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SUMMARY

A supersonic wind-tunnel investigation of the origin and distribution
of store interference has been performed in the Langley L- by 4-foot super-
sonic pressure tunnel at M = 1.6 in which separate forces on a store, a
fuselage, a swept wing, and a swept-wing—fuselage combination were meas-
ured. The store was separately sting-mounted on its own six-component
internal balance and was traversed through a wide systematic range of
spanwise, chordwise, and vertical positions. The configuration investi-
gated simulated a heavy bomber-type airplane with a large store which also
represented a nacelle having frontal area equivalent to a twin-engine
nacelle.

Large changes in store and wing-fuselage drag may occur with small
changes in store position - either spanwise, chordwise, or vertically.
The interference drag of the store in the presence of the wing or fuse-
lage is explained in a qualitative (and to some extent quantitative) way
from consideration of the pressure field of the wing or fuselage and the
resultant buoyant forces on the store. The store interference drag meas-
ured in the presence of the wing-fuselage combination compares favorably
with the sum of the store Interference drags measured in the presence of
fuselage alone and in the presence of the wing alone. .The interference
drags of the wing and fuselage arising from the flow field of the store
are similarly -explained from considerations of the position of the wing
and fuselage in the pressure field of the store. The fact that in most
store positions investigated the simple buoyancy considerations were use-
ful indicates that reflected disturbances and the possible presence of
local choking between components did not materially contribute to the
interference.
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Store positions for which high drag is encountered by the store are
the same positions, in general, for which high drag is also encountered
by the wing-fuselage combination. The same is true, in general, for
store positions for low drag.

No consistent correlation was obtained between the drags of the
complete configuration and a visual inspection of the area diagrams for
these configurations determined according to the supersonic area-rule
concept. -

INTRODUCTION

Research on external stores and nacelles to date has shown that,
although favorable interference has been found for some configurations,
the performance penalties incurred with other configurations can be very
large. Also, the interference involved is complicated and difficult to
generalize. Reference 1, in which a large amount of recent transonic
and supersonic stores work is referenced and analyzed shows that total

‘interference drags due to the presence of the store of up to 4 to 5 times
" the free-air store drags have been incurred in many investigations. This

reference further shows that, with the exception of a limited area-rule
correlation presented therein, little qualitative or quantitative design
criteria are available. The conclusion was also reached in reference 1
that the details of the configurations and of the flow and the local
interference between the components were important and that attention
must therefore be given to detail design of the components, junctures,
and so forth, as well as to area-rule considerations.

The development of useful design criteria is hampered by the fact
that the many configurations investigated to date are largely unrelated
and by the fact that the ranges of store positions tested are often very
limited. Furthermore, little or no force breakdown data have been
obtained from which the source and distribution of interference might -
be understood. ' - B

In recognition of the need for stores data more general in nature
and more useful to designers in both a qualitative and quantitative way,
a detailed investigation of stores interference at supersonic speeds has
been undertaken in the Langley 4- by 4-foot supersonic pressure tunnel.
Reference 2 (see also the references listed therein) covers one phase of
this work, involving calculation and measurement of interference forces
on a parabolic body in the relatively simple flow field of a reflection

" plate. An experimental approach aimed at obtaining experimental infor-

mation on several generalized aircraft configurations has also been
initiated. In this program (the results of which will be published in
several papers), the individual forces and moments (six components) have
been measured on various sting-mounted stores in the vicinity of several
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wing, fuselage, and wing-fuselage configurations, for which individual
forces and moments (three components) are also simultaneously measured.
Force breakdown data were thus obtained from which the origin of inter-
ference could be determined. A wide range of store positions was
covered, whether of "practical" interest or not, in order to show trends
and magnitudes of interference for a large part of the airplane flow
field. Some effects of fuselage shape, wing plan form, store shape,
size, and fins were investigated. Most of the tests were performed at
a Mach number of 1.6, with some additional tests at a Mach number of 2.

The present report presents the first part of the results of this
experimental investigation - the 1ift and drag at a Mach number of 1.6
on a store, a fuselage, a wing, and a wing-fuselage combination. The
wing-fuselage configuration simulates a swept-wing heavy bomber, whereas
the store represents a twin-engine (equivalent frontal area) nacelle
(with no provision for internal flow) or a very large external store.
The data are presented with a somewhat limited "illustrative' analysis -
in order to expedite publication.

SYMBOLS

Cy, ‘ 1ift coefficient of fuselage, wing, or wing-fuselage combina-
. tion as noted, Lift/qS
Cp drag coefficient of fuselage, wing, or wing-fuselage combina-
tion as noted, Drag/qS
CLe | lift coefficient of store, Lift/qF .
Cpg drag coefficient of store, Drag/qF
CDSu drag coefficient of store, uncorrected for store base drag
CDBS base drag coefficient of store, PBS %
CLy . total 1ift coefficient of complete configuration (wing fuselage

plus store) based on wing area, Cf, + Crg g .

Cp¢ total drag coefficient of complete configuration (wing fuselage
plus store) based on wing area, Cp + Cpg g

p—po
q.

