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SUMMARY

An investigation has been conducted to determine the effect of both
six— and eight—blade dual—-rotation propellers on the internal—flow char—
acteristics of an NACA l-series D-type cowl, and the effect of the cowl
on the characteristics of the propellers. The pressure recoveries at
the cowl inlet and the characteristics of the propellers were measured
at Mach numbers from 0.13 to 0.84, inlet velocity ratios from 0.27 to
1.08, advance ratios from 0.80 to 7.29, and propeller blade angles from
40O to 70°. Included are results of surveys, with the propellers removed,
of the local velocity distributions ahead of the cowl, measured in the
planes of both the front and rear components of the dual-rotation pro—
peller, for an NACA 1-46.5-085 spinner, and in the plane of a single—
rotation propeller, for the shorter NACA 1-46.5—047 spinner. All tests
of the dual—rotation propeller—spinner—cowling combination were conducted
with the model at an angle of attack of 0° and at a Reynolds number of
1.0 million per foot (1.3 million based on the maximum cowl diameter).

With the propeller removed, the ram—recovery ratios for the spinner—
cowling combination were greater than 0.96 at inlet velocity ratios above
0.51 and were not affected by compressibility.

Operation of either the six— or eight—blade dual-rotation propeller
ahead of the cowl, at maximum efficiency for a given blade angle, resulted
in lower recoveries than those for the cowling with the propeller removed.
Also, pressure recoveries for the six—blade propeller—spinner—cowling
combination were higher than those for the cowl with the eight—blade pro—
peller, although the recoveries for the cowl with either dual—rotation
propeller were lower than those for a similar cowl with a four—blade
single—rotation propeller.
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At the design Mach number of 0.80, inlet velocity ratio of 0.50, and
advance ratio of 4.2 and the near—design blade angle of 65°, the maximum
efficiencies for the six— and eight—blade dual—rotation propellers with
the cowl were 75 and 76 percent, respectively.

The maximum efficiencies of the six— and eight—blade duvual—rotation
propellers when operating in the presence of the cowl were higher, at all
comparable conditions, than those for the isolated dual—rotation propeller—
spinner combinations.

The effect of inlet velocity ratio on the propeller characteristics
was small,

INTRODUCTION

The successful application of the turbine—propeller—type power
plant is dependent, in part, on the combined efficiency of the propeller
and air—induction system.

Considerable research has been conducted to determine the effect of
propeller operation and propeller—spinner—juncture configuration on the
internal—flow characteristics of an NACA D—type cowl and the effect of
the cowl on the propeller characteristics (refs. 1 to 6). Investigations
also have been conducted to determine the internal—flow characteristics
of a single-rotation NACA E—type cowl (refs. 7 and 8). However, the
major portion of these investigations has been carried out with regard
to single—rotation propellers. of current design suitable for turbine—
propeller powerplant installations (refs. 1 to 4). TIn contrast, the
data available in regard to dual—rotation propellers are limited prim—
arily to the effect of propeller operation and propeller—spinner—juncture
configuration on the internal—flow characteristics of the NACA D—type
cowl (refs. 5 and 6).

Because of the many significant advantages of the dual—rotation
propeller as compared to the single—rotation propeller (i.e., reduced
diameter, higher efficiency, absence of reaction torque, and less noise),
an investigation has been conducted in the Ames 12—foot pressure wind
tunnel to determine the effect of both six— and eight—blade dual—rotation
propellers on the internal—flow characteristics of an NACA D—type cowl
and the effect of the cowl on the propeller characteristics. One phase
of the investigation, the determination of the aerodynamic character—
istics of the six— and eight—blade propellers in the absence of the cowl,
has been reported in reference 9.
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In the phase of the investigation reported herein, tests were made
with the cowling—spinner combination alone (propeller removed) and with
the cowling—spinner combination in conjunction with both six— and eight—
blade dual—rotation propellers.

NOTATION
a speed of soundl
B number of blades
b blade width
Cp power coefficient, nehe
Cop thrust coefficient, Y
on D
czd blade—section design 1lift coefficient
D propeller diameter
H total pressurel
Hy—p o
ram—recove ratio
T very i
h maximum thickness of blade section
R
J advance ratio, —
nD
M Mach number,Y

a
T 2
M, tip Mach number, M / 1-+<33{>

n propeller rotational speed

P power

1As used herein, values of a, H, p, V, and p appearing without sub—
scripts refer to conditions in the wind—tunnel air stream at a datum
velocity that has been corrected for blockage by the cowling but is uncor—
rected for wind—tunnel—wall constraint on the propeller slipstream.
(see ref. 2.)
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static pressure2 “
propeller—tip radius

radius from center of rotation

thrust

local velocity in propeller plane

air-stream velocity?

equivalent free—eir velocity (air—stream velocity corrected for
tunnel—wall constraint on the propeller slipstream)

inlet velocity ratio
propeller blade angle at 0.75 R

difference between the blade angles for the front and rear com—
ponents of the dual—rotation propellers

design propeller—blade—section angle 3
C
efficiency, él J

= 4
mass density of air?®

Subscripts

ram—recovery rake location
front component of dual—rotation propeller
rear component of duval—rotation propeller

apparent (applied to propeller characteristics when operating
ahead of the cowl)

25ee footnote 1 on page 3.
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MODEL AND APPARATUS

The model used in this investigation consisted of an NACA 1-62,8-070
D—type cowl in combination with an NACA 1-46.5-085 spinner and
NACA 4—(5)(05)—037 six— and eight-blade dual—rotation propellers. (See
refs. 10 and 11 for explanation of cowling—spinner and propeller desig—
nations, respectively.) A photograph of the model mounted on the 1000—
horsepower dynamometer in the Ames 12—foot pressure wind tunnel is shown
in figure 1. A sketch of the general model arrangement, showing the
principal model dimensions, is shown in figure 2.

Design Conditions

The model investigated simulates a propeller—cowling—spinner
combination for a turboprop installation having the following design
requirements:

BAEATOAE, 5 &+ o « 2 o v e e ot ae e e
Mach auber (CTULSE) o + « « w o « o u w s v v & o 4 Lo OEE
Horsepower . i e w el e w e e el e e e o AN SR
Engipe air flow; 1b/BEC . . . . v v o 4 ¢ 0w e be . e O
Propeller diameter, ft

sdm=plade BUBL <, . . v b el e o ohet ans s e LR U

Eight-blade QUAL . « o o @ « o o 5 6 e s ve o HESEEEREEE
BHYANCE PRETO & o o o v s e e eles ah e TR SRR
dniet velocity ¥WEIO . & . o . & wis s w o s BRI TP

Spinner—Cowling Combination

The NACA 1-62.8-070 D—type cowl and the NACA 1-46.5-085 spinner
were selected, on the basis of the design requirements, in accordance
with the method of reference 10. The cowling selected was the same as
that described in reference 1, except that the diameter of the model was
increased to accommodate the larger diameter spinner required to enclose
the dqual-rotation propeller—hub assembly. An NACA l-series inner liner
was incorporated at the inner 1lip, as recommended in reference 10, to
delay the separation of the air flow from the inner lip at high inlet
velocity ratios. Coordinates for the cowling—spinner combination are
shown in table I.
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Propellers and Propeller—Spinner Juncture

The NACA L4—(5)(05)-037 six— and eight—blade dual—rotation propellers
were those described in reference 9. The blade—form curves for the pro—
pellers are shown in figure 3. Except for total solidity, the six—
and eight-blade duasl—-rotation propellers were identical.

The propeller—spinner junctures shown in figure 4 are of the platform
type, identical to those recommended in reference 5 and used with the
NACA 1-46.5-085 spinner reported in reference 9. A sketch and the coor—
dinates of the platform are shown in figure 5. The surfaces of the plat—
form and propeller blade that bound the gep were formed by rotating the
surface element defined by the platform coordinates, tabulated in figure 5,
about the axis of the propeller blade in order that the gap between the
platform and the blade remain unchanged as the blade angle is varied. The
platforms were set to aline with the propeller blade sections when the
blade angle of -the front component of the duasl-rotation propeller was set
at 65°.

