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FLIGHT MEASLJRl3MENTS OF THE DYNAMIC LONGITUDINAL 

STABILITY AND FREQUENCY-RESPONSE CHARACTERISTICS ..OF THE 

XF-92A DELTA-WING AIRPLANE 

By Euclid C .  Holleman and W i l l i a m  C .  T r i p l e t t  

SUMMARY 

Dynamic longitudinal  maneuvers have been obtained over a Mach num- 
ber range of 0.42 t o  0.94 a t  an a l t i t ude  of about 30,000 f e e t  by u t i -  
l i z i ng  the  XF-92A delta-wing research a i rp lane .  An analysis  of the  a i r -  
plane dynamic response was made using th ree  approaches: measured period 
and time t o  damp, analogue computer simulation of the  airplane time- 
response charac te r i s t i cs ,  and Fourier transformation. Results a re  pre- 
sented as  var ia t ions  of period, time and cycles t o  damp, and s t a b i l i t y  

\ der ivat ives  with Mach number. 

For the  t e s t  a l t i t ude  the  longitudinal period and time t o  damp 
decreased with increasing Mach number. The a i rplane d id  not meet the  
longi tudinal  time-to-damp requirement of the  A i r  Force. The a i rplane 
damping f ac to r  and control  effectiveness were e s sen t i a l l y  constant and 
t he  s t a t i c  s t a b i l i t y  increased with Mach number. 

Examination of t he  f l i g h t  record showed l i t t l e  coupling, e i t h e r  
aerodynamic o r  engine gyroscopic, during the  longi tudinal  t e s t s .  

INTRODUCTION 

The NACA High-Speed F l igh t  Stat ion has conducted a f l i g h t  investiga- 
t i o n  u t i l i z i n g  the  XF-92A airplane bu i l t  by t he  Consolidated Vultee 
Ai rc ra f t  Corp. Dynamic s t a b i l i t y ,  handling qua l i t i e s ,  aerodynamic loads, 
and l i f t  and drag a re  some of the  phases of t h i s  invest igat ion t h a t  have 
been conducted concurrently. This paper presents the  r e s u l t s  of t he  inves- 
t i g a t i o n  of dynamic longi tudinal  s t ab i l i t y .  Data were obtained over a Mach 
number range of 0.42 t o  0.94 at about 30,000 f ee t .  Results  of a prelimi- 
nary dynamic s t a b i l i t y  invest igat ion were reported i n  reference 1. This 
paper presents the  r e s u l t s  of an analysis of more su i tab le  and conclusive 
da t a  than were avai lable  f o r  reference 1. References 2 and 3 give r e s u l t s  
of o ther  phases of t e s t i ng  on the  airplane. 
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With the  a id  of the  Ames and Langley Laboratories the  analysis  of 4 
the data has been completed by three  methods. Analysis of the  per t inent  
quanti t ies from the  f i lm record was made a t  the  High-Speed F l igh t  Sta t ion;  
an analysis of the f l i g h t  records was ca r r ied  out on a Reeves E lec t r i c  1. 

Analogue Computer by t he  F l igh t  Research Branch of the  Ames Laboratory; 
and the  Fourier analysis  computations were made by the da ta  reduction 
section of Instrument Research Division of the  Langley Laboratory. 
Results of these analyses a re  presented a s  s t a b i l i t y  der ivat ives ,  t r ans fe r  
coeff ic ients ,  and frequency-response p lo t s .  