P pressure coefficient,
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P - Po

Ppg pressure coefficient on'store base, 3

S total area of wing semispan, 0.5 sq ft

F meximun frontal area of store, 0.0123 sq ft

s[fF rétio of wing area to store maximum frontal area, 40.6

A area of store base, 0.005 sq ft

qQ dynaﬂic pressure, 1b/sq ft

P local static pressure, 1b/sq ft

D, stream static pressure, lb/sq ft

X chordwise position of store midpoint, meésured froﬁ nose of
fuselage (see fig. l(a)), in.

y spanwise position of store center line, measured from fuselage
center line, in.

Z vertical position of store center line, measured from wing
chord plane, positive downward, in.

B cotangent of Mach angle, M2 -1

8 roll angle of cutting plane (see sketch, fig. 33(a))

APPARATUS AND TESTS

Models and EQuipment

The models and the general arrangement of the test setup are shown
in figure 1. Complete dimensions are given in this figure and in
table I. The wing-fuselage combination was designed to simulate a swept-
wing heavy bomber-type airplane. The store was sized to a frontal area
equivalent to a twin-engine nacelle and simulates at the same time, of
course, a large external store. : :

The wing and fuselage were constructed of metal and were half-models
mounted on a boundary-layer bypass plate (fig. 1)_10% inches from the

tunnel wall. A four-component strain-gage balance was housed within the
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plate and measured normal force, chord force, pitching moment, and
rolling moment. The wing passed through a cover plate and was fastened
directly to the balance. The fuselage half-model was fastened to the
wing, with a clearance of approximately 0.040 inch between the fuselage
plane of symmetry and the surface of the bypass plate. A special fix-
ture was provided for mounting the fuselage for tests without the wing.
The angle of attack was variable through 0° to 4° for these tests.
Pressure orifices were provided on the fuselage base for measurement of
base pressure.

The store was constructed of metal and was mounted on the standard
support sting, which provides pitching and translational motion in the
horizontal plape (the plane of the model wing in this case). The store-
support equipment included a remotely operated crank by means of which
the store could be rotated and thereby moved to the various vertical
(z) positions with respect to the wing. (See front view, fig. 1(a).)
The store and balance rotated as they moved from one height (z) to
another; hence, resolution of measured forces and moments was necessary
to obtain values in the vertical and horizontal planes. A six-component
strain-gage internal balance was utilized in the store.

The store axial or chordwise location was varied by changing the
length of the support sting during shutdown between tunnel runs
(fig. 1(a)). Store base pressure was obtained by measurement of the
pressure in the store-balance cavity.

- The tests were performed in the Langley 4- by 4-foot supersonic
pressure tunnel at Mach numbers of 1.6 and 2.0 and at Reynolds numbers

per foot of 4.20 x 106 and 3.62 X 106, respectively. This report pre-
sents only 1lift and drag at M = 1.6 on the store, the wing, the fuse-
lage, and the wing-fuselage combination described above.

Tests and Methods

The range of positions through which the store was varied are shown
in figure 1(a). For each run, the store was located at one chordwise
(x) position, its spanwise and vertical location changed to discrete
spanwise and vertical positions (y and z) shown by the grid in figure 1(a).
The forces and base pressures on the models at each position were recorded.
The angle of attack of the wing-fuselage model was 0° except at one verti-
cal position (z = 2.09) at which measurements were also made with wing-
fuselage angles of attack of 2° and 4°. The angle of attack of the store
remained at zero for all measurements except the store-alone pitch tests.

-The store was pitched in the horizontal plane from a = 0° +to
a = 10° in an interference-free position to obtain the force character-
istics of the store alcne. The wing, fuselage, and wing-fuselage
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combination were also pitched under interference-free conditions to
obtain the basic data on these components.

The store was run in conjunction with fuselage, wing, and wing-
fuselage in all the spanwise positions shown in figure 1(a) and at the
chordwise and vertical positions shown in the following table:

Configuration Chordwise position,| Vertical position,‘
X, in. z, in.
Store with fuselage 6, 12, 18, 27, |1.15, 1.67, and 2.09
and 33
Store with wing |1 18, 21, 24, 27, [1.15, 1.67, and 2.09
30, and 33
Store with wing and fuselage| 6, 12, 18, 21, 24,| 1.15, 1.67, 2.09,
27, 30, and 33 and -1.31

A l/h inch wide strip of number 60 carborundum grains and shellac
was located for all tests on both surfaces of the wing at the 10-percent
chord point, on the fuselage nose 1/2 inch from the tip, and on the store
nose l/h inch from the tip in order to insure boundary-layer transition
from laminar to turbulent.

Support Interference

Measurements of static pressures were made on the surface of the
boundary-layer bypass plate with wing and fuselage removed. The meas-
urements indicated that there were no disturbances at the surface of the
plate and that the Mach number was uniform and equal to the tunnel Mach
nunber. The ability of this technique to reproduce the data obtained on
full-span models is demonstrated in reference 3.

Tt will be noted from examination of figure 1 that the sting shown
supporting the store in the most forward location is in a position to
produce a flow field that interferes with the fuselage afterbody and wing
tip. This sting was used for store positions x = 6, 12, and 18, whereas
shorter stings (as shown for the rearward store position in fig. 1(a))
were used for all other values of Xx. The magnitude of the interference
of the store sting on the fuselage drag will be shown later in the dis-
cussion section entitled, "Drag of Fuselage in Presence of Store." The
fuselage and wing-fuselage data points forward of x = 18 have been
connected with dashed lines in the basic-data figures to indicate that
interference is present in an amount indicated to be small (relative to
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the drag of the wing-fuselage combination) but is not accurately known.
The store data are unaffected by this interference.

