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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

A FLIGHT INVESTIGATION AT TRANSONIC SPEEDS AND SMALL ANGLES
OF ATTACK OF THE AERODYNAMIC CHARACTERISTICS OF A MODEL
HAVING A 45° SWEPTBACK WING OF ASPECT RATIO B
WITH AN NACA 64A006 ATRFOIL SECTION

By George H. Holdaway
SUMMARY

An investigation of the longitudinal aerodynamic characteristics of
a model having a 45° sweptback wing of aspect ratio 3 and a MBO sweptback
cruciform tail was made at transonic speeds and small angles of attack by
a free-fall recoverable-model technique. The wing had NACA 64A006 air-

foil sections perpendicular to the line of their own quarter chords. Load

distributions on the fuselage in the vicinity of the wing and aerodynamic

characteristics of the exposed wing panels were also determined. The Mach

number range covered was M = 0.88 to M = 1.12 with resulting Reynolds
numbers of 6,700,000 to 13,400,000 based on the wing mean aerodynamic
chord.

The results showed trends in general agreement with wind-tunnel tests

at higher and lower Mach numbers for a thinner wing of similar plan form.
For the position of the horizontal tail tested (in the wing chord plane),
its contribution to longitudinal stability was small for the high sub-
sonic Mach numbers; increased tail effectiveness at the supersonic Mach
numbers produced a large rearward shift of the aerodynamic center for the
total configuration. The general level of the damping-in-pitch factor
(Cmq - Cm&) was in agreement with predictions which attribute most of the

contribution to longitudinal damping to the horizontal tail surfaces.

INTRODUCTION

As part of a general investigation of the characteristics of low-
aspect-ratio swept wings, tests have been conducted in wind tunnels at
subsonic and supersonic speeds on a wing having 45° of sweep and an
aspect ratio of 3 (refs. 1 and 2). The present investigation was carried
out to obtain the characteristics of a wing of similar plan form in the
transonic Mach number range.
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A free-fall recoverable-model technique was used to obtain the tran-
sonic data. The tests were conducted at Mach numbers from M = 0.88 to
M = 1.12; the corresponding Reynolds numbers were 6,700,000 to 13,400,000,
respectively. Lift, drag, and pitching-moment coefficients were obtained
for the total configuration (wing-body-tail combination) as well as for
the exposed wing panels. The load distribution between wing and fuselage
and the dynamic characteristics of the total configuration were also
determined. As the result of loss of the model early in the program, the
angle-of-attack range was limited from -1° to +3° with peak values rang-
! o o)
ing Trom! -4~ to +H-1]2%

The tests were made by the Ames Aeronautical Laboratory using the
facilities of the NACA High-Speed Flight Research Station.

SYMBOLS
12
A aspect ratio, g
a speed of sound
b wing span
el 3 ; drag
Cp drag coefficient for total configuration, 05
; S : : 1ift
Ct, 1ift coefficient for total configuration, 308
Ol lift-curve slope, %g%
Cm pitching-moment coefficient for total configuration about the
3 piteching moment
model center of gravity,
qOSE
Cmg wing pitching-moment coefficient about the lateral axis through
r# . c pitching moment
the quarter-chord point T ) 9058
3Cm

Cmg S(qc /2V)
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Cme,

p'["Pu

Qe

Cpy
o(&a/2v)
b/2
: ; fo/ cfdy
complete-wing mean aerodynamic chord, fg;E——-——-
o ¢ dy

local chord measured parallel to plane of symmetry
local chord of the design airfoil sections
Mach number, &

difference in static pressure between lower and upper surface
a fuselage station

angular veloeity in pitch

1
o

dynamic pressure,
Reynolds number based upon @&
complete-wing area

time

free-stream velocity

spanwise coordinate normal to plane of symmetry

angle of attack of longitudinal axis of model

da

at
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P mass density of air
dP (P1-Pu) _ - (P1-Py)
S_ load-coefficient slope, - -
(o (ae'@l)qo
Subscripts
E aerodynamic coefficients (Cr, Cp, and Cmc/4) based on exposed-

wing loads and complete-wing area
0 zero-1ift conditions when used with drag coefficients

W aerodynamic coefficients (CL, Cp, and Cmc/4) based on exposed
wing loads plus component of load over fuselage in the vicinity
of the wing, and complete wing area

MODEL

The details of the wing, body, and tail are given in figure 1 and
table I, and a photograph of the model in flight is presented in figure 2.
The equation in figure 1 for the fuselage radii up to station 139.4 is
for a fineness-ratio-12 Sears-Haack body. The radii for the remaining
portion of the fuselage are given in table I.