SYMBOLS 

l i f t  coeff ic ient  

pitching-moment coeff ic ient  about center of g rav i ty  

normal-force coeff ic ient  

cycles t o  damp t o  1/10 amplitude 

t rans fe r  coeff ic ients  

mean aerodynamic chord, f t  

d 

d t  

acceleration due t o  gravi ty ,  f t / sec2  

pressure a l t i t ude ,  f t  

'moment of i n e r t i a  about Y-axis, slug-ft2 

Mach number 

mass, slugs 

normal acceleration,  g un i t s  

period, sec 

dynamic pressure, lb / f t2  
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S wing area, sq f t  

*1/2 time t o  damp t o  one-half amplitude, sec 

time, sec 

velocity, f t / sec  

angle of attack, deg or radians 

P sidesl ip angle, deg 

6eL + 6e 
6e average elevon angle, 

2 
R, deg 

damping ra t io ,  r a t i o  of damping t o  c r i t i c a l  damping 

pitch angle, radians 

pitch angular velocity, radianslsec 

mass density of a i r ,  slugs/ft2 

phase angle, deg 

frequency, radians/sec 

undamped natural frequency, radians/sec 
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Subscripts : 

L l e f t  

R r i g h t  

Standard NACA instrumentation was used t o  record t he  following quan- 
t i t i e s :  airspeed, a l t i t ude ,  normal acceleration,  longi tudinal  accelera- 
t ion ,  transverse acceleration,  pi tching velocity,  r o l l i n g  velocity,  yawing 
velocity,  angle of at tack,  angle of s ides l ip ,  elevon posit ion,  and rudder 
posit ion.  A l l  records were synchronized by a common timer a t  in te rva l s  
of 0 . 1  second. An airspeed head, mounted on a boom approximately 5.4 f e e t  
ahead of the  a i rplane nose i n l e t ,  measured both s t a t i c  and t o t a l  pressure.  
Airspeed was cal ibra ted by pacer and radar  tracking and t he  Mach number 
i s  believed accurate t o  k0.01. 

Accelerations and angular ve loc i t i es  were measured by standard NACA t 
d i r e c t  recording instruments. Control posit ions were measured by standard 
control  posit ion t ransmit ters  and were recorded on a Weston galvanometer. 
Angle of a t t ack  was measured by a vane-type pickup and was a l so  recorded 
on a Weston galvanometer. The pitching veloci ty  was recorded by an ins t ru -  
ment which had a range of kO.5 radian per second, had a na tura l  frequency 
of 9.5 cycles per second, and was 0.64 c r i t i c a l l y  damped. The accuracy 
of the instrument i s  believed t o  be +0 -005 radian per second. The normal- 
accelerometer range was 8g t o  -1 g .  The instrument had a na tura l  frequency 
of 13.1 cycles per second, was 0.636 c r i t i c a l l y  damped f o r  an a l t i t u d e  
of 30,000 f e e t ,  and i s  believed t o  be accurate t o  +O .O5g. The recording 
range of t he  elevon-control posit ions was l 5 O  up and 5 O  down. These con- 
t r o l  positions are  believed t o  be accurate t o  f0  .lo . 

TEST VEHICLE 

The XF-92A i s  a single-place f ighter-type delta-wing a i rp lane .  It 
is  powered by a 533-A-29 tu rbo je t  engine with af terburner .  Physical 
charac te r i s t i cs  a re  presented i n  t ab l e  I and a three-view sketch of the  
airplane i s  shown as  f igure  1. The a i rplane i s  control led by a conven- 
t i o n a l  rudder and by full-span elevons, which function as  e levators  and 
a i lerons .  A l l  control  surfaces a re  operated by an i r r eve r s ib l e  hydraulic 
system with a r t i f i c i a l  f e e l .  Defects i n  the  present hydraulic control  
system make precise maneuvering of the  a i rplane d i f f i c u l t .  
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Airplane weights and center-of-gravity posit ions were determined 
from p i l o t  repor ts  of f u e l  remaining. The a i rplane weight varied from 
t e s t  t o  t e s t ,  an average weight being 13,300 pounds. Center-of-gravity 
posi t ion varied with weight from 27.4 percent mean aerodynamic chord t o  
27.8 percent mean aerodynamic chord. 