Some interference is also present in the wing and fuselage data as
a result of the proximity of the cylindrical portion of the sting (sup-
porting the store) to. the wing and fuselage. Inasmuch as this sting is
cylindrical and relatively small in diameter, it is believed that these
effects are negligible. Examination of the data provides evidence sup-
porting this conclusion.

The effect of the store-support sting on store drag (exclusive of
base drag) is shown in reference 4 and others to be negligible at the
supersonic Mach numbers of the present tests. The store base pressure
is shown in reference 5 to be somewhat more negative as a result of
interference of a sting of the size used in thils case.

The foregoing considerations of interference and support effects
and examination of the data obtained indicates that the forces measured
are essentially free (except as noted) of extraneous interferences due
to the support systems used.

Precision of Test Data

Inasmuch as this report is concerned mainly with changes in inter-
ference forces as the store is moved from position to position, the
accuracies quoted are relative rather than absolute. The numbers listed
below thus represent the ability to obtain repeat data for the same nomi-
nal test condition.

The repeatability or relative accuracies are estimated from an
inspection of repeat test points and static-deflection calibratioms to
be as follows:

X, Ile o o e e e e e e e e e e e e e e e e e e e e e e e .. 10.025
y, in. . 7 e © @ o & & 8 ® @ ® e e 8 o e o .6 ® e e 8 = & o o o . 'to.o5
z, in. e e e e e et e e e s e e s e s e e e e e e e e s s ¥0.05

Store:
CDg + ¢ o o o o & o o o v e s e et e e e e e e e e e e +0.005

CLg * » + = + « + o« t a s oo s oo o eewoenesea.. 10.010
o 1Y~ S T T R T 0.2

Wing-fuselage: .
CD + o « o o o o o o o o o s o o o o o« o o« o o o o« o o « o o o« F0.0005

CL e o » « o o o o + o o o o o o o o s v o o o oo oo oo« F0.005
¢ =Y - +0.1
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RESULTS AND DISCUSSION

Basic Data

Isolated store and wing-fuselage data.- The isolated configuration
components were tested so that the interference effects could be evalu-
ated in terms of the isolated forces and in terms of equivalent angle of
attack.

Figure 2(a) shows 1ift and drag coefficients referred to the wind
axis for the store alone at angles of attack up to above 10°. As was
stated in a previous section, the store was rolled as the values of ver-
tical height 2z were changed. The store was consequently tested in pitch
in both the plane of the pitch beam and in the plane of the side-force
beam. The 1ift and drag data thus obtained are shown to agree within the
stated accuracy of the tests.

Figure 2(b) presents the interference-free data for the wing, fuse-
lage, and wing-fuselage combination. Lift coefficient and drag coeffi-
cient on the wind axis are shown for angles of attack from 0° to 4°,
Limitations of the test apparatus prevented a greater angle-of-attack
range.

Included in this figure are data showing the effect on isolated
store drag of moving the store toward the boundary-layer bypass plate.
In figure 2(c) store drag coefficient is plotted as a function of span-
wise position. Reference 2 showed that interference of this type can be
predicted by consideration of the buoyant effect of the pressure field.
The store is shown in the sketch in two positions: one in which the Mach
line from the nose reflects from the plate and just touches the base of
the store, the other in which the conical shock angle from the store nose
is substituted for the Mach line. It can be seen that the store position
for which interference first occurs lies somewhere between these two
extremes. This interference represents the effect of the pressure field
of an image store on the store under consideration in the absence of wing
and fuselage. Interference of this sort is present for the farthest
inboard store positions for all data presented, but, because of its
small magnitude, it has not been separately considered in the analysis
which follows.

Chordwise plots of 1lift and drag.- The basic data are presented in
figures 3 to 22 in the form of plots of 1lift and drag coefficients against
the chordwise position of the midpoint of the store. Offset vertical and
horizontal scales are used so that data for the 11 spanwise positions can
be shown in a single figure. On the right and left margins the zero for
each curve is identified with the line symbol corresponding to that span-
wise position. On each figure is shown a sketch of the configuration
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involved. The spanwise and chordwise store positions at which measure-
ments were obtained are indicated by the appropriate symbol on the grid
drawn to scale below the sketch.

The nature of the flow field about a slender body suggests that
& Mach line offset be used for the forces on the store in the presence
of the fuselage and for the forces on the fuselage in the presence of
the store. Thus, the horizontal scale is given in terms of the param-
eter x - By for the store forces and x + By for the fuselage forces
where @ 1s the tangent of the Mach angle. Each value of x - By repre-
sents a Mach line originating from the fuselage center line at x and
swept back at an angle whose cotangent is B. With this type of plot
there 1s a correspondence between force coefficients at constant x t By
and, in general, peaks and valleys in the curves are alined vertically.
This technique allows the curves of chordwise variation of coefficients
to be faired as a "family"; thereby, a more accurate fairing between
test points than would otherwise be possible is obtained.