1000—Horsepower Dynamometer

The 1000-horsepower dynamometer used for this investigation was the
dynamometer described in detail in reference 11, modified for use in
testing dual—-rotation propellers by the installation of a gearbox within
the dynamometer housing and a torquemeter on each of two concentric pro—
peller drive shafts as described in reference 9. These two torquemeters
were similar in design and operation to the torquemeter described in
reference 11 but had one half the capacity and twice the sensitivity.

Instrumentation

The instrumentation of the model was identical to that described in
reference 1 and consisted of four shielded total—pressure rakes and two
static—pressure rakes. Each rake was composed of eight tubes disposed
radially across the duct in such a menner that each total—pressure tube
was in the center of an area equal to one thirty—second of the total duct
area. Calibration of these total—pressure rakes indicated that the error
in the measured impact pressure was probably less than 1.0 percent at
angles of attack up to 40° for Mach numbers up to 0.85. No attempt was
made to calibrate the static—pressure rakes as the measured static
pressures were considered to be within the accuracy required for the
calculations of inlet velocity ratio.

The survey rake used to determine the local velocities in the pro—
peller plane consisted of 24 static—pressure tubes at the radii listed
in teble II.
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TESTS AND REDUCTION OF DATA

Tests

In the investigation reported herein, tests were made with the
cowling—spinner combination alone (propeller removed) and with the
cowling—spinner combination in conjunction with both six— and eight—
blade dual—-rotation propellers. With the propeller removed, measurements
were made of the pressure recoveries at the cowl inlet and the velocities
in the plane of each component of the propeller at inlet wvelocity ratios
from 0.27 to 1.09 and for Mach numbers from 0.30 to 0.84, With the
propeller installed and operating, measurements were made of the pressure
recovery at the cowl inlet and the thrust, torque, and rotational speed
of both dual-rotation propellers for blade angles from 40C to 709, Mach
numbers from 0.30 to 0.84, and inlet velocity ratios from 0.27 to 1.08,
as listed in table IIT.

For all propeller tests, the difference between the front and rear
propeller blade angles (Bp—BRr) was 0.8° (design AB).

Surveys of the velocity distributions in the plane of the propeller,
with the propeller removed, were made for the single—rotation spinner—
cowling combination (NACA 1-46.5-O47 spinner, NACA 1-62.8-070 D—type cowl)
reported in reference 1.

All tests of the dual—rotation propeller—spinner—cowling combination
were made with the model at an angle of attack of 0° and at a Reynolds
number of 1.0 million per foot (1.3 million based on the maximum cowl
diameter). The velocity surveys near the single—rotation spinner—cowling
combination were made at a Reynolds number of 1.8 million, based on the
maximum cowl diameter.

Mach Number

The Mach numbers given in this report are the average Mach numbers
over the disc area of the propeller, determined by velocity surveys in
the presence of the dynamometer body with the cowl removed, as reported
in reference 11, The Mach nunber (and the corresponding dynamic pressure)
was corrected for the wind—tumnel blockage due to the cowl by the method
of reference 12, but in no case did this correction exceed 1 percent.
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Tunnel-Wall Corrections

The air—stream velocity (and, consequently, propeller advance ratio
and efficiency) was corrected for the wind—tunnel-wall constraint on the
propeller slipstream by the method of reference 13. For Mach numbers of
0.30 and above, at all of the test blade angles, this correction did not
exceed 2 percent and was less than 4 percent at a Mach number of 0.13.

Flow Surveys

The inlet velocity ratio, calculated in accordance with the method
of reference 14, can be readily converted to mass—Flow ratio by use of
figure 4 of reference 1k,

The ram-recovery ratio presented as a function of radial location
in the duct is the arithmetic average of the recoveries from the four
total-pressure tubes at each of the eight radial locations. All other
values of ram—recovery ratio were computed from an arithmetic average of
the readings from all 32 total—pressure tubes, which is equivalent to an
area—weighted average.

The local velocities in the propeller plane were corrected for the
reke calibration and for the radial velocity gradient in the tunnel
(ref. 11) due to the influence of the dynamometer body. However, no
agttempt was made to correct the static—pressure readings near the surface
of the spinner for flow angularity, and, as a result, the values of local
velocity presented herein for the low inlet velocity ratios may be
somewhat in error.

Thrust and Torque

The thrust, torque, and rotational speed of the propellers were
measured in a manner similar to that reported in reference 11. The
thrust, as used herein, is the algebraic difference between the longi—
tudinal force produced by the propeller—spinner conbination operating in
the presence of the cowl and the longitudinal force produced by the spinner
alone (also in the presence of the cowl) at the same air velocity, density,
and inlet velocity ratio. The method of determining the propeller thrust
is discussed in detail in references 2 and 11. The total torque presented
for the dual-rotation propellers is the sum of the torques measured for
the front and rear components of the propeller.

Analysis of the accuracy of the separate measurements of thrust,
torque, and air—stream velocity, as in reference 11, indicates that errors

in the propeller efficiencies reported herein are probably less than 2
percent. CONF IDENTTAL
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RESULTS AND DISCUSSION

The results of this investigation are presented in figures 6 through
24k, An index of these figures is presented in table III and gives the
model configuration and the range of the variables for each figure.
Additional values of the velocity ratios in the plane of the front and
rear components of the dual—rotation propeller and the single—rotation
propeller, with the propellers removed, are tabulated in table IT.

Internal—¥'low Characteristics

Spinner—cowling combination with propeller removed.— Examination of
the ramrecovery ratios presented in figure 6 for the NACA 1-62.8-070
D—type cowl in combination with an NACA 1-46.5-085 duasl-rotation spinner
indicates that the losses in recovery were a result of the boundary—layer
build—up on the spinner.

The comparison in figure 7 of the averages of these data with com-
parable data from reference 1, for a similarly designated cowling with
an NACA 1-46.5-0L47 spinner, shows that the recoveries obtained with the
long (—085) spinner were lower for all test inlet velocity ratios (1.5
percent lower at the respective design conditions: M = 0.80, Vl/V = 0.50
for the —085 spinner, and M = 0.80, V1 /V = 0.42 for the ~O47 spinner).
Figure 7 also shows that, because of the increase in boundary—layer
thickness for a constant inlet velocity ratio due to the longer —085
spinner (13.22 inches as compared to 6.58 inches for the —O47 spinner),
the inlet velocity ratio required to avoid excessive losses in the duct
was higher for the —085 spinner than for the —0L47 spinner (0.51 as com—
pared to 0.45). A further comparison in figure 7 of the present data with
those for a model of the same geometric proportions (reported in ref. 5)
shows relatively good agreement (less than l—percent difference in recovery
at the design condition), except at inlet velocity ratios greater than 0.8.
In regard to the data from reference 5, it may be noted that in that
reference the high recoveries at inlet velocity ratios greater than 0.8
were associated with a condition of extensive laminar flow over the
spinner. Differences in the spinner surface conditions between the model
of reference 5 and the model reported herein (the spinner of reference 5
had a smooth, continuous, painted surface, whereas the spinner of the
present investigation had machined surfaces and a discontinuity at the
gap between the front and rear components) may account for the differences
in recovery at the high inlet velocity ratios. It should also be noted
that there were differences in the total—pressure—tube instrumentation
and the location of the survey station between the two models. The model
reported in reference 5 had one rake at the top vertical center line, 6
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percent of the cowl diameter behind the leading edge of the cowl as com—
pared to the present model having four rakes 90° apart, 18 percent of the
cowl diameter behind the leading edge of the cowl.

The ram—recovery ratios for the present model were greater than 0.96
at inlet velocity ratios greater than 0.51 and were not affected by com—
pressibility within the range of Mach numbers covered in this investigation
(fig. 7). It can be seen from figure 6, however, that increasing the
inlet velocity ratio to values greater than 0.50 resulted in a decrease in
the recovery near the outer surface of the duct.

Spinner—owling combination with propeller operating.— Examination of
the data presented in figures 8 to 12 indicates that with the addition of
the dual-rotation propeller to the spinner—cowling combination, the recov—
eries behind the operating propeller were affected not only by the spinner
boundary layer, as was the case with the propeller removed, but also by
the angle of attack (loading) of the platform and inner portions of the
propeller blade, the air flow through the gap between the platform and
the propeller blade, and other propeller interference effects.