The f l i g h t  t e s t s  f o r  t h i s  investigation were conducted i n  a manner 
s imilar  t o  those of reference 4. The ai rplane was s t ab i l i z ed  i n  1 g f l i g h t  
a t  a specif ied Mach number and a l t i tude  and was disturbed by a rapid  
pulse-type movement of the  elevon control .  Following t he  disturbance, 
a l l  controls were held f ixed u n t i l  the a i rplane o sc i l l a t i on  damped com- 
p l e t e ly .  Tests  were made with both posit ive and negative elevon pulses .  
The d i rec t ion  of input had no e f f ec t  on t he  airplane o sc i l l a t o ry  char- 
a c t e r i s t i c s .  For the  maneuver, about 2O of elevon control  gave a maximum 
airplane response of the  order of 2.5g i n  accelera t ion and of 0.2 radian 
per second i n  pitching veloci ty .  For most t e s t s  the  amplitudes of these  
quan t i t i es  were lower. Fromthe recording of each such maneuver a com- 
p l e t e  frequency response was computed. 

Figure 2 shows representative time h i s to r i e s  of the  t e s t  maneuvers. 
Presented a r e  normal acceleration,  angle of a t tack,  pi tching veloci ty ,  
elevon angle, and s ide s l i p  angle. The s i d e s l i p  angle is  presented t o  
emphasize t he  independence of the  longitudinal  and d i rec t iona l  modes. 
L i t t l e  coupling, e i t he r  aerodynamic o r  engine gyroscopic, was noted during 
these maneuvers. 

Test  data  were obtained from 36,000 t o  27,000 f e e t  f o r  a Mach number 
range of 0 -42 t o  0 -94. Figure 3 presents values of angle of a t tack,  
normal-force coeff ic ient ,  and elevon angle p r io r  t o  the  t e s t  maneuvers. 
Test  elevon angles are  compared t o  trim values f o r  an a l t i t u d e  of 
30,000 f e e t  from reference 2.  Actual t e s t  a l t i t udes  are indicated i n  
t ab l e  I1 and on the  f igures  where applicable.  

METHODS OF ANALYSIS 

Through the  cooperative e f f o r t s  of the  Ames and Langley Laboratories, 
r e s u l t s  were obtained by u t i l i z i n g  three methods of analysis  ( re fe r red  
t o  as  analysis  of the  o sc i l l a t i on  charac te r i s t i cs ,  analogue, and ~ o u r i e r ) .  
By measuring the  a i rplane osc i l l a to ry  charac te r i s t i cs  and by analogue 
simulation, c e r t a in  airplane s t a b i l i t y  der ivat ives  may be determined from 
t r ans i en t  f l i g h t  data .  Since both methods a re  based on the  assumption 
t h a t  two l i nea r  d i f f e r e n t i a l  equations adequately describe t he  a i rplane 
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longitudinally, the  r e su l t s  of these analyses compliment each other and 
may be used t o  minimize e r rors  i n  e i t he r  of the methods. The airplane 
frequency-response character is t ics  may be determined from the analogue 
and Fourier transform analyses and may be compared a l so .  Since a l l  three  
methods a r e  well known, only a b r ie f  description of each method w i l l  
follow . 

Analysis of the Osci l la t ion Characterist ics 

As was done i n  reference 1, the period and time t o  damp were measured 
d i rec t ly  from the controls-fixed portion of the  t rans ien t  time his tory.  
These quanti t ies were combined by the  method of reference 5 t o  give the  
s t a t i c  s t a b i l i t y  parameter, 

By using the l i f t -curve slope from reference 3 and the  r a t e  of osc i l l a -  
t i on  decay, the damping fac tor  Cme + C& was evaluated a s  + 

This type of analysis can be used successfully i n  dealing with l i gh t ly  
damped systems. 