_ When the wing is a part of the configuration, the flow field of the
wing becomes predominant. The wing sweep angle, the taper ratio, and
other three-dimensional effects become important. The Mach line sweep
is near enough to the wing sweep in this case to allow both store forces
in the presence of the wing or wing-fuselage and wing or wing-fuselage
forces in the presence of the store to be plotted against x - By.
Because of the complex nature of the wing flow field, these plots do not
exhibit the near vertical correspondence of peaks and valleys, but the
technique again serves to simplify the fairing of the curves between the
experimental points.

Store base drag.- The store base diameter was 64 percent of the
maximum diameter. This configuration corresponds roughly to a nacelle
with an open base for a jet exit. Consequently, the store-drag infor-
mation has been presented with the measured drags corrected to correspond
to a base pressure equal to free-stream static pressure (figs. 3, T,
and 11). The store-drag data with no correction for base-pressure
applied are presented in figures 4, 8, and 12. Although the estimation
of the interference drag for a closed afterbody is made difficult by the
presence of large pressure gradients, it is believed that estimates can -
be made using flow-field considerations and methods outlined in later
sections.

A comparison of corrected and uncorrected store drags is presented
in figure 23 for four spanwise stations. This figure shows that the
basic character of the variations is similar for both data. The uncor-
rected data tend, in general, to exhibit higher maximum drags and lower
minimum drags. This is understandable, as will be evident from later
discussion, from considerations of the presence of the store afterbody
in positive or negative pressure fields. '
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A1l drag values presented in the analysis figures which follow are
corrected to a base pressure equal to free-stream static pressure unless
specifically labeled "uncorrected."

Contour Plots

Contour plots of drag and 1ift for selected configurations are pre-
sented as figures 24 to 32. These plots have been prepared from the
basic data figures (figs. 3 to 22) and are constructed to show the force
on the particular configuration component involved for various positions
of the store midpoint. The store midpoint is the reference point (the
point at which the force coefficient is plotted) for all the contour
plots.

Store drag.- Figures 24 to 26 show the drag of the store (coeffi-
cient based on store frontal area) in the presence of the fuselage, wing,
and wing-fuselage combination. The influence of the fuselage is shown
(fig. 24) to increase or decrease the drag of the store by about 25 per-
cent, depending upon the chordwise or spanwise position of the store.

The drag contours make angles with respect to the fuselage center line
which are approximately equal to the Mach angle for this Mach number.
The effect of vertical displacement of the store (z) is relatively unim-
portant (fig. 24(b))

The influence of the wing on the drag of the store is shown (fig. 25)
to be considerably greater and increases or decreases the drag of the
store by about 60 percent for the store in closest proximity to the wing
(z = 1.15). The store midpoint locations for highest drag are those from
the center of the wing to just forward of the leading edge. Forward or
rearward of these positions the drag decreases rapidly. The contour
lines make angles with the wing center line which are slightly greater
than elther the Mach angle or the angle of the wing leading edge. The
spanwise attenuation of the effects of the wing is apparent. Also, from
parts (a) and (b) of figure 25, the large effect of vertical displacement
(between store and wing) is apparent in that both the favorable and
unfavorable interferences are substantially decreased.

The influence of the wing-fuselage combination on the drag of the
store is shown (fig. 26) to be somewhat less than that of the wing alone.
The moderation of the influence of the wing by the fuselage in the region
for maximum drag is a consequence of the fact that the fuselage inter-
ference is favorable in this region (fig. 2k).

The effect of angle of attack of the wing-fuselage combination
(compare figs. 26(b) and (c)) is to increase the store drag generally
and to shift the location of the peak drags rearward.
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Figure 27 shows, for comparison with figure 26, the drag of the
store (in the presence of the wing-fuselage combination) with no base-
pressure correction applied. The maximum drag is shown to be increased
by omission of the correction, and the high-drag contours (Cp = 0.38,

for example) extended to nearly the full span of the wing. This high-
drag region corresponds to store position from which the store base is
beneath the afterportion of the wing chord, at which point very large
suction pressures are produced by the wing. This point will be discussed
more fully in a later section entitled "Analysis."

Wing and fuselage drag.- The drags of the fuselage, wing, and wing-
fuselage combination (coefficients based on wing area) in the presence of
the store are shown in figures 28 to 30. Contours for store positions
forward of x = 18 have been omitted because of the presence of inter-
ference of the store sting, as discussed earlier. The drag coefficient
of the fuselage (fig. 28) is seen to vary approximately +0.001 or about
20 percent from the isolated value (about 0.0050). This variation in
drag is equivalent to about two-thirds of that produced by the fuselage
on the store. (The ratio of wing area to store frontal area is 40.6.)

The effects of the store on the drag of the wing (fig. 29) are shown
to be about 50 percent.larger than that of the store on the fuselage.
The region for unfavorable interference is the region covered by the
inboard half of the wing.

The effects of the store on the drag coefficient of the wing-
fuselage combination are shown (fig. 30) to be somewhat greater than
the effects of the store on either the wing or fuselage alone. The
store-midpoint positions for high drag are similar to those for the
wing alone. '

A comparison of figures 30 and 26 shows that the effects of the
store on wing-fuselage drag are approximately equal to the effects of
the wing-fuselage on store drag (taking into account the fact that the
store and wing-fuselage drag coefficients are based on different areas).
Also, store positions at which drag of the store is high (or low) are
also those at which drag of the wing-fuselage combination is high (or
low). Thus, the additive nature of the interference can be expected
to produce drag values for the complete configuration which are con-

"~ siderably higher and lower than the free-air values.

