) can only be solved by graphical or other methods of approxima-
tion. By means of the mean-value theorem, we can write the equation in 
the form

S1(x) = S 11 (x) + 4z (x,d)( R0 - R 1)	 ( 61) 

where d is a certain value in the interval B 1 <d <R0 , and 

S11(x) = -- 12(14xco - 8x2 - 3co2 )Jx(co - x) + 3c03cos' co - 2x I (62)Co 

is the cross-sectional area of the wing in region 1 neglecting the addi-
tional area exposed by the indentation. Since the deviation R 0 - B 1 is 
assumed to be of the same order as the wing thickness, neglect of the 
term lI-z ( x , d )( Bo - R 1) will evidently introduce only an error of the 
second order in thickness. For very thin wings, the radius B 1 may thus 
be approximated by

L0 

R 1(x) = RoJi - 
S11(x)	

(63) 
iCRo2 

which is now an explicit function 
of X.	

5 

Sketch (i) indicates the varia-
tion of the radius as a function of P 
x/co for To/mco equal to 0.1 and c0m 
values of Ho/meo equal to 0.7 and 
1.0.

.5 /0 /52!) 2531) 
Relations (hi-b) and (53) can be 	

x/c 
immediately employed for determining 
the pressure coefficient on the sur-
face of the wing and on the body in	 Sketch (i) 
region 2, because the portion of the body in that region is a circular 
cylinder. Use of these relations with equation (36), (57), and (58), then 
finally yields for the coefficient on the upper surface of the wing 

Is -
 

Com	 _________
+ = m2T[2( 1i-s - 3c0m) + 2(4s - c 0m)J —	 + (c0m -Li-s - j i-) J6 - 

c 0m+ y 
S 

5 - c0m +	 y
R22l R22\ Is - c0m -R22/y  
(Com - s +	

s - R2 2/y
+ (c,m - - 4	

+ R2 2 /Y j 
(s - c0m < y < s)	 (64) 
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and for the coefficient on the body

Corn 

	

P2=m2T[2(s -3c0m) +2(s _com)j	 + c0m-s _R2e)j -c
0m+R2e 10 + 

B - Re'0 

	

-iQ 's-c0m+R2e -	 j c_com_R2eb6 
(c0m-l.s-1i.R2e	 V	 sR2ee +(c0m-Ii-s+li-R2e )J	

s-R2e16	 + 

(c0m - s + R2e1e)jS - c0m - R2e0l 

s-R2e'0
	

(65) 

These equations are employed for 

x^co	
rR2 CO3111T 

	

rn	 M2	 11. 

the equality sign giving the value of x at the trailing-edge fuselage 
junction. The two formulas do not involve Mach number and apply for sub-
sonic, transonic, and supersonic flight speeds. Comparison of formula 
(64) with equations (2b) and (45b) shows that for a fixed y in region 2 
the inequality

Cp>Cp	 >Cp	 (66) 

	

sub	 sup 

is satisfied when x co. Values calculated in region 2 for the subsonic 
and supersonic pressure coefficients along a section on the surface of the 
wing of the basic combination will thus be less than the values obtained 
for the coefficient 'p on the wing surface of the indented combination. 

In region 1, the body is not cylindrical but it is found that the 
squared terms in the pressure relation (37) may be neglected since they 
contribute only quantities involving the second and higher order in wing 

	

thickness that are small in comparison with -	 . Even the first

O OX 

term in relation (37) gives rise, for the particular combination consid-
ered, to some small terms of the second order. Such quantities, however, 
are also found to be negligible. The formulas to be presented here for 
the pressure coefficients in region 1 will therefore contain (like those 
for region 2) only terms of the same order as the thickness of the wing. 
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NUMERICAL RESULTS AND DISCUSSION 

Graphs of the pressure coefficients for a wing alone and for the 
two wing-body combinations in sketches (f) and (h) are shown in figures 1, 
2, and 3. Figures 1 and 2 give plots for the coefficients along several 
spanwise stations of the basic combination (Ro/c 0m = 0.5) for subsonic 
and supersonic flow at mf3 = 0.5, while figure 3 presents plots of the 
coefficient for the indented wing-body combination which are independent 
of Mach number. The plot in figure 4 gives the variation of the pressure 
on the body in the plane of the wing. 

Figures 1 and 2 show that, except at the wing-fuselage juncture, the 
pressure coefficients have a finite negative 6 value at the leading edge 
and increase to finite positive values at the trailing edge. On sections 
which are cut by the plane x = co (i.e., passing through the trailing-
edge fuselage juncture) the slopes of the curves are discontinuous. It 
is also apparent that the effect of the presence of the body on the coef-
ficient does not extend very far downstream beyond the trailing-edge 
fuselage juncture; the difference between the calculations for the wing 
on the combination and those for the wing alone, for instance, are too 
small to show up in the plots for sections more than one chord length 
from the body. 

In figure 3, the pressure coefficients for nearly all sections on the 
wing of the indented combination are very close to the curve for the two-
dimensional wing. The discontinuity in the slope of the curve that was 
quite noticeable along sections such as BB of figures 1 and 2 is far less 
apparent in figure 3. 

The graph in figure 5 is the function which, according to equa-
tions ( 27), can be added to the values given in figures 1 and 2 for the 
subsonic or supersonic pressure coefficient along the section AA and BB 
of the wing to yield values of the coefficient at other Mach numbers. 
(Sections CC ) DD, and EE lie in region 2 where the coefficients do not 

depend on Mach number.) For example, the pressure	
cp	

at the 
(T0/c0)m 

leading edge along BB in subsonic flow for inJ3 = 0.4 is, using figures 1 
and 5 in conjunction with equations (27), -4.1 -0.2 = -4.3. 

Figure 6 shows isobaric charts of the pressure coefficients for the 
wing without body in subsonic and supersonic flow at m13 = 0.5, and also 

6 The occurrence of a negative pressure at the nose of a Joukowski-
like section is the result of the thin-airfoil simplification. Amore 
accurate theory would show a small region of positive pressure (i.e., 
a stagnation point with the maximum value equal to the impact pressure 
of the component of stream velocity normal to the edge). 
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a chart giving the two-dimensional results. The figures 6(a) and 6(b) 
indicate that the pattern of the isobars in the region behind the trailing-
edge fuselage juncture is essentially the same as the two-dimensional in 
figure 6(c), but that in the region near and upstream of the juncture, a 
marked deviation from the straight isobars of the two-dimensional case is 
evident. 

Isobaric maps are also shown in figure 7 for the basic wing-body 
combination in subsonic and supersonic flow, and for the indented wing-
body combination. Figures 7(a) and 7(b) illustrate that in the region 
downstream from the trailing-edge fuselage juncture (even near the juncture 
itself) the isobars are not much different from those for the wing alone, 
and that the body therefore has little effect in this region. In the 
region adjacent to the body, the pattern of the isobars is qualitatively 
similar to the case for the wing alone but the pressures are lower. A 
remarkable difference between the chart in figure 7(c) for the indented 
combination and those in figures 7(a) and 7(b) for the basic combination 
is that the isobaric pattern on the wing for the indented combination is 
essentially two-dimensional over practically the whole wing. 

Examination of the three charts in figure 7 also indicate that the 
maximum negative pressure on the wing occurs at the leading edge near the 
boundary between regions 1 and 2. In fact, it can be shown that the max-
imum occurs at the boundary. In view of the inequality (66), indentation 
in accordance with the area rule reduces the maximum perturbation veloci-
ties on the wing. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Oct. 7, l951-
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