Analogue Analysis 

This method of analysis (used a l so  i n  r e f .  1) makes use of the  Reeves 
Electronic Analogue Computer t o  simulate the  airplane time-response char- 
ac t e r i s t i c s .  A solution t o  the transfer-function equation 
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is  obtained by subs t i tu t ing  e i h  for the  operator D .  By using the  
elevon posi t ion a s  an input t o  the  computer, t h e  t r ans f e r  coef f ic ien t s  Co, 
C1, 5, and k a r e  a l t e red  u n t i l  the  computed response most nearly dupli-  

cates the  ac tua l  pi tching velocity f l i gh t  record. Shown as  f igure  4 is  
a t yp i ca l  example of the  match obtained from t h i s  type of ana lys i s .  This 
analysis  was performed by the  Fl ight  Research Branch of the  Ames Laboratory. 
From the  t r ans f e r  coeff ic ients  thus evaluated, the  control  effectiveness,  
s t a t i c  s t a b i l i t y ,  and damping fac tor  were evaluated by 

and 

Fourier Analysis 

For ce r t a in  analyses, a system i s  more conveniently described by 
i t s  frequency-response charac te r i s t i cs .  Computations have been made by 
applying the  Fourier transformation to these same da ta .  The input and 
output quan t i t i es  were transformed from the  time domain t o  t he  frequency 
domain by the  procedure described i n  reference 4 .  Such a procedure 

requires  the  evaluation of the  in tegrals  ~ ( i c u )  = rm e( t ) e - i&d t  

and Ee(i03) = 6,(t) e'i'"Jtdt f o r  the  desi red frequencies. The r e s u l t s ,  

d i f ference (dg - as  a function of frequency. Also presented are  

e' - 
6e 

Itl and $n - $&,. This procedure requires a vast  amount of computation 

and (& - d6,), a re  presented as amplitude r a t i o  1 & 1 and phase 
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which i s  suited t o  automatic computing methods. This phase of the anal- V 

ys is  was computed fo r  the High-Speed Flight Station by the Instrument 
Research Division data reduction section of the Langley Laboratory. - 

Some of the major factors tha t  l i m i t  the accuracy and r e l i a b i l i t y  
of frequency responses calculated from transient  f l i g h t  records are: 
the time duration of a pulse places a l imitation on the frequency r u e  
over which re l iab le  transforms can be obtained; the application of a 
pulse while the airplane i s  out of t r i m  could r e su l t  i n  errors  over the 
en t i re  frequency range; rough a i r  and changes i n  speed or a l t i t ude  during 
a run may affect  the frequency response without noticeably d is tor t ing  
the time history; recording instruments with nonlinear dynamic character- 
i s t i c s  might seriously a f fec t  the high frequency part  of airplane response; 
and random film reading errors  may cause spurious high frequency harmonics. 
Frequency responses obtained with the XF-92A from the recorded t ransients  
could be subject t o  some or  a l l  of these errors; however, it is f e l t  t ha t  
the major source of error  would be from the t e s t  maneuver i t s e l f ,  since 
the pi lot  i s  unable t o  maneuver the airplane precisely with the present 
control system. 

RESULTS AND DISCLfijSION 

The following resu l t s  have been obtained by applying the methods 
of analysis described i n  the previous section. The airplane osc i l la tory  
characteristics,  t ransfer  coefficients,  s t a b i l i t y  derivatives,  and 
frequency-response character is t ics  as affected by Mach number are  d i s -  
cussed herein. Table I1 summarizes these data.  Where pract ical ,  data 
have been corrected t o  30,000 fee t  or, as with the frequency-response 
plots ,  the actual t e s t  a l t i t ude  i s  noted. 

Oscillatory Characteristics 

Results of the measurement of the osci l la tory character is t ics  a re  
shown as figure 5. For an a l t i tude  of 3 ,000  fee t ,  the airplane period 
and time t o  damp t o  one-half amplitude decreased with increasing Mach 
number. Up t o  a Mach number of about 0.85, two cycles are required f o r  
the airplane osc i l la t ion  t o  damp t o  1/10 of i t s  i n i t i a l  value. A t  about 
M = 0.93, three cycles are  required. The airplane does not meet the 
A i r  Force handling-qualities requirement tha t  the longitudinal short- 
period osci l la t ion damp t o  1/10 amplitude i n  one cycle a t  any Mach num- 
ber .  Shown also are the r e su l t s  of reference 1. Agreement i s  sat isfactory 
considering tha t  the data of reference 1 were obtained from maneuvers not 
performed to  yield t h i s  type of information. Discrepancies i n  the r e su l t s  \* 

of the two investigations are  probably due t o  small control motions giving 



NACA RM ~ 5 4 ~ 2 6 a  , .L  CO- 9 

the i l lus ion  of lower damping for  the referenced data.  The data  of f i g -  
ure 5 are  converted t o  undamped natural frequency and damping r a t i o  and 
are presented as figure 6 .  