Figure 31 shows the total drags for the complete configuration
(wing fuselage plus store). The total drag of the complete configura-
tion varies from 0.035 to 0.023, depending upon the position of the
store. Inasmuch as the sum of the drag coefficients of the isolated
wing-fuselage combination and isolated store total 0.0276, these numbers
correspond to an increase of 27 percent and a decrease of 17 percent
from the interference-free value as a result of mutual interference.
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The positions of highest drag are, as before, in the region of the
inboard portion of the wing. Forward and back of this region, the drag
drops rapidly to below the interference-free value. 1In the region of
the wing tip, in contrast to the more inboard regions, the mutual inter-

ferences of store and wing-fuselage effectively cancel to give essentially

interference~free values of drag.

Increasing the vertical displacement between store and wing
(z = 2.09) materially reduces the value of total drag of the configura-
tion with the store in the region of the wing root. Changing the angle
of attack to 4° (fig. 31(c)) raises the level of total drag by about
0.010, by virture of the drag due to 1ift, with the interference incre-
ments and regions remaining approximately the same.

Lift.- Figure 32 shows that the total 1lift of the complete configu-
ration is positive over most of the range of store positions and is at a
maximum equivalent to the 1ift produced by an angle of attack of about
1%9. (See fig. 2.) At the store position for which the maximum favor-
able total 1ift interference was produced (fig. 22(a)), the store con-
tributed 1ift equal to that produced by a store angle of attack of L.6°
(fig. 14(a)), which, however is only 6 percent of the total interference
1ift produced. The 1lift is little affected by store vertical displace-
ment (z), (fig. 32(b)). At a = 4° (fig. 32(c)), the general level of
the 1ift values shown is raised because of wing 1ift, but the interfer-
ence picture remains essentially the same.

ANALYSTS

Area-Rule Analysis

The supersonic area rule as advanced by Whitcomb and Jones offers
a method of dealing with a complicated interference problem, in its
basic premise that the drag of a whole configuration is equal to or
related to the average of the drags of a series of bodies derived by a
specified geometric procedure. The results of investigations of large
systematic families of configurations have rarely been available for
correlation with the area rule, especially in the case of external
stores. Inasmuch as the present tests involve a large systematic family
of configurations (store positions), it is of interest to analyze the
experimental results in the light of the area rule.

R. T. Jones proposes for supersonic speeds (ref. 6) a method of
analyzing the wave drag of aircraft based on the series of cross-
sectional area distributions obtained by the longitudinal variations of
areas intercepted by planes tangent to Mach cones for a series of roll
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angles (0). The method, although simple in concept, is extremely tedi-
ous in its application. Whitcomb, in independently applying this same
concept in reference 7, uses three planes covering roll angles from O°
to 90°.

The total drags of the complete configuration (wing-fuselage plus
store) are shown in figure 33. In this figure, for each of the experi-
mental drag points shown, the area distributions of the corresponding
configurations are given as obtained by sectioning the configurations
by Mach planes tangent to the Mach cone at roll angles of 15°, 45°,
and 75°. (The cutting plane is perpendicular to the wing plane at
9 = 90°.) The three distributions shown are taken as representative of
the infinite series of Mach planes from 6 = 0° to 6 = 90°. Also
shown 1s a sketch of the wing-fuselage-store configuration corresponding
to each data point.

According to the hypothesis of the area-rule, the wave drag of the
configuration is the average of the drags of bodies of revolution having
longitudinal area distributions equivalent to those obtained for each of
the series of (roll angle) Mach planes used. Because of the time required
for the calculation of drag from area distributions, the area diagrams
themselves are presented for examination and comparison with the measured
drag values. The general shape of the area diagram, that is, the overall
fineness ratio, the local slopes, and the degree of smoothness, should be
indicative of the relative drags if correlation is obtained.

Figure 33 shows little correlation between the drag curves and the
series of area plots. For instance, on the basis of the area distribu-
tion, there appears to be little choice between chordwise positions 18
and 24 (part (a) of fig. 33), yet for one position the peak drag was
measured and for the other position a drag near the lowest was obtained.
In part (b) of figure 33, which concerns a midspan store position, there
appears to be a closer relationship between the measured drag values
and the area diagrams. Part (c) of figure 33 shows, for store spanwise
positions corresponding to the wing tip, that 1ittle correlation is
found between the somewhat smaller variations in drag and the area dia-
grams. In general, it is apparent that the correlation indicated is not
sufficiently pronounced or consistent to be useful.

An attempt was made to correlate the data reported herein by using
the coincidence or displacement of the area peaks due to the wing and
to the stores. This method was used in reference 1 with limited success
for the data used in that case. The correlation of the present data
(not presented) vaguely showed a trend, but the scatter of data points
was somewhat larger than the trend shown. The correlation is therefore
of little value.
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The foregoing analysis thus shows that visual inspection of super-
sonic area-rule diagrams does not provide correlation with the data
obtained on the fuselage——swept-wing—store configuration at M = 1.6.

It therefore appears that examination of the details of the flow, with
particular attention to the effect of the pressure field of one component
on another component, may be useful in explaining interference effects.
The analysis which follows takes this approach and attempts to provide

a more basic understanding of the interference effects encountered.