The test wing had an aspect ratio of 3, a leading-edge sweepback of
459, a taper ratio of 0.4, and NACA 64A006 airfoil sections perpendicular
to the line of their own quarter chords. This quarter-chord line (c'/k4)
had a sweepback of 39.&50. The wing had no twist, dihedral, or incidence,
and was of solid aluminum alloy construction. The wing-root fuselage
Juncture was sealed with a flexible rubber seal.

The instrumentation was identical with that described in reference 3
which also gives details of the wing balance and the wing seal mentioned
previously. The locations of the pressure orifices are shown in fig-
ure 1(b).

TESTS

The test procedure consisted of releasing the model from a carrier
airplane at an altitude of L40,000 feet, and allowing it to fall freely
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without propulsion. When the desired Mach number was reached, the hori-
zontal stabilizer was pulsed at 2.4-second intervals to produce oscilla-
tory disturbances of about tL4° about the trim angle of attack. The pulses
were terminated at a time calculated to permit the recovery of the model
at a safe altitude. For this model, tests were made only about a trim
angle of attack of 0° due to model destruction on the second drop.

The flight covered a Mach number range of M = 0.88 to M = 1.12 with
a corresponding Reynolds number range of 6,700,000 to 13,400,000 CPike 3 )
The range of angles of attack covered was -1° to +3%s peak values ranging
from -4° to +5-1/2° were not included in the final data plots due to the
scarcity of data at these angles (see ref. 3 for method of fairing data).
The total configuration data obtained during control motion are not pre-
sented.

The instrument precision was generally the same as that of refer-
ence 3. The one exception was the reduced accuracy of the drag of the
total configuration due to a reduced input voltage to the longitudinal
accelerometer (at M = 0.90, accuracy believed to be within Cp = £0.005
and at M = 1.10, Cp = $0.002).

DATA REDUCTION

Complete information on data-reduction and computing methods used
in this investigation has been presented in references 3 and 4, which
present results from earlier investigations using the same flight-test
technique. The following statements summarize the procedures used. The
coefficients for the total configuration and the exposed wings were deter-
mined directly from corrected accelerometer and wing-balance records.
The complete-wing coefficients were determined by combining the exposed-
wing data with pressure data on the fuselage in the vielnitysofsthelwing.
In the case of the complete-wing drag coefficients, the data were obtained
by adding the following three components of drag: exposed-wing drag,
integrated fuselage pressures times the sine of the angle of attack, and
friction drag of the fuselage (in the vicinity of the wing) assuming a
friction-drag coefficient of 0.0025 for the average local Reynolds number
of the tests.

The final results were evaluated from time histories of the coeffi-
cients which were then read at constant angles of attack and the results
faired on Mach number cross plots. Typical data are presented and dis-
cussed in reference 3. Less scatter in the data of this investigation
occurred, due to the small angle-of-attack range. The data for the total
configuration were not evaluated during control motion, therefore these
data are not presented at a Mach number of 0.9 at which time the initial
pulse of the control was made.
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RESULTS AND DISCUSSION 3

Lift

Curves of 1lift coefficients plotted against angles of attack for the
test Mach number range are presented in figure 4 for the total configu-
ration, the complete wing, and the exposed wing panels. These curves are
quite linear which permitted the determination of lift-curve slopes,

Cch even though the angle-of-attack range was small. The lift-curve
slopes are plotted in figure 5 as a function of Mach number, together
with tunnel data (ref. 2) for a wing of the same plan form with a fuse-
lage. The biconvex airfoil section of the tunnel model had a streamwise
maximum-wing-thickness to chord ratio of 3 percent which is less than the
corresponding value of about 5.1 percent for the wing of this investiga-
tion (NACA 64A006 airfoil section perpendicular to the quarter-chord
line). The data of reference 1 are not presented because the results
were preliminary. The subsonic data of reference 1 were corrected for
reference 2 after a more complete static-pressure survey of the tunnel
was made; therefore, the tabulated results presented in reference 2 were
used to make comparisons with flight data. The lift-curve slopes for

the complete wing are in reasonable agreement with the values from »
reference 2 at the higher subsonic speeds, but appear to be somewhat low
at Mach numbers near 1.1.