Analysis of the data in figures 8 to 12 indicates that for a constant
inlet velocity ratio, operation of the propeller at combinations of blade
angles, rotational speeds, and forward speeds that increased the angle of
attack (and thus the loading) of the platform and the inner portion of the
blade generally resulted in increased recoveries due to the pumping action
of the platform and inner portions of the blades. As can be seen from
figures 8 and 9 for the low Mach numbers, recoveries in excess of 1.0 were
obtained when the propellers were operated at blade angles up to 60° and
at high rotational speeds. For these operating conditions, it is apparent
that the pumping action of the platform and inner portions of the blade
added sufficient energy to the air stream to overcome the energy losses
due to the spinner boundary layer. A further analysis of the data in
figures 8(a) and 9(a) indicates that at blade angles of 40° and 50°
the large effect of rotational speed on the pressure recoveries results
from the fact that the angle of attack of the inner portions of the blade
varied over a wide range (e.g., fora By = 40°%, J = 1.1 to 2.0, and
r = 4 inches the change in angle of attack was of the order of 129).

Also at these conditions of operation, the difference in the angle of
attack of the platform and inner blade sections is quite large and, as
can be seen from figures 11(a) and (b) for the high inlet velocity ratios,
this difference in angle of attack (loading) plus the air flow through
the juncture gap resulted in a relatively uneven distribution of recovery
radially across the duct. At a propeller blade angle of 40° and for the
advance ratios presented in figures 11(a) and (b), the platform was
operating at a positive angle of attack and producing thrust; whereas the
inner blade sections were operating near zero angle of attack. At the
low inlet velocity ratios, the platform did not impart sufficient energy
to the air stream to overcome the energy lasses due to the spinner
boundary layer.

CONF IDENTTAL
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Although decreasing the inlet velocity ratio at a constant Mach
number, blade angle, and rotational speed also increased the angle of
attack of the platform and inner portions of the blade, it is apparent
from figures 8 to 12 that for a given decrease in inlet velocity ratio,
the losses in energy due to the increase in spinner boundary—layer
thickness were greater than the increase in energy imparted to the air
stream by the change in angle of attack of the platform and inner blade
sections, resulting in an over—ell decrease in recovery with dec¢reasing
inlet velocity ratio.

The effect of Mach number on the pressure recoveries at the inlet
is readily apparent in figure 12, in which it can be seen that for a
constant blade angle, inlet velocity ratio, and advance ratio, an increase
in Mach number generally resulted in a decrease in recovery, due to the
compressibility effects on the platform and inner portions of the blades.
However, it can also be seen from figure 12 that, for a blade angle of
60°, the inlet velocity ratio at which excessive losses occurred at the
cowl inlet was lower at high Mach numbers than that at low Mach numbers.

The recovery data presented in figure 13 show that the addition of
either the six— or eight-blade dual—rotation propellers to the basic
cowling—spinner combination resulted in an appreciable decrease in
recovery due to the interference effects of the propellers. However,
figure 13 (and also figs. 8, 9, and 11) shows that for a given set of
operating conditions, the recoveries for the six—blade propeller were
higher for all the test conditions than those for the eight—blade pro—
peller. This indicates that the effectiveness (relationship between
pumping action and interference effects) of the platform and inner
portions of the blades was higher for the six—blade propeller than for
the eight—blade propeller.

Sealing the gap between the platform and propeller blade, for the
blade angle at which the propeller was alined with the platform (figs.
10 and 14), resulted in higher recoveries at the cowl inlet throughout
the test range of inlet velocity ratios than those for operation of the
propeller with the gap open. This effect is similar to that reported
in reference 6 and can be attributed to eliminating the flow through
the gap. Although sealing the platform gap of the dqual—rotation pro—
reller of this report resulted in a relatively large increase in recovery,
the effect of sealing the gap of the single—rotation propeller reported
in reference 1, for a comparable condition, was small.

The comparison presented in figure 14 also shows that the recoveries
at the respective design advance ratios and near design blade
angles were generally lower for the dual—rotation propeller—spinner—
cowling combination of this report than those for the single—rotation
propeller—spinner—cowling combination reported in reference 1 or the
single—rotation E—type cowl reported in reference 8. However, at high
values of inlet velocity ratio the E~type cowl operated as a turbine,
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absorbing energy from the air stream, with consequent losses in recovery
as compared with those for the cowl with the dual—rotation propellers.
These lower recoveries obtained for the dual—rotation proveller—spinner—
cowling combination resulted from the increased boundary-—layer thickness
due to the longer —085 dual-rotation spinner and the larger interference
effects of six— and eight—blade propellers as compared to the single—
rotation propeller—spinner—cowling combination or the single—rotation
E—type cowl.

Propeller Characteristics

In accord with the discussion in reference 15, the characteristics
of both the six— and eight—blade dual—rotation propellers operating in
the presence of the cowl are presented as apparent values (figs. 16
to 23) since the determination of propulsive thrust was precluded by the
fact that it was impractical, with the dynamometetr arrangement used in
the present investigation, to measure the increase in drag of the cowl
and dynamometer parts within the influence of the propeller slipstream.
Surveys of the velocities in the planes of both the front and rear com—
ponents of the dual—rotation propeller with the propeller removed
(table IT and fig. 15) show that the cowl had a considerable effect on
these velocities, especially in the plane of the rear component where
at low values of inlet velocity ratio the local velocities near the
surface of the spinner were reduced nearly 30 percent. As would be
expected with these reduced velocities, the thrust and power coefficients
for the dual—-rotation propeller operating ahead of the cowl were greater
than those for the isolated propeller—spinner combination of reference 9
when operating at the same advance ratio, blade angle, and Mach number,
as shown in figure 20.

Power coefficients.— The power coefficients presented in figures

18 and 19, show that for AB = 0.8, the front and rear components of

the dual—rotation propellers did not absorb equal power when operating

at the advance ratio for maximum efficiency. On the basis of the data in
reference 9, it would be expected that, had the propellers been operated
at the AB for equal power absorption by both components of the dual-—
rotation propeller at the advance ratio for maximum efficiency, the
efficiencies would probably have been of the order of 2 percent higher.

Effects of solidity and of sealing the juncture gap.— The comparison
in figure 21 of the characteristics of the six— and eight—blade dual—
rotation propellers, on the basis of equal total activity factor, shows
good agreement between the characteristics of the two propellers.

As would be expected from the data reported in references 2 and 9,
operation of the propeller with the gaps between the platforms and
propeller blades sealed resulted in no significant change in the pro—
peller characteristics (fig. 22).
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Maximum efficiency.— As can be seen from figure 23, the maximum
efficiencies obtained for the dqual—rotation propellers in the presence
of the cowl were higher at all comparable Mach numbers and blade angles
than those for the isolated propeller—spinner combination. At a blade
angle of 65° (near design blade angle) and a Mach number of 0.80 (design
Mach number), the efficiencies of the six— and eight—blade dual-rotation
propellers with the cowl were 75 and 76 percent, as compared to 63 and 61
percent for the isolated condition. In comparison, the efficiencies of
the four—blade single—rotation propeller, reported in references 2 and 11,
at the design blade angle of 60° and the design Mach number of 0.80 were
78 and 59 percent for the cowl—on and —off conditions, respectively. It
should be emphasized that the changes in maximum efficiency due to the
addition of the cowl for these propellers for the design, or near design,
conditions apply only thereto; that is, at a given Mach number the change
in efficiency would not necessarily be the same for some other blade
angle. It may be noted that on the basis of the velocity ratios presented
in figure 15 and table II, the interference effects of the cowl on the
maximum efficiency of the dual—rotation propeller would be expected to be
somewhat less than that on the single—rotation propeller, due to the fact
that the front component of the dual—rotation propeller was little affec—
ted by the flow field about the cowl (with near free—stream velocity
over the entire blade); whereas the interference of the cowl on the single—
rotation propeller and the rear component of the dual—rotation propeller
was quite pronounced over the inner portion of the blades and of approx—
imately the same magnitude. However, due to geometric differences between
the single— and dual—rotation propellers which preclude the citing of
comparisons on the basis of equal blade angle, the relative interference
effects of the cowl on the maximum efficiencies of these propellers
cannot be determined from the data available.