Pressure-Field Analysis

The work of reference 2 shows that the interference produced by a
store in the vicinity of a reflection plane can be calculated with
reasonable accuracy. Continuation and extension of this type of work
should in time result in the development of theoretical methods for
calculating accurately the interference of actual airplane configura-
tions. However, such calculations will probably be complicated and
time consuming and, although useful for final design evaluations, may
not be sufficiently simple or flexible for preliminary design study
work.

For this type of work, it appears that a simple understanding of
the sources and distribution of the interference effects, perhaps through
a gqualitative mapping of the pressure fields involved, would be very use-
ful. Consequently, the results of this investigation have been analyzed
with this object in mind. The method used considers the effect of the
pressure field of one component on another component but does not con-
sider such effects as local choking or reflection of disturbances. Much
of the analysis presented tends to be illustrative and qualitative in
nature, although it is shown that quantitative estimates can be cau-
tiously made from the results presented in many cases.

Drag of store in presence of fuselage.- The effects of the fuselage
upon the drag of the store are rather readily explained, as is shown in
figure 34. 1In this figure are shown the chordwise variations of store
drag for four spanwise stations (from fig. 3), with the store spotted
at various positions with respect to the fuselage. A pressure field
has been drawn for the fuselage based upon the fuselage surface-pressure
distribution (also shown in fig. 34) which was calculated by means of
linearized theory by using the method of reference 8. The divisions
between the regions of positive and negative pressures have been con-
structed, as permitted by linearized theory, by drawing Mach lines from
the point on the body where the calculated pressures pass through the
stream-static value. Thus, the flow field is mapped into a region of
positive and negative pressures.
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BExamination of the location of the store nose and afterbody in the
flow field shows that the value of drag shown at the corresponding point
on the drag curve is explained in a qualitative way by simple "buoyancy"
considerations. The values of drag above the value for the isolated
store are a consequence of the presence of the store nose in a region of
positive pressure or the presence of the afterbody in a region of nega-
tive pressure, and the peak value 1s in every case a result of a combi-
nation of these effects. The values of drag below those for the isolated
store can similarly be explained by negative pressures on the store nose
or positive pressures on the store afterbody.

Thus, it appears that, in the simple case of the interference of a
fuselage on a store, the store drags can be qualitatively estimated from
simple considerations of the pressure field of the fuselage. Further-
more, it has been demonstrated in reference 9 that quantitative values
of interference drags for a fuselage-store combination can be obtained
by use of the buoyancy technique.

Drag of store in presence of wing.- For the case of the effects of
the wing upon store drag, the wing pressure field cannot easily be pre-
dicted theoretically or even easily estimated. The measured store base
pressures were therefore examined to determine whether these pressures
could be used as a "survey" to supply information as to the nature of
the wing flow field. '

Figure 35 presents the chordwise variations of store base pressure
(for four spanwise positions at z = 1.15) measured in the presence of
the fuselage and in the presence of the wing-fuselage combination. The
difference between these two curves gives the effect of the wing, or in
the use considered here, a rough survey of the effective static-pressure
field produced by the wing. This survey, because of the presence of a
mixing region and a wake behind the store, in addition to the effects
of flow angularities, local choking, and reflection of disturbances,
cannot be expected to give a true static pressure distribution. How-
ever, it is believed that an effective pressure distribution has been
obtained from which a qualitative map of the wing pressure field can
be drawn and from which evaluation of the interference drag might be
attempted. '

It will be noted that the variations and gradients of store base
pressure in the presence of the fuselage are rather small relative to
those in the presence of the wing. Consequently, this approach is
unusable in connection with fuselage-store interference. The variations
of base pressure produced by the wing are very large, however, and it
is apparent that even a rough survey should serve to show the qualitative
nature of the flow field.
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By locating the point on the store axis at which the pressure (store
base pressure due to the presence of the wing) passes from positive to
negative and by assuming that appropriate Mach lines may be drawn symmet-
rically with respect to the wing section, a rough map of the pressure
field of the wing at that particular spanwise position is constructed.
This field is seen to consist of a positive region extending ahead of
the wing leading edge and terminating rather suddenly in a bow shock, a
negative-pressure region extending essentially to the wing trailing edge
inboard and to considerably behind the wing trailing edge for outboard
stations, and a following positive-pressure region.

Figure 36 shows the chordwise variation of the drag of the store in
the presence of the wing, along with sketches showing the store in a num-
ber of positions in the wing pressure field as comstructed in figure 35.
As in the case of the fuselage, the effects of the wing are explained by
the location of the store nose and afterbody in the positive- and
negative-pressure regions produced by the wing.

In an attempt to determine the validity of a quantitative use of
the pressure-field information of figure 35, the drag of the store has
been calculated by the buoyancy method with this pressure-field informa-
tion for all positions shown (a to h) in figure 36. The values of drag
are shown as the large square symbols. Despite the crudeness of the
pressure-field survey used, the agreement shown is acceptable.

These results thus show that a relatively simple knowledge or a
survey (preferably obtained by more exact research methods than the
method herein used) of a wing pressure field may be sufficient to explain
both the direction and the level of interference of the wing upon a store.