Drag

Curves of drag coefficients plotted against angles of attack for¢
the test Mach number range are presented in figure 6 for the total con-
figuration, the complete wing, and the exposed wing panels. The zero-
1ift drag coefficients as a function of Mach number are presented in
figures 7 and 8. The total-configuration data are presented in figure T
together with the theoretical wave-drag coefficients, computed by the
method of reference 6. The experimental drag coefficients at subsonic
speeds were used to establish the datum above which the theoretical wave-
drag coefficients were plotted. Reasonably good agreement between theory
and experiment was obtained. The experimental zero-1lift drag coefficients
for the several components of the test model are presented in figure 8.

The variation of the drag-rise parameter (OCpy/dCLy~) for the com-

plete wing is compared with two theoretical curves in Figunre "G SEiinfgen=
eral, the results occupy a position about midway between the theoretical
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values representing (1) an elliptical spanwise distribution of 1ift at
subsonic speeds (1/rA), and (2) the resultant force vector perpendicular

to the wing chord (5%;§ CLQW’ where Cr, is from the experimental data).

Qg

Static Longitudinal Stability

Pitching-moment coefficients are plotted in figure 10 as a function
of the 1ift coefficients for the test Mach number range for the total
configuration, complete wing, and exposed wing panels. The pitching-
moment coefficients for the total configuration were computed by the
angular accelerometer method which is described in an appendix of refer-
ence 3.

The aerodynamic-center positions near zero 1lift are presented in
figure 11 as a function of Mach number for the total configuration, the
complete wing, and the exposed wing panels. The data from figure 10(a),
for the total configuration, were converted from moments about the center
of gravity to moments about &/4 to obtain one of the curves of fitgure il
For comparison, the aerodynamic-center positions for the total configu-
ration were also computed from the model period data by the method of
reference 4. These values of aerodynamic-center position for the total
configuration determined from period data were in approximate agreement
with the values obtained from the angular accelerometer data of fig-
ure 10(a). The data of figure 11 indicate that the tail contribution to
stability of the total configuration was small for Mach numbers near
M = 0.9; however, increasing the Mach number from 0.9 to 1.1 produced an
increase in tail effectiveness and a consequent large rearward shift of
the aerodynamic center for the total configuration amounting to about
QeEHeE.

No unusual characteristics were noted in the transonic speed range
for the aerodynamic-center shift for the complete wing or exposed wing
panels. TIncluded in figure 11 are wind-tunnel data from reference 2 for
the wing of reference 1. The pitching-moment curves plotted from the
tabulated data of reference 2 were nonlinear at subsonic speeds, so the
aerodynamic-center positions were estimated for two angle-of-attack ranges
near zero lift, a = +t1/2° and o = #1°. The shift in aerodynamic-center
positions from subsonic to supersonic speeds of approximately 0,13 & for
the complete wing or exposed wing panels was about the same as that for
the similar wing of reference 2, although the positions were apparently
farther forward for the flight model.
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Dynamic Longitudinal Stability

Experimental values of the dynamic-longitudinal-stability factor
(Cmq + Cm&), determined for the total configuration by the method pre-

sented in reference 4, are shown in figure 12 as a function of Mach num-
ber. The wvariation of (Cmq + Cm&) with Mach number is large, but similar
variations are common in the transonic speed range (ref. 7). The general
level of the data is in agreement with values estimated for just the fuse-
lage plus the tail using the tail lift-curve slopes presented in refer-
ence 4, and the effective downwash values from reference 8.