Transfer Coefficients 

A summary of the resu l t s  of the analogue computer analysis i n  the 
form of t ransfer  coefficients Cg, C1, b, and k, i s  presented i n  

table  11. Inasmuch as these data were not obtained a t  the same t e s t  
a l t i tude ,  they were corrected t o  30,000 f e e t  by the method suggested i n  
reference 4.  These corrected data  are presented i n  figure 7 as a func- 
t i on  of Mach number. Wherever possible the period and time-to-damp data 
were converted t o  t h i s  form and are included i n  the f igure.  

S t a b i l i t y  Derivatives 

A s  has been shown i n  references 1, 4, 5, and i n  many other sources, 
cer tain s t a b i l i t y  derivatives may be determined from the airplane osci l -  
la tory  character is t ics  and from transfer  coeff ic ients .  The s t a t i c  s ta -  
b i l i t y  C and elevon effectiveness CmEe ma were computed from the a i r -  

plane period, time t o  damp, and the t ransfer  coefficients and are pre- 
sented as figure 8 (a ) .  Over the lower Mach number range a gradual increase 
i n  Cm, with Mach number i s  shown, but the parameter increases by a 

factor  of 2 from M = 0.75 t o  0.94. The control effectiveness shows 
l i t t l e  Mach number effect ,  increasing s l igh t ly  with Mach number f o r  the 
range of these t e s t s .  Comparison i s  made with the resu l t s  of references 1 
and 6 and with ful l -scale  t e s t s  i n  the Ames 40- by @-foot wind tunnel. 
Figure 8(b) shows the airplane damping factor  and also the airplane l i f t -  
curve slope (from r e f .  3) used i n  computing the factor .  This parameter 
has a value of about -1.0 over most of the t e s t  Mach number range. These 
data a re  compared with resu l t s  of reference 1 and with tunnel t e s t s  of 
a 630 delta-wing model with an aspect r a t i o  of 2 (ref .  7) with reasonable 
agreement. 

Frequency-Response Characteristics 

Representative data were selected and analyzed by the Fourier trans- 
form method t o  give the frequency-response character is t ics  of the a i r -  
plane for  the range of these t e s t s .  Results of these computations, cor- 
rected fo r  instrument characteristics,  are  presented i n  figures 9 and 10 

i n  the typical  form of amplitude ra t io  1 and 1 and phase 

angle p16/Ee and gn/Ee as a function of frequency. Test Mach number 
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and a l t i t ude  a r e  presented on each f i gu re .  Frequency-response calcula- v 
t ions  from the  t rans fe r  coef f ic ien t s  obtained by analogue analysis  are 
compared with the  Fourier analysis  r e s u l t s .  - 

It can be seen t h a t  a second order t rans fe r  function adequately 
describes the  airplane over a l imited frequency range but a t  higher f r e -  
quency differences may be noted i n  the  phase angles.  This may be the  
influence of high frequency a i rplane modes or  may be due t o  poor accuracy 
i n  computing t h e  frequency response a t  the  higher frequencies. Since 
some uncertainty i n  the  phase angles does ex i s t ,  f a i r i ngs  of t he  phase 
angles presented i n  f igures  9 and 10 a r e  omitted beyond 8 radians per 
second. 

Summary p lo t s  of these da ta  are  presented as  f igure  11 and show the  
trends of amplitude r a t i o  and na tura l  frequency with Mach number. 