The maximum efficiencies for the cowl—on conditions reported herein
and in reference 2 are presented for an inlet velocity ratio of 0.80.
However, examination of the propeller characteristics in figures 16 and
17 shows that the effect of inlet velocity ratio on the thrust and power
coefficients and on the propeller efficiency was small., Similarly, results
presented in reference 2 show that for the four—-blade single—rotation
propeller, the effect of inlet velocity ratio on the propeller character—
istics was also small.

CONCLUDING REMARKS

The following remarks mey be made regarding the results of the sub—
Jject investigation.

With the propeller removed, the ramrecovery ratios for the spinner—
cowling combination were greater than 0.96 at inlet velocity ratios above
0.51 and were not affected by compressibility in the test range of Mach
number.
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Operation of either the six— or the eight-blade dual—rotation
propeller at the advance ratio for meximum efficiency resulted in lower
pressure recoveries than those for the spinner—cowling combination with
the propeller removed. However, for certain off-design conditions for
the propellers when the platforms and inmer blade sections were highly
loaded, operation of the propellers improved the pressure recoveries
and for certain conditions gave pressure recoveries greater than 1.0.
Also, pressure recoveries for the six—blade propeller—spinner—cowling
conbination were higher than those for the cowl with the eight—blade
propeller, although the recoveries for the cowl with either dual—rotation
propeller were lower than those for a similar cowl with a four—blade
single—rotation propeller.

The pressure recoveries for the dual—rotation propeller—spinner—
cowling combination with the gap between the platform and propeller
blade sealed (propeller alined with platform) were higher than those for
the same combination with the gap open.

The local velocities in the plane of the rear component of the dual-—
rotation propeller were considerably reduced by the presence of the cowl
(nearly 30 percent lower than free—stream velocity near the surface of
the spinner for low inlet velocity ratios), whereas the velocities in
the plane of the front component were nearly free—stream.

At the design Mach number of 0.80, inlet velocity ratio of 0.50,
advence ratio of 4.2, and the near design blade angle of 65°, the max—
imum efficiencies obtained for the six— and eight—blade dual—rotation
propellers with the cowl were 75 and 76 percent, respectively.

The maximum efficiencies of the six— and eight—blade dual—-rotation
propellers when operating in the presence of the cowl were higher, for
all comparable conditions, than those for the isolated dusl—rotation
propeller—spinner combinations.

The effect of inlet velocity ratio on the propeller characteristics
was small.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Oct. 22, 195k
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TABIE I. — COWLING—SPINNER COORDINATES
[Coordinates in inches]

Distance NACA Distance NACA Distance NACA
from 1-62.8-070 from l—-series from 1-46.5-085
leading cowl, leading inner leading spinner,
edge of radius, edge of 1ip, edge of radius,
cowl, cowl, radius, spinner,
Xc Tre Xq ri Xg rg
0 4,955 0 4,955 0 0
.022 5.091 .005 4.939 .053 .2Lo
.Okh Sialhe .009 4,932 .106 SSIEIT
.065 5.184 .019 4,921 .198 460
.109 5,248 .028 4,913 .331 .599
.218 i arat .037 4,905 463 S 72l
20 5.472 o) iy 4,899 .595 .830
U436 5.561 .070 4,884 .793 977
.Skl 5.643 .093 4,873 1.058 1, a1l
il 5.853 Lkl L, 863 1.454 1.380
1L alere! 6.032 .140 4,854 1% S5l 122579
1.52k 6.188 SIS 4,838 2.248 Lol
15851 6.321 .234 4,826 2,644 1.906
2,178 6.5443 .280 4, 816 35073 2.095
2.613 6.590 .327 4.808 3.702 2.267
3.049 6.724 .37h 4.803 4,231 2,424
3.484 6.847 .420 4,800 4,760 2.570
3.920 6.961 467 L. 799 5.289 2.704
4,356 7.065 - - — 5.818 2,827
i frienil Tl — = - 6.347 2.939
5220 7.249 == - 7.140 3.091
5.880 7.367 -— - 8.198 W65
G751 7.503 - — = e 9.255 3.398
7.840 7.630 -— - = 10.313 3.501
STl =05 - - - SR 3.571
9.800 7.761 - - - 12.429 3.612
10.889 T -— - - 13.222 BRGiT
— Xi
ST AN =g
] 2
+ ! | ri rb
I's i | a
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(a) NACA 1-46.5-085 dual-rotation spinner, front plane of rotation