An attempted estimate of the wing contribution to the pitch damping
did not explain the difference in variation with Mach number between the
experimental values and estimated values for the fuselage plus tail. The
estimated contribution of the wing for subsonic speeds was very slight for
the center-of-gravity position of 0.094 & forward of the leading edge of
the mean aerodynamic chord. For the low supersonic speeds and wing plan
form of this investigation the methods of reference 9 are not strictly
applicable, but indicate that the wing contribution would be small.

Loading Distribution Over Fuselage

The distributions of loading on the fuselage in the viecinity of the
wing are presented in figure 13. The data represent the difference in
pressure coefficient between corresponding orifices on the top and bottom
of the fuselage. These loading distributions in the vicinity of the wing
were used with the exposed-wing data to obtain the complete-wing data.

For the small angle-of-attack range of the tests the variation in load-
ing from the center line to the h5 position is quite small for most chord-
wise stations.

SUMMARY OF RESULTS

A free=fall testoat transonic speeds and small angles of attack of
a low-aspect=ratio 45  sweptback wing and a 45 swept horizontal tail
located in the extended wing-chord plane has yielded the following results:

1. The lift-coefficient curves were linear, with a peak value of
the lift-curve slope for the complete wing of 0.075 which occurred at a
Mach number of 0.9k.

2. Throughout the test Mach number range the variation of drag with

1lift for the complete wing was such that the inclination of the force
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vector was roughly midway between theoretical values for an elliptical
spanwise distribution of 1ift at subsonic speeds (l/nA) and for the

: Al
resultant force vector perpendicular to the wing chord (577? CLaw’ CLch

from experimental data).

3. The aerodynamic center shift of the complete wing or exposed
wing panels, which occurred as the model traversed the transonic speed
range, was about 13 percent of the mean aerodynamic chord and was approx-
imately the same as that indicated by wind-tunnel data for a wing of the
same plan form.

k. Tail contribution to longitudinal stability was small for the
high subsonic Mach numbers, but increased tail effectiveness at the super-
sonic Mach numbers produced a large rearward shift on the aerodynamic
center of the wing-body-tail combination.

5. The general level of the damping-in-pitch parameter (Cmq + Cmd)
was in agreement with calculations in which most of the damping was
attributed to the horizontal tail surfaces.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Sept. 17, 195k
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i TABLE I.- PHYSICAL CHARACTERISTICS OF TEST MODEL
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Figure 1.- Details of test model.
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(b) Locations of pressure orifices on upper and lower surfaces of fuselage.

Figure 1.- Concluded.
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Figure 3.- Reynolds number variation with Mach number for the tests.
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(a) Total configuration.

Figure 4.- Lift coefficient as a function of angle of attack at various Mach

numbers.
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Figure 4.- Continued.
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Lift coefficient, Clg

Angle of attack, a, degrees
(¢) Exposed wing panels.

Figure 4.,- Concluded.
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Figure 5.- The 1lift-curve slope for several components of the test model, and
for a wing of the same plan form but with a 3-percent-thick biconvex airfoil

section, reference 2,
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Figure 6.- Drag coefficient as a function of 1ift coefficient for various Mach
numbers.
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(b) Complete wing.

Figure 6.- Continued.
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Figure 6.- Concluded.
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Figure 7.- Comparison of experimental zero-1lift drag coefficients for the total
configuration, with theoretical wave-drag coefficlents added to the level of
the experimental drag coefficients at subsonic speeds.
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Figure 8.- The zero-1ift drag coefficients for several components of the test
model.,
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Figure 10.- Pitching-moment-coefficient variation with 1ift coefficient and

Mach number.
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Figure 10.- Continued.
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(c) Exposed wing panels.

Figure 10,- Concluded.
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Figure 11.- The aerodynamic-center position for several components of the test
model, and for a wing of the same plan form, reference 2.
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Figure 12.- The dynamic longitudinal stability (

configuration.
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Figure 13.- Chordwise distributions of load-coefficient
slope over the fuselage in the vicinity of the wing,
for fuselage center-line orifices and orifices rotated
450 to the left (see fig. 1(b)).
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