CONCLUDING REMARKS 

Results of dynamic longi tudinal  f l i g h t  t e s t s  conducted with the  
XF-92A delta-wing airplane over a Mach number range of 0.42 t o  0.94 a t  

b 

about 30,000 f e e t  are  presented. These da ta  were analyzed by measuring 
t he  airplane o sc i l l a t o ry  charac te r i s t i cs ,  by using an analogue computer . 
t o  simulate the  airplane system, and by determining the  frequency response 
charac te r i s t i cs  of the  a i rplane.  

For an a l t i t ude  of 30,000 f e e t ,  t he  a i rplane period and time t o  
damp decreased with increasing Mach number f o r  the  range of these t e s t s .  
The airplane required 2 cycles t o  damp t o  1/10 amplitude over most of 
the  t e s t  range but required 3 cycles a t  t he  higher t e s t  Mach number. 
Control effectiveness C 

mge 
was e s sen t i a l l y  constant throughout the  

Mach number range of these  t e s t s .  The s t a t i c  s t a b i l i t y  Cm, increased 

with Mach number approximately twofold between Mach numbers of 0.75 
and 0.94. The damping fac tor  was e s sen t i a l l y  constant a t  about -1.0 . 

L i t t l e  coupling, e i t he r  aerodynamic o r  engine gyroscopic, was noted 
during these longitudinal  t e s t s .  

High-Speed Fl ight  Sta t ion,  
National Advisory Committee f o r  Aeronautics, 

Edwards, Cal i f . ,  October 7, 1954. 
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TABLE I 

PHYSICAL CXAFUCTERISTICS OF THE XF-92A AIRPLANE 

Wing : . . . . . . . . .  Area. sq ft 
Span. f t  . . . . . . . . . .  . . . . . . .  Airfoil  section 

Mean aerodynamic chord. ft . 
Aspect r a t i o  . . . . . . . .  
Root chord. ft . . . . . . .  . . . . . . . . . .  Tip chord . . . . . . . . .  Taper r a t i o  
Sweepback (leading edge). deg 
Incidence. deg . . . . . . .  
Dihedral (chord plane). deg . 

. . .  

. . .  
NACA 

Elevons : . . . . . . . . . .  Area ( to ta l .  both. ~ f t  of hinge l ine)  sq f t  76.19 . . . . . . . . . . . . . . . . . . . . .  Span (one elevon). f t  13.35 
Chord ( a f t  of hinge line. constant except a t  t i p ) .  ft . : . . .  3.05 
Movement. deg 

Elevator : . . . . . . . . . . . . . . . . . . . . . . . . . . . .  up 15 
Down . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

Aileron. t o t a l  . . . . . . . . . . . . . . . . . . . . . . .  10 . . . . . . . . . . . . . . . . . . . . . . . . .  Operation Hydraulic 

Vertical t a i l :  . . . . . . . . . . . . . . . . . . . . . . . . . .  Area. sq f t  75.35 . . . . . . . . . . . .  Height. above fuselage center line. ft 11.50 

Rudder : . . . . . . . . . . . . . . . . . . . . . . . . . .  Area. s q f t  15.53 . . . . . . . . . . . . . . . . . . . . . . . . . . .  Span. f t  9.22 . . . . . . . . . . . . . . . . . . . . . . . . . .  Travel. deg f8.5 . . . . . . . . . . . . . . . . . . . . . . . . .  Operation Hydraulic 

Fuselage : . . . . . . . . . . . . . . . . . . . . . . . . . .  Length. ft 42.80 

Power plant: 
Engine . . . . . . . . . . . . . .  Allison 533-A-29 with afterburner 

Rating : . . . . . . . . . . . . . .  s t a t i c  thrust  a t  sea level. Ib 5. 600 
S ta t i c  thrust a t  sea leve l  with afterburner. l b  . . . . . .  7. 500 

Weight : . . . . . . . . . . . . . . . .  Gross weight (560 gal  fue l ) .  l b  15. 560 . . . . . . . . . . . . . . . . . . . . . . .  mpty weight. l b  11. 808 