TABIE II.— LOCAL VELOCITY RATIO, U/V

M = 0.30 M = 0.k0 M = 0.60
Radial
station,| Inlet velocity ratio, V,/V Inlet velocity ratio, Vi/V Inlet velocity ratio, Vi/V
in.
0.29 0.39] 0.52 | 0.59 | 0.80 | 1.09 | 0.31 | 0.k1 | 0.51 | 0.62 | 0.82 | 1.09 | 0.32 | 0.40 | 0.50 | 0.58 | 0.80 | 1.05
3.26 10.949 | 0.959 | 0.963| 0.966 | 0.976 | 0.983 | 0.945 | 0.957 | 0.962 | 0.965 | 0.972 | 0.978 | 0.952 | 0.952 | 0.957 0.969 | 0.971 | 0.974
3.51 | .953| .963 .966| .969| .980| .983| .9u7| .959 | .962| .967| .975| .980| .950| .949 954 | 962 | 971 | .978
3.76 | 949 | .959 .963| .963| .973| .983| .95 .952 | .959 | .962| .967| .975 947 .950| .954 [ .959 [ .964 | .971
Loy | .938| .9k5| .os2| .955| .962| .972| .933| .9uk| .950| .952| .956| .967| .935| .gko[ .945 | .952 | .954| .959
4.26 | 945 | .948 952 .958| .965| .912| .937| .949| .952| .954| .962| .967| .938| .gkof .945 | .952 | .955 962
4.76 | .932| .ouo| .ok8| .ou8| .958| .965| .925| .938| .ok1| .943| .951| .959| .930| .933| .936 | .943 | .950 | .95
5.26 | .934 | .9kk 951 .951| .954| .96k | .928| .9ko| .9u3| .9u6| .951| .959| .931| .933| .936 | .943 | .9u7 .954
5.76 | .936| .ou3| .946| .950| .953| .960| .928| .9ko| .91 | .9u3| .951| .956| .933| .933| .936 | .90 [ .99 | .952
6.26 | .933| .ouo| .9u3| .ou3| .950| .956| .928| .938 | .ok1| .ou3| .9uB| .956| .933| .933| .936 | .9k0 [ .97 | .98
7.26 | .939| .ou2| .ous| .ous| .952| .955| .930| .937| .9ko| .ouz| .97 | .953| .933| .935| .936 | .9k1 | .943| .98
8.26 | .938| .ow1| .ou1| .ou1| .obu| .951| .932| .937| .ouo| .gue| .9u7| .953| .928| .928| .931| .933| .938| .938
9.26 | .956 | .96k .964| .967| .970| .967| .952| .959 | .964| .962 | .964| .967 | .952| .952 954 | 959 | .962 | .962
10.26 | .959| .963| .963| .962| .963| .969| .957| .962| .962 (. .962| .96k | .967| .952| .95k | .95k | .955 | 957 | -957
12.26 | .965| .968| .968| .968| .972| .ot | .962| .965| .965| .967| .967| .970( .960| .960| .958 | .961 | .963 | .963
14.26 | .971| .97T1 97| .970| .971| .974| .965| .967| .970| .970| .972| .975| .962| .960| .961 | .961L | .965| .963
16.26 | .975| .915| .915| .975| .975| .979| .968| .973| .976| .973| .973| .97 | 975 .970( .972 [ 975 | .975| .972
18.26 | .979| .982| .og2| .o7B| .982| .982| .976| .916| .978| .978| .918| .976| .979| .976| .978 | .977 | .976| .978
20.26 | .983| .987| .987| .983| .987| .987| .981| .984 | .987| .984| .984| .979| .989| .987| .989 | .989 | .987 | .987
22.06 | .983| .983| .983| .983| .980| .983| .98 .984| .989| .986| .986| .987| .989| .986| .986 | .988 [ .988 | .986
ok.26 | .992| .996| .992| .992| .989| .992| .986| .988| .991| .990| .990| .991| .992| .988| .988 | .990 [ .990 | .988
26.26 | .991| .995| .995| .995| .991| .988| .987| .989| .992| .987| .989| .992| .996| .991| .993 | .992 | .993 | .991
28.26 | .990| .990| .990| .990| .990| .990| .986| .988| .991| .991| .988 | .991| .99 | .992| .991| .992 [ .992| .991
30.26 | .990| .990| .990| .990| .987| .990| .985| .990| .993| .990| .990| .990| .993| .990( .990 [ .991 | .991 [ .990
30.26 | .989| .993| .989] .989| .989| .993| .98k | .986| .989 | .986| .986 | .987| .991| .991| .991 | .991 [ .989 | .989
M = 0.70 M = 0.80 M = 0.84
Radial
lstation,) Inlet velocity ratio, Vy/V Inlet velocity ratio, Vy/V Inlet-velocity ratio, Vi/V
in.
0.29 | 0.40 | 0.50 | 0.59 | 0.82 | 1.06 | 0.32 | 0.41 | 0.48 | 0.62 | 0.81 | 1.00 | 0.30 | 0.42 | 0.47 | 0.60 | 0.83 | 0.95
3.26 [0.9%0 [ 0.950 | 0.956 | 0.963 | 0.969 | 0.970 | 0.940 | 0.945 | 0.955 | 0.961 | 0.965 | 0.969 [ 0.935 | 0.9kk | 0.949 | 0.950 0.961 | 0.964
3.51 | .9%1| .950| .956| .961| .967| -9 .938| .45 | .ou7| .953| .959| .964| .933| .9uo| .97 | .945| .961| .961
3.76 | .934| .oku| .950| .955| .961| .964| .93u| .ou1| .9u7| .952| .960| .963| .929( .936| .9k2 | .9kk| .955] .955
ko1 |.928]| .935| .943| .9k6| .9s2| .955| .925| .930| .938| .9uk| .99 | .953| .919| .927| .931| .935| .946| .96
4.26 | .928| .938| .ou3| .955| .955| .965| .926| .932| .939 .9uk| .952| .956| .921| .930| .935| .936 | .947 [ .99
4.76 | .919| .929| .932| .939| .obs5| .ou7| .016| .924| .928| .935| .9k1| .9k7| .o11 .929| .925| .931| .936| .938
5.6 | .920| .931| .934| .939| .ou5| .ou7| .918| .92k | .930| .9k3| .ouk| .97 | .91k | .922| .926| .932 | .938( .9%0
5.76 | .o19| .928| .93:| .939| .ous| .ou3| .o17| .921| .930| .932| .939| .91 | .910| .917| .921[ .926| .932| .935
6.26 | .917| .926| .93u| .937| .ou2| .ou3| .oa7| .921| .928| .931| .937| .90 | .910| .918| .922| .926| .932| .932
7.26 | .920| .928| .932| .937| .9u0| .9u3| .917| .921| .926| .931| .937| .940| .912( .919( .922| .927| .931| .932
8.06 | .926| .932| .937| .9ko| .ous5| .ou3| .922| .928| .932| .935| .9u3| .943| .917| .925| .929| .934 | .9k1 | .9k2
9.26 | .943| .oko| .952| .955| .957| .965| .937| .oko| .ou8| .9uB| .955| .956| .933| .937 .938| 95| .952 .951
10.26 | .ouo| .ou3| .ob7| .951| .951| .952| .934| .937| .oue| .ou3| .ok7| .98 | .926| .931| .933| .936| .9k1| .938
12.26 | .ou9| .952| .955| .957| .958| .959| .gk2] .gue| .ou6| .ou8| .951| .951| .934| .939| .939| .90 [ .9k6[ .95
.06 | .953| .955| .955| .957| .963| .965| .ou2| .ouk| .ou6| .ou7| .9k9| .951| .936| .90 .939| .oko | .946| .ok
16.26 | .967| .968| .968| .972| .969| .968| .961| .961| .962| .963| .965| .967 | .953| .955| 957 .95 958 | .958
18.26 | .otu| .o74| .om4| .o16| .975| .973| .968| .968| .967| .969| .969| .971 | .962| .962| .963| .962 | . 964k | .963
20.26 | .983| .985| .985| .987| .985| .982| .978| .980| .980| .979| .980(| .980| .970| .972| .971| .970( .972] .971
2.6 | .985| .985| .985| .987| .986| .92 | .981| .981| .982| .982| .983| .983| .975( .978| 975 .975| .975| .976
o4.26 | .984| .986| .98k | .986| .985| .981| .979| .979| .980| .979| .981| .981| .97h| .975( .97H| .973| .97 | .971
26.26 | .991| .99k | .901| .993| .990| .992| .985| .985| .984| .98k | .985( .98 | .977 [ .977| .979| .976| .976| .973
28.26 | .992| .992| .992| .992| .992| .989| .988| .988| .989| .988| .990| .988| .978| .982| .983[ .981 | .980 | .980
30.26. | .988 | .990| .990| .992| .990| .988| .989| .989| .988| .989| .990| .990| .986| .986| .986| .984 | .981 | .985
32.26 | .988| .988| .988| .990| .988| .985| .988| . .986| .985| .987| .987| .981| .982| .982| .981| .980| .979
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4 (b) NACA 1-46.5-085 dual-rotation spinner, rear plane of rotation