Drag of store in presence of wing-fuselage combination.- Inasmuch as
the effects of the wing and fuselage on the store drag have been shown to
be readily understood, and to some extent predictable, it is of interest
to compare the measured effects of the wing-fuselage combination with
the measured effects of the separate components. In figure 37 the chord-
wise variations of drag for the store in the presence of fuselage, wing,
and wing-fuselage combination are shown for four spanwise positions. The
wing is shown to produce the highest and the lowest drag values. At the
position where the highest drag due to the wing alone occurs, the drag
due to fuselage alone is well below the free-stream value. Consequently,
the drag value measured for the store in the presence of the wing-fuselage
combination in this region appears to represent the sum of these positive
and negative interferences and i1s generally below the wing-slone value.
The same effect is noted for the low drag region ahead of this drag peak
where the thrust exerted on the store by the wing alone is reduced by
the drag introduced by the fuselage alone to produce a compromise drag
for the combination. It will be noted that the curve for the drag of
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the store in the presence of the wing-fuselage combination corresponds
very closely to that for the store in the presence of the fuselage ahead
of the point where the effect of the wing is felt.

In the extreme rearward positions, addition of the interference
effects does not appear to take place. Although the drag of the store
is below the free-stream value in the presence of both wing alone and
fuselage alone, the drag in the presence of the combination lies between
the individual values. Since this phenomenon is shown to be more prom-
inent for the more inboard positions, it is probably a consequence of
wing-fuselage interference or local choking due to the proximity of the
three components, or both.

The extent to which the interference drags of the store produced
by the wing and fuselage can be added to give the interference of the
wing~fuselage combination is more clearly illustrated in figure 38. Here
the measured values of store drag in the presence of the wing-fuselage
combination are compared with the sum of the isolated store drag and the
drag increments sbove or below the free-air value produced by the fuse-
lage alone and by the wing alone. The generally good agreement between
the curves indicates that the interference effects of wing and fuselage
can be estimated or considered separately and added together to give the
total effect with reasonable accuracy.

Drag of fuselage in presence of store.- The drag of the fuselage in
the presence of the store is considered in terms of the pressure field
of the store in figure 39. On this figure is shown the drag of the fuse-
lage plotted against store chordwise position for four spanwise stations.
The relative positions of store and fuselage are shown for a number of
points on the drag curves. The pressure field of the store is also shown
and was constructed in the same fashion as the fuselage pressure field
(fig. 34) from the surface pressure distribution for the store calculated
by means of linear theory.

The fuselage drag is explained by the effects of the store pressure
field upon the fuselage for the more rearward store positions. The fuse-
lage drag is above the isolated value when the fuselage afterbody is in
the negative-pressure region of the store (positions d and h) and below
the isolated value when the fuselage afterbody is in the positive-pressure
region of the store (position f).

The forward dips in the curves are not explained by the effect of
store pressures since only the cylindrical center section of the fuselage
is affected (positions a and e). These lower drags are a consequence of
interference of the conical portion of the store sting on the fuselage
afterbody (see fig. 1(a)) which is present in all fuselage and wing-
fuselage data for store positions corresponding to values of x of 6,'
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12, and 18. The magnitude of these effects on the fuselage along with
the decrease which occurs as the store is moved (spanwise) away from the
fuselage is apparent from figure 39. As mentioned previously, the basic
data figures (figs. 15 to 22) have been faired with dashed lines between
x =6 and x = 18 in order to call attention to the presence of these
spurious effects.

Drag of wing in presence of store.- The variations of wing drag with
chordwise position-of the store for four spanwise stations are shown in
figure 40. The position of the local wing section with respect to the
store and its flow field for a number of points on the curve is shown in
the sketches. As in the previous cases presented, the drag of the wing
(above or below the isolated-wing value) is explained by the position
of the local wing section in the positive- or negative-pressure field of
the store. High drags are a consequence of positive pressures over the
forward portion of the wing section or negative pressures over the rear-
ward portion of the wing section, or both, whereas low drags are a con-
‘sequence of pressures of opposite sign. These results thus indicate
that the interference effects on the portion of the wing in the immediate
vicinity of the store are of principal importance, although the actual
interference is complex and is spread over a large portion of the wing.

Drag of wing-fuselage in presence of store.- The variations of drag
" of the fuselage, wing, and wing-fuselage combination in the presence of
the store are shown in figure 41. The shape of the curve for the wing-
fuselage combination is very close to that for the wing alone. The
increment between these curves is different from the drag of the fuse-
lage alone (lowest curve) by a large amount, largely because of wing-
fuselage interference. This interference tends to obscure the relative
effects of the store in the three curves.

The extent to which the interferences of the store on the wing and
fuselage alone are additive is shown in figure 42, The sum of the incre-
ments above or below the free-air drag for the wing alone and fuselage
alone have been added to the drag coefficient for the isolated combina-
tion (0.0213) to obtain the curve drawn with long dashes in figure k2.
The values of drag thus calculated agree well with those measured for the
wing-fuselage combination in the presence of the store.