Center-of-gravity locations: 
Gross weight (560 gal fue l ) .  percent M.A.C. . . . . . . . . . .  25-5 
Bpty  weight. percent M . A.C . . . . . . . . . . . . . . . . . . . . .  29.2 
Moment o f  iner t ia  i n  pitch. slug-ft2 . . . . . . . . . . . . .  35. 000 
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TABLE I1 

SUIMARY OF XF-92A TEST DATA 

Mach number, 
M 

0.420 
.425 
.470 
,470 
0490 

540 
590 

.635 

.640 

.720 

740 
740 

-765 
770 
.84o 

855 
.880 
.880 
-8% 
890 

Altitude, 
hp, ft 

3 0 . 8 ~ 1 0 3  
30 -0 
31.6 
31.1 
30 -0 

30 -0 
31 .o 
29.8 
30 -0 
31 .o 

29 -3  
29.2 
31.5 
31 .o 
28.0 

27.6 
29.5 
28.6 
27.9 
30 -0 

Period, 
P, sec 

3.30 
3.30 
3.35 
3 -35 
2 095 

2.80 
2 -50 
2.20 
2 .a 
1-90 

1.80 
1.80 
1-73 
1-75 
1-30 

1-30 
1.14 
1.20 
1.10 
1.10 

96 

36 .o 
32 .o 

Time t o  damp, 
sec 

2 -00 
2.10 
2 -15 
2.12 
1-63 

1.27 
1.47 
1-43 
1.26 
1.06 

1.07 
-98 
89 

-88 
-79 

-79 
074 
85 

-75 
.66 

-77 
1.15 
1.13 
1.04 

1.23 
1-25 

85 

Transfer coefficients 

co 

---- 
---- 
---- 
---- 

o 

8.8 
16.0 
---- 
---- 
24.8 

---- 
---- 
21.8 
22.1 
---- 
---- 
---- 
---- 
---- 
---- 
68.6 
56.0 ---- 
16.0 

REAC 

C l  

---- 
---- 
---- 
---- 
12.1 

13.2 
17.2 ---- 
---- 
26.0 

---- 
---- 
30.8 
31.2 ---- 
---- 
---- 
---- 
---- 
---- 

54.4 
32.3 ---- 
44.5 

b 

---- 
---- 
---- 
---- 
1.04 

1.00 
1.24 ---- 
---- 
1.52 

---- 
---- 
1.52 
1.60 ---- 
---- 
---- 
---- 
---- 
---- 
2.12 
1.20 
---- 
1.68 

k 

---- 
---- 
---- 
---- 
4.64 

6.06 
7.36 ---- 
---- 
11.4 

---- 
---- 
12.8 
13.8 
---- 
---- 
---- 
---- 
---- 
---- 
41.6 
28.5 ---- 
35.2 
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L 

Figure 1. - Three-view drawing of XF-5X2A airplane. 
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(a) M = 0.420; hp = 30,800 feet. 

Figure 2.- Representative time histories of the test maneuver. 
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2 
Lef t  

t, sec 

(b) M = 0.890; hp = 30,000 f e e t .  

Figure 2.- Continued. 
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2 
L e f t  

0 

2- 

t, sec 

( c )  M = 0.880; bp = 29,500 feet. 

Figure 2.- Concluded. 

C- 



NACA RM 1154~26a 

Figure 3.- Variation of t r i m  angle of a t t ack ,  normal-force coeff ic ient ,  
and control  angle with Mach number. 
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t, sec 

Figure 4.-  Example of the  analogue computer solut ion compared t o  the 
ac tua l  f l i g h t  record. M = 0.77. 
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P, sec 

+ Present tests, direct measurement 
Reference I 

Figure 5.- Variation of the airplane o sc i l l a t o ry  charac te r i s t i cs  with Mach 
number f o r  a t e s t  a l t i t u d e  of 30,000 f e e t .  
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Figure 6.- Variation of undamped natural frequency and damping r a t i o  with 
Mach number fo r  a t e s t  a l t i tude  of 30,000 fee t .  
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3 
-o- Computed from the data of figure 5 

Transfer coefficients from analogue computer 

2 

I 

0 

M 

Figure 7.- Variation of transfer coefficients with Mach number for a test 
altitude of 30,000 feet. 
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(a) Control effectiveness and static stability. 
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Figure 8.- Variation of stability derivatives with Mach number. 