TABIE II.— LOCAL VELOCITY RATIO, U/V — Continued

M = 0.30 M = 0.k40 M = 0,60
Radial
Istation Inlet velocity ratio, V,/V Inlet velocity ratio, Vy/V Inlet velocity ratio, V;/V
in.
0.31 | 0.41 | 0.52 | 0.61 | 0.81 | 1.09 | 0.32 | 0.40 | 0.48 | 0.63 | 0.82 | 1.08 | 0.33 | 0.42 | 0.50 | 0.59 | 0.80 | 1.08
3.78 |0.735| 0.802 | 0.818 | 0.828 | 0.862 | 0.902 | 0.737 | 0.787 | 0.805 | 0.828 | 0.855 | 0.897 | 0.719 | 0.755| 0.799 | 0.814 | 0.847 | 0.883
4.03 | .7s0| .827| .817| .830| .864| .908| .74| .792| .810| .830| .860| .897| .72k| .757| .802| .814| .850| .885
4L.28 | .757| .807| .820| .830| .861] .901| .754| .79%| .813| .830| .855| .892| .738| .764| .800| .814| .8u3| .878
.53 | .764| .814| .820| .830| .854| .891| .762| .79%] .813| .830| .853| .889| .745| .771| .802| .812| .842| .874
4,78 | .791| .824| .830| .834| .864| .891| .785| .810| .823| .833| .8504 .884| .768| .785| .809| .819| .8u5| .874
5.28 | .816| .83 .836| .839| .87o| .884| .807| .824| .829| .837| .857| .878| .788| .802| .816| .826| .847| .873
5.78 | .846| .859| .862| .865| .879| .893| .8u2| .849| .850| .860| .870| .883| .821| .828| .836| .842| .859| .876
6.28 | .816| .879| .882| .882| .889| .896| .867| .872| .873| .880| .885| .898| .850| .852| .857| .862| .874| .887
6.78 | .893| .893| .896| .896| .902| .909| .890| .890| .8%0| .895| .898| .898| .869| .873| .874| .876| .885| .895
7.78 | .929| .929| .922| .925| .932| .932| .922| .917| .917| .917| .914] .920| .907| .905( .905| .905| .911| .916
8.78 | .954| .951 ou7| .947| .951| .948| .ou2| .ouk| .ou2| .ouk| .ok | .942| .931| .928| .928| .928| .928| .931
9.78 | .9T4| .967| .970| .967| .970| .967| .962| .96k | .959| .962| .962| .957| .961| .957| .957| .957| .955| .961
10.78 | .973| .973| .972| .966| .969| .966| .971| .968| .969| .963| .963| .961| .967| .964| .964| .964| .962| .966
12.78 | .975| .9718| .915| .9715| .915| .971| .973| .9713| -973| .973| .975| .970| .975| .973| .973| .972| .972| .97M
14.78 | .986| .986| .986| .983| .983| .983| .984| .982| .982| .984| .982| .982| .985| .98u| .98k | .984 | .984| .987
16.78 | .985| .985| .985| .982| .982| .982| .981| .983| .978| .981| .978| .978| .984| .983| .983| .983| .983| .986
18.78 | .984| .984 | .984 | .984| .984| .984| .982| .980| .980| .980| .982| .977| .988| .990| .986| .986| .986| .990
20.78 | .993| .990| .987| .987| .987| .983| .989| .989| .986| .989 | .986| .98L| .996| .99%| .992| .990| .992| .996
22.78 | .986| .982 982| .979| .982| .979| .985| .983| .983| .985| .983| .983| .991| .989| .989| .991| .989| .995
24,78 | .995| .995| .991| .988| .991] .988| .989| .987| .987| .989| .987| .987| .997| .992| .994| .994 | .99% | .997
26,78 1.991) .995( .995! .91} .995 .991 .989] .989| .989) .9921 .989| .984) .995) .995! .995| .995| .995 .997
28.78 | .990| .990| .990 987 | .994| .987| .988| .991| .988| .991| .988| .986| .996| .994 | .99k | .99% | .996 | .997
30.78 | .986| .986| .986| .986| .989| .986| .990| . .987| .987| .987| .985| .992| .990| .990| .992| .992| .995
32.78 | .989| .989| .989| .989| .989| .989| .986| .986| .984| .984| .984| .981| .990| .990| .990| .990| .990| .995
M = 0.70 M = 0.80 M = 0.84
Radial
lstation,| Inlet velocity ratio, Vy/V Inlet velocity ratio, V3 V Inlet velocity ratio, V,/V
in.
0.27 | 0.39 | 0.49 | 0.61 | 0.83 | 1.05 | 0.30 | 0.41 | 0.50 | 0.61 | 0.81 | 1.00 | 0.34 | 0.43 | 0.50 | 0.62 | 0.83 | 0.95
3.78 [0.701 | 0.745 | 0.784 | 0.808 | 0.839 | 0.864 | 0.70k4 | 0.754 | 0.770 | 0.789 | 0.817 | 0.834 | 0.716 | 0.745 | 0.755 | 0.782 | 0.810 | 0.819
4.03 | .7o6| .750| .775| .808| .841| .864| .708| .756 | .769| .785| .815| .833| .729| .745| .755| .780| .808| .815
b.28 | .7a81 751 .786| 805 .8351| 8584 .7k | .75%| 70| .785| 8151 -827| .7ei| .qh5| <733 - 778I| <80y <Bak
4.53 | .727| .756 | .786| .80k | .832| .853| .718| .754| .769| .783| .Bi1| .826| .74 | .745| .752| .776| .804| .B12
478 | .Th6 | .769 | .793| .808| .833| .855| .735| .762| .7TM| .790| .814| .827| .736| .755| .761| .781| .80k | .812
5.28 | .770| .786| .799| .814| .835| .850| .753| .772| .782| .793| .B15| .826| .751| .762| .769| .786| .80k | .810
5.78 | .802 | .808| .820| .826| .845| .856| .783| .795| .799| .809 | .825| .831| .775| .783| .785| .799| .B15| .819
6.28 | .830| .834| .84s1| .Bu6| .857| .865| .807| .B15| .B18| .825| .B35| .Bs1| .796| .803| .805| .815| .826| .828
6.78 | .853| .855| .855| .861| .869 | .876| .827| .833| .837| .838| .8u9| .853| .817| .820| .821| .827| .838 | .840
7.78 | .893| .891| .891| .892| .895| .898| .872| .869| .870| .870| .875| .875| .854| .855| .854| .860| .864 | .864
8.78 | .929| .910| .912| .912( .911 | .926| .894 | .89k | .B95| .892 | .898| .899| .884| .884| .882| .886| .890 | .888
9.78 | .952 | .943| .ou8| .9u5 | .9u7 | .948 | .932| .932 | .931| .927| .931| .930| .921| .920| .918| .919| .922 | .919
10.78 | .956 | .95k | .9u8| .952| .953 | .952| .939| .936 | .936| .935| .936| .935| .929| .927| .925| .925| .927| .9e22
12.78 | .970 | .966 | .964 | .964 | .964 | .964 | .95k | .95 | .952| .950 | .950 | .9h8 | .guk | .9u3| .ou1| .943 | .941| .91
14.78 | .983 | .979| .981( .981| .977 | 976 | .972 | .969 | .968 | .967 | .966 | .966 | .963 | .964 | .960( .963 | .962 | .957
16.78 | .985| .982| .981 | .981| .980 | .978| .976 | .975| .975| .970| .972| .970| .971 | .968| .967( .968 | .967 | .963
18.78 | .989 | .987| .985| .987| .985 | .985 | .982 | .981 | .982| .978 | .979( .978 | .978 | .977| .97h| 975 | .975 | .972
20.78 | .997| .9%0| .993| .991| .989 | .9%0| .991 | .988 | .988| .983 | .986| .982| .984| .982| .978| .981| .980 | .976
22.78 | .994% | .990| .992 | .989 | .991 | .989 | .990 | .988 | .990| .986 | .986| .985| .985| .982| .980| .981| .980 | .978
24,78 |.995| .991| .992| .989| .9%0 | .991 | .988 | .988 | .988 | .983 | .984 | .984 | .983 | .984| .980| .980 | .982 | .976
26.78 | .997 | .994| .99 | .993 | .995 | .99 | .988 | .99 | .990 | .988 | .987 | .987 | .988| .986| .986| .987 | .982 | .979
28.78 | .998 | .997| .995| .995| .993 | .994 | .992 | .993 | .993| .989 | .989 | .988 | .991| .989| .985| .987 | .987 | .982
30.78 | .997| .994| .992 | .992| .990 | .992 | .996 | .996 | .993 | .991 | .992 | .991| .991| .992| .989| .990 | .991 985
32.78 | .993| .992| .990| .993 | .990 | .989 | .991 | .990| .991| .985 | .986 | .985 | .986| .985| .984| .985 | .984 | .978
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TABIE II.— LOCAL VELOCITY RATIO, U/V — Concluded
(c) NACA 1-46.5-047 single—rotation spinner

02

M = 0.30 M = 0.L40 M = 0.60

Radial
station, Inlet velocity ratio, V,/V Inlet velocity ratio, Vy/V Inlet velocity ratio, Vy/V

in.
0.39 | 0.61 | 0.80 1.00 | 1.30 | 0.39 | 0.63 0.81 1.03 1.30 | 0.29 | 0.35 | 0.50 | 0.59 | 0.78 1.00 1.32