Total drag of complete configuration.- Figure 43 presents plots of
the drag of the store in the presence of the wing-fuselage conmbination,
the drag of the wing-fuselage combination in the presence of the store,
and the sum of these two curves - the total drag of the complete con-
figuration. The data are plotted against the chordwise position of the
store for four spanwise stations. All coefficients in this figure are
based on wing area S.
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Figure 43 shows that at all spanwise stations the peak drags for
store and wing-fuselage combination occur at the same store position.
Thus, the store positions for which the wing-fuselage combination pro-
duces unfavorable interference on the store are also those for which
the store produces unfavorable effects upon the wing-fuselage combina-
tion. The same result appears to be generally true for positions for
favorable interference. The curve of total drag coefficient consequently
exhibits a large variation in drag of the complete configuration with
store chordwise position. About half this variation is due to variation
in store drag and half to variation in wing-fuselage drag.

Lift interference.- Examination of the wing-lift data (fig. 18) in
the same fashion shown previously in the drag analysis shows that the
effects of the store on wing lift are consistent with the effects of the
store on wing drag previously shown. When the store nose section is
beneath the wing, positive interference 1ift is produced on the wing;
conversely, when the store afterbody is beneath the wing, negative inter-
ference 11ft is produced on the wing.

The effect of the wing on the store lift (fig. 10) is similarly
consistent with the drag analysis presented earlier. It is significant
to note that the effective negative-pressure field beneath the wing
chord is the predominating influence and produces positive interference
1ift on the store over a wlde range of store positions.

The effects of the store on fuselage 1ift and of tne fuselage on
store 1lift are relatively small (figs. 16 and 6).

The interference 1ift on the wing due to the store and on the store
due to the wing are both positive for a wide range of store positions
(figs. 18 and 10). As a result, the contour plot for the complete con-
figuration (fig. 32) shows a large range of store positions wherein the
total 1ift is increased. These positions are largely, but not entirely,
those wherein the interference drag is unfavorsble.

Effect of Store Vertical Displacement and
Wing-Fuselage Angle of Attack

The effects of vertical displacement between store and wing on
store drag and 1ift in the presence of the wing-fuselage combination
are illustrated in figures U4 and 45. The effects are shown to be small
for the forward chordwise positions where the drag and 1ift are influenced
primarily by the fuselage. TFor the more rearward positions, however,
where the store is in the influence of the wing, the drag peaks are
greatly reduced in height and width by moving the store (vertically) away
from the wing. As might be expected, this decrease in unfavorable
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interference is accompanied by a decrease in favorable interference for
store positions ahead of or behind this drag peak. The effects of store
vertical position on store lift are considerably smaller but are of the
same nature as the effects upon store drag.

The effects of vertical position of store on the variations of wing-
fuselage drag and lift are shown in figures 46 and 47 to be somewhat
similar to the effects upon the variations of store 1ift and drag.

Figures 48 and 49 show the effects of vertical position of the store
on the total drag and 1lift (wing fuselage plus store). Again, the large
effect which vertical position has upon the drag when the store is
located in the region of the wing is apparent. For the farthest inboard
position (y = 3 inches), moving the store (vertically) away from the wing
will, in almost all chordwise positions, materially reduce the drag. In
the farthest tipward position shown (y = 10.2 inches) moving the store
away from the wing lowers the drag a small amount for only a narrow range
of store chordwise positions. For some store chordwise positions at all
spanwise positions shown, there appears to be a small advantage in close
proximity between store and wing.

The effects of wing-fuselage angle of attack on store drag and 1ift
are illustrated in figures 50 and 51. Since the wing-fuselage combina-
tion was pitched about the center line of the balance (fig. 1(a)) whereas
the store angle of attack remained at 0°, the actual distance between the
store and local wing chord line varies from the nominal value specified.
Angle-of-attack data were obtained only for a store-wing displacement
of 2z = 2.09 inches, at which position, as was shown previously, the
interference effects are considerably less than for smaller values of z.
Tt has been shown previously (fig. 36) that the most rearward peak in the
drag curve is due to the combination of positive pressures on the store
nose and negative pressures on the store afterbody. The valley or mini-
mun point forward of this peak is a consequence of positive pressures
impinging on the store afterbody. The effect of wing-fuselage angle of
attack (fig. 50) is to increase the height of the peak and increase the
depth of the valley. This result is due to the increased strength of
the positive-pressure region ahead of and beneath the wing which is to
be expected as the angle of attack is increased. The higher positive
pressures are shown in figure 51 to decrease store 1ift through the same
range of store positions.

The effects of wing-fuselage angle of attack on wing-fuselage and
total-configuration (wing fuselage plus store) drag and 1ift are illus-
trated in figures 52 to 55. The effects of angle of attack on the inter-
ference are somewhat masked by the lift and the drag produced by the
angle of attack. It can be seen, however, that the curves for all angle-
of-attack conditions are similar in character and that the variations
of drag with store chordwise position are in general amplified as the
angle of attack is increased.
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Remarks on the Store-Support Problem
1

The preceding experimental results do not contain the forces on,
or the effects of, struts or pylons for the store. It seems reasonable
to assume that the support pylon will not materially alter the store
positions for high or low drag, especially if the pylon is very thin,
or highly swept, or both. However, because a pylon is a wing-like struc-
ture with appreciable frontal area as well as considerable lateral area,
it is apparent that local interference of the same type shown in detail
in this report will exist between store and pylon and between pylon and
wing. It appears likely, therefore, that the pylon cannot be considered
as having a constant increment depending only upon its geometry, size,
or shape but must be considered as another configuration component pro-
ducing & pressure field of its own and being acted upon by. the pressure
fields of the other components.

The pressure-field analysis contained in this