+Computed from data of figure 5 
Gompu ted from transfer coefficients 

0 Flight (ref.1) 
v Ames 40- x80-foot tunnel 

- - - Wind tunnel (ref. 6) 

-v - - - - - - - - - - - --- - - -  

I .2 .3 4 .5 .6 7 .8 .9 1 .O 



(b)  Damping f a c t o r .  

+- Computed from data of figure 5 
, Computed from transfer coefficients 

V Flight (ref. I) 
Wind tunnel (ref. 7 )  

Figure 8.- Concluded. 
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+ Fourier Transform 
- - - Computed from transfer coeffic;~ents 

-1206 2 4 6 8 10 12 
Frequency, w ,  radians /sec 

(a) M = 0.945; $ = 32,000 fee t .  

Figure 9.- Pitching velocity frequency response character is t ics  fo r  
various Mach numbers. 



c NACA RM ~ 3 4  ~26a 

(b) M = 0.910; hp = 27,000 fee t .  

Figure 9.- Continued. 
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Frequency, w ,  radians/sec 

( c )  M = 0.890; hp = 30,000 feet. 

Figure 9.- Continued. 
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Frequency, w ,  rodions/sec 

(d) M=0.840; hp = 28,000 f ee t .  

Figure 9.- Continued. 

*- 
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(e) M = 0.770; hp = 31,000 feet. 

Figure 9 .  - Continued . 
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(f) M = 0.720; hp = 31,000 feet .  

Figure 9. - Continued. 
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Frequency, w ,  radians/sec 

( g )  M = 0.640; hp = 30,000 feet. 

Figure 9. - Continued. 



NACA RM ~ 5 4 ~ 2 6 a  

80 
+ Fourier Transform 
- - - -  Computed from transfer coefficients 

(h) M = 0.590; % = 31,000 feet.  

Figure 9.- Continued. 
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Frequency, w , radians /sec 

(i) M = 0.540; hp = 30,000 feet. 

Figure 9.- Continued. 
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(j) M = 0.490; $ = 30,000 feet .  

Figure 9.  - Concluded . 

w-!-- 
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(a) M = 0.945; hp = 52,000 feet. 

Figure 10.- Normal acceleration frequency response characteristics for 
various Mach numbers. 
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Frequency. w,  radians/sec 

(b) M = 0.910; % = 27,000 feet. 

Figure 10.- Continued. 
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( c )  M = 0.890; hp = 30,000 feet. 

Figure 10. - Continued. 
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Frequency, w ,  radians/sec 

(d) M = 0.840; hp = 28,000 feet .  

Figure 10.- Continued. 
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Frequency, w ,  radianshec 

( e )  M = 0.770; hp = 31,000 fee t .  

Figure 10. - Continued. 
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Frequency, w, radians/sec 

(f) M = 0.720; hp = 31,000 feet .  

Figure 10.- Continued. 
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Frequency, w ,  radians/sec 

(g) M = 0.640; $ = 30,000 feet. 

Figure 10.- Continued. 



Frequency, w ,  radi ans/sec 

( h )  M = 0.590; hp = 31,000 f e e t .  

Figure 10. - Continued. 
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Frequency, w ,  rodians/sec 

( 1 )  M = 0.540; hp = 30,000 fee t .  

Figure 10 .- Continued. - 
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Frequency, w, radians/sec 

(j) M = 0.490; hp = 30,000 feet. 

Figure 10. - Conc luded . - 
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Frequency, o, radians/sec 

(a) Pitching velocity frequency response. 

Figure 11.- Surmnasy of the airplane frequency response charac te r i s t i cs .  



Frequency, w, radians& 

( b )  Normal a c c e l e r a t i o n  frequency response. 

F igure  11.- Concluded. 