0.820 | 0.902 [ 0.929 | 0.956 | 0.986 | 0.815 | 0.90k | 0.927 | 0.952 | 0.983 | 0.836 | 0.852 | 0.871 | 0.883 [ 0.912 [0.936 | 0.959
817 .895| .932| .949| .983| .810| .894| .917| .945| .973| .828| .8k5| .862| .876| .898 | .928| .ou8
8o | .887( .91%| .938| .965| .818| .888| .909| .933| .962| .826| .840| .855| .867| .893 | .916| .936
843 .887[ .908| .925| .948| .838| .886| .901| .919| .942| .829| .838| .850| .859| .881 | .900| .915
.859| .886| .900| .914| .930| .855| .885| .898| .908| .926| .841| .849| .855| .86h| .878 | .892| .907
.889| .910| .917| .924| .934| .883| .903| .908| .916| .928| .865| .869| .873| .876| .888 | .895| .907
912 .926| .929| .933| .939| .906 | .915| .921| .926| .933| .890| .890| .892| .893| .902 | .909| .91k
925 .932| .936| .936| .939| .921| .928| .928| .931| .939| .903| .902| .905| .907| .912 | .912| .919
955 95| 959 .959| .959| .948| .950 | .950 (| .9u8| .950| .934| .933| .931| .931| .933 | .935| .936
97k | 971 | .971| .968| .971| .971| .968| .968| .968| .97 .957 | .955| .955| .95k .955 [ .955 | .955
.983( .983| .980| .984| .980| .985| .982| .980| .980| .980| .974| .972| .971| .971| .969 | .969 | .969
9821 979 .979| .976| .976| .982| .980( .977| .980| .980( .97h| .972| .97L| .969| .967 | .969 | .967
998 | .95 .992| .995( .992| .995| .993| .990| .990| .990| .987| .987| .986| .986| .984 | .98k | .98k
k.47 997 | .997 | .997 | .997| .994 |1.002 |1.000 | .997| .994| .997| .996| .99k | .996| .992| .992 | .991 | .991
16.47 | .995| .999| .995| .999| .992| .99 .999| .996 .993( .996| .997| .997 [ .995| .995| .993 | .993 | .993
18.47 [ .998 [1.001 [1.001 | .998| .994% | .999| .999| .996| .999| .996 |1.000 | .998 | .998 | .998 | .998 | .997 | .997
20.47 11.000 | 1.004 | 1.003 [ 1.003 | 1.000 | 1.008 [ 1.005 | 1.003 [ 1.005 | 1.005 | 1.006 | 1.004 | 1.002 | 1.002 | .999 |1.001 |1.001
22,47 11.000 | 1.000 | 1.000 | 1.000 | .997 [21.007 | 1.004 | 1.002 | 1.002 | 1.00% | 1.005 [ 1.005 [ 1.003 | 1.001 | 1.001 [1.001 |1.001
24,47 11.003 | 1.006 | 1.002 [ 1.006 | 1.002 | 1.006 | 1.003 | 1.003 | 1.003 | 1.006 | .995 | .995"| .995| .992| .99% | .992 | .992
26.47 [1.005 [ 1.008 [1.005 | 1.005 | 1.001 | 1.005 | 1.007 | 1.005 | 1.005 | 1.005 | 1.008 | 1.008 [ 1.008 | 1.006 | 1.006 |1.005 |1.006
28.47 [1.004 | 1.004 [1.000 | 1.00k | 1.000 | 1.00k | 1.004 | 1.004 [ 1.004 [ 1.00k | 1.008 | 1.006 | 1.006 | 1.006 | 1.004 [1.00% |1.004
30.47 |1.001 | 1.001 | 1.00% | 1.00% | 1.000 | 1.003 | 1.005 | 1.003 | 1.003 | 1.003 | 1.005 | 1.003 | 1.003 | 1.000 | 1.002 |1.002 | 1.002
32.47 11.010 [ 1.010 | 1.0 1.007 | 1.007 | 1.006 | 1.004 | 1.005 |1.005 | 1.005
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PNV W ww
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10 | 1.009 | 1.006 | 1.007 | 1.004 | 1.004 | 1.004 | 1.004

M = 0.70 M = 0.80 M = 0.84

Radial
station, Inlet velocity ratio, V,/V Inlet velocity ratio, Vy/V Inlet velocity ratio, Vy/V

TYILNHITANOD

in.
0.30 | 0.38 | 0.k7 | 0.62 | 0.80 | 1.16 | 0.31 | 0.39 | 0.50 | 0.60 | 0.80 | 1.03 | 0.31 | 0.40 | 0.51 | 0.63 | 0.85 | 0.97

0.824 | 0.843 | 0.860 | 0.875 | 0.907 [0.937 | 0.799 | 0.826 [ 0.845 | 0.864 [ 0.892 | 0.909 | 0.787 | 0.813 | 0.836 | 0.854 | 0.883 | 0.893
.815| .83 | .851| .866| .900| .930| .789| .817| .83 | .853| .884| .899| .776| .807| .828| .851 | .877| .88
.812| .827| .843| .857| .888| .895| .784| .811| .826| .844| .872| .887| .770| .798 | .818 | .838 | .864 | .873

858 | .860| .879 ]| .
.871| .874| .880| .881| .891| .898| .841| .848| .852| .857| .867 | .873| .823| .830| .837| .848 | .855| .859
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.99k | 994 | .993| .993 | .993 | .993| .985| .987| .983| .983 [ .98k | .983 [ . .
18.47 997 .97 | .997| .995| .996 | .99% | .992 | .989| .989| .987| .989 | .988 | .986| .985| .982| .981 | .980 | .978

.810| .84 | .834| .848| .874| .895| .782| .803| .819| .830| .855| .869 | .77 | .791| .808 | .826 | .846| .854
.824 | .833| .840| .8u8| .867 | .885| .794| .B11| .821| .830| .849 | .862| .780| .797 | .809 | .824 | .841 | .848
8% | .819| .829 | .834| .8uk| .857| .868 | .802| .812| .825| .835 | .848 | .851

.885| .886| .891( .890( .897 | .903| .857| .860| .862| .866| .874| .879| .840| .844 | .850| .855 | .860 | .86k
918 .918| .919| .918| .921 | .92k | .892| .894 | .894| .897| .900| .902 | .877| .877| .879 | .883 | .887 | .888
948 | 945 [ .9u8 | .ou6| .ou8 | .99 | .926 | .925| .925| .926 | .928 | .927| .911| .910( .911| .916 [ .915| .915
L964 | .96k | .963| .963| .963 | .963| .98 | .ou7 | .ou6| .946| .9u8 | .ou6 | .933| .931| .933| .937 | .937| .93k
963 .961| .961| .961| .961 | .960 | .9uk [ .ouk | .943| .943| .943 | .942 | .933| .930| .931| .933 | .931| .930
981 .979 | .979| .978 | .978 | .978 | .967 | .966 | .96k | .96k | .963 | .962 | .955| .95k | .953 | .95k | .953 | .952
.984 | .990 | .990 | .988 | .988 | .987| .980| .979| .977| .979| .979| .978 | .971| .966 | .969| .971 | .968 | .967
916 | 976 | .977 | 975 | .973

20.47 [1.002 [1.002 | 1.002 | 1.000 | 1.002 | .999 | .999| .996 | .996| .993| .992 | .993 | .991 990 | .989 | .987 | .986 | .985

22.47 [1.004 |1.004 | 1.004 |1.001 | 1.004 [1.001 | .999| .999 | .998 | .998 | .998 | .995| .99%| .
2k.h7 992 .992) .92 | .992| .992 | .989 | .986| .986 | .983| .982| .983| .981 | .983| .979| .978| .978 | .977 | .973
26.4% [1.006 |1.006 | 1.006 |1.004 | 1.006 [1.002 | .999 | .999 | .999| .999| .999 | .995| .994 | .992 | .992 | .992 | .991 | .98
28.47 [1.007 [1.007 | 1.007 | 1.005 | 1.005 [1.002 |1.002 | 1.002 [1.000 | 1.002 | .999 | .996 | .997( .99% | .993 | .997 | .993 | .99
30.47 ]1.003 [1.003 | 1.005 [1.003 [ 1.005 | 1.002 |1.004 | 1.002 |1.001 [1.001 |1.000 | .994 | .998 | .997 | .996| .997 | .995 | .995
32.47 (1.003 |1.000 | 1.003 | 1.002 | 1.003 |1.002 [1.003 | 1.000 [1.000 |1.000 |1.002 | .998 |1.000| .999 | .996| .996 | .996 | .99k

992 | .990| .993 | .989 | .989
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TABLE III.— INDEX OF DATA FIGURES

Number Mach Propeller Inlet velocity
P Plot of blades, number, blade angle, ratio,
number B M By, deg Vi lv
Recovery data
6 (H;-p) /(E—p) vs. r (a) 0.30 to 0.8k - 0.28 to 1.09
7 (Hy—p) /(B—p) vs. V1 /¥ (a) 0.30 to 0.84 - 0.28 to 1.09
8 (Hy—p) /(H—p) vs. J 6 0.30 to 0.80 40 to 70 0.28 to 1.08
9 | 8 0.30 to 0.84 40 to 70 0.27 to 1.03
Bag v 8 0.80 65 0.31 to 0.96
11 (H1—p) /(E—p) vs. T 6,8 0.30 to 0.80 | 40 to 70 | 0.27 to 1.05
02 (Hy—p) /(B—p) vs. Vi /V 6 0.30 to 0.80 40 to 70 0.28 to 1.08
8 0.30 to 0.84 40 to 70 0.2 tol 1503
13 (a),6,8 [0.30 to 0.80 | 40 to 70 | 0.28 to 1.09
b,dq) 4,6,8 0.80 (e) 0.22 to 0.99
Velocity surveys
f15 UN vs. r (a) 0.30 to 0.8k SR o
Propeller characteristics
16 Cr, s Cp,» Nas Mg vs. J 6 0.30 to 0.80 | 40 to 70 | 0.28 to 1.08
17 | Cq > Cp s Mgy My vs. J 8 0.13 to 0.8% | 40 to 70 [ 0.27 to 1.03
a
18 |Cp , Cp vs. d 6 0.30 to 0.80 40 to 70 0.28 to 1.08
ag 8R
19 cPaF, cPaR vs. J 8 0.13 to 0.84 40 to 70 | 0.27 to 1.03
€20 Cr,» Cr Cp,» Cps Mas N V8. J 6 0.80 65 0.64
foy Cr, Cp,» T V8. J 6,8  [0.30 to 0.80 | 40 to 65 | 0.61 to 0.65
Yoo Cr_, Cp_» Ng Vs. J 8 0.80 65 0.31 to 0.9
€123 Ing  , Ny vs. M 6,8 0.13 to 0.90 | 40 to 70 0.80

Propeller removed.
b

ffect of sealing the juncture gap.

CComparison of six— and eight—blade—propeller and propeller—removed recovery data.
omparison of four-blade single-rotation, six— and eight—-blade dual-rotation, and single—
rotation NACA E—type—cowl recovery data.

®Respective near design blade angles.

Velocity surveys in plane of front and rear components of the dual-rotation propeller and in
the p:;.a.ne of a single—rotation propeller; propellers removed. (See table II for tabulated
data.

&Comparison of six—blade dual-rotation—propeller characteristics with cowl on and off.
omparison of six—blade and eight—blade dual—rotation—propeller characteristics; cowl on.

iCompa:t‘ison of eight—blade dual—-rotation—propeller characteristics with cowl on and off.
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A-17903

Figure 1.— The model mounted on the 1000-horsepower propeller dynamometer
in the Ames 12—foot pressure wind tunnel.

NACA 4-(5)(05)-037 Propellers
(developed plan form)

i
2400 : Note: Dimensions shown in inches.
| |
|
I-13.221— \( ‘ | 1089 (length of
i | . NACA 1-62.8-070 Cowl)
~1062 — \\
‘ N
i L5524 1 W Ie
| 1
b —_— = ! throttle <.
| 0ol - . : | S
\ I\ 62 | |
l / -—+OO3\ \] OO% ! 1 Model center line l .

NACA 1-46.5-085 Spinner \

\~Ram-recovery rake location

\—Platform juncture

Figure 2.— Model arrangement,
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Cld

Figure 3.— Blade—form curves for the NACA 4—(5)(05)-037 six— and eight—
blade dual—rotation propellers.
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A-17902

Figure 4.— Close—up of model showing platform propeller—spinner junctures,

: J e
‘ - Xp OO|—tL_ | jjjj:::::jf

Yp

..\

Platform coordinates
Front Rear
| All dimensions in inches
X yp xp }’p Platforms shown in developed plan form
Platforms aline with blades when Bp=65°
34482 2.890 8.582 34655 and BR =64.2°
3.720 2.924 8.820 3.695
| 3.220 2,992 9,220 3.760
4,320 3167 9.620 3.825
4,720 84220 10,020 34860
64520 34220 11,420 3,860
6.920 36317 11.820 3.890
7 «320 3.411 12,220 3,950
| 7.706 34502 12,806 4,040

Figure 5.- Platform arrangement and coordinates.

CONFIDENTIAL



CONFIDENTIAL NACA RM A54J22

CONOO®
IMMTO®00
IO —_— 2
= Le]
_..". %
" | ! _ 0o g
IR il 5
[ < .
w, o o o
= T O [lay] ool
a3 < ° g
Ll < ® e
A A LI
-
®) o ° a,
: < sl
Nu Le]
RO e RS 1 &
L9 +
w
1]
O
&
(9]
@
5
© £ 2
m 4'.... © 1
€% =i
=) = < O B
» o . - >
p (= || (o]
- N (o] (3}
® O — = o
- g =i
= Q% = §
/* - A &
o
= &
.:-w -0 3 o |
M o W |
:
(0]
3 *f
G
(o]
(0]
<+ S e
Oy
< I .m
< = e
o (0]
: o) ot 1+ -
/u, T 1 |
N O
|--!@|6. o
o ©0 o @ < o 0 N o ™ 5
o (o)} (o)} @© @© @© ~ B © 2
e B

(d=H)/(d-'"H)  ‘o14pa Kian023i-wDY

CONFIDENTIAL




NACA RM A5LJ22

CONFIDENTIAL

w0 O
® O

ViV
42

—0—= Q58

44

\EJt...n “
t <%
\ 5 S 3
Y /m » O
// V/I o o
{l ~N / =
L,://l i N O (®)
(L’n.rlllllll ll,l.l /
i P a— = e B = 'lr”l =<
SO==a0mM®
NMTETnowon
55 E)
I T T |
1
2l
: |
c—0 e
£ o
\ r/P 5 S
< < » O
\ s fi 55
K i 5 -
A o £
N\ /.II. l.ll.l
/'Il’l.vll-_l"l lllll’
o - o - -~ ~
_ e =i e I~ 1o}
oo NY
TAMTO®DO
=0 »
AR TN
o
I
% 3
bt {
t
. s
< <
/ B ™.
// S L
" ,I TN
XY :rll_.llll’ll'l l.ll.l d
R s T oSS S gy K S ¥ S -9

OO}

© o @ < o © o @
o o @ © @ ~ 5 ©

(d-H)/(d-'H)  ‘oips AidaA023i-wDY

CONFIDENTTAL

48

40

36

48

44

4.0

36
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(f) M = 0.84
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Figure 6.~Concluded.
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NACA |1-62.8-070 D-type cowl in combination with

—— (1) An NACA 1-46.5-085 dual-rotation spinner
----- (2) An NACA 1-46.5-085 dual-rotation spinner

(ref. 5 )
— ~ (3) An NACA (-46.5-047 single-rotation spinner
(ref. 1)
100 —
— T '——F_—;;/ )
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= y 'é O 030
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Inlet velocity ratio, V,/V

Figure T7.— The effect of inlet velocity ratio on the average ram—recovery
ratio; propeller removed.
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Figure 18.— Effect of advance ratio on the power coefficients for the front and rear components

of the six—blade dual-rotation propeller. (Tick marks on curves represent J for nama.x')
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Figure 19.— Effect of advance ratio on the power coefficients for the

(Ticks marks on curves represent J for ng __.)
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front and rear components of the eight—blade dual—rotation propeller.
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Figure 20.— The effect of the cowl on the basic characteristics of the
six-blade dual-rotation propeller; M = 0.80, Bp = 65°.

CONFIDENTTAL




TVLLNHTCTANOD

i 2f (V/V)g=6=0.65 (VM/V)g=6=063 (Vj/V)g-6=064
. » 4| (Vi/V)p:g=062 (Vi/V)g-g =06 = (W/V)g-8=062
(o) | T
L© a A pRa
@5 20 —=C Cp,
\\\
£ 4] E 16 N - =t N0 EN
0 f—; 7 Y e N\ : N,
2 = a \ = N 7a
% 3 ® 12— \ = WA: QN
3 S o \\ 3 \Bf»: 3
= . | N AN
o o 0;3 8 1 CT el
“E 8. \c - E“I || 4 k .\‘\‘\
Tl £ 4 Lmta\«f il AR
5 | ® A 2
g — : N N | Y
2 o0o-g O \$ &
5 o )
| " | |—B=6 ?
i -O--B=8 (coeff. x6/8)
5 e e ol
o _8 [
1.2 16 20 24 28 32 36 40 44 32 36 40 44 48 52
Advance ratio, J
(a) M = 0.30; Bp = Lo° (b) M = 0.60; Bp = 60° (c) M = 0.80; Bp = 65°

Figure 21.— Comparison of the characteristics of the six— and eight-blade dual—rotation
propellers operating in the presence of the cowl.
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Figure 23.— Effect of Mach number on the meximum efficiency of the
Propellers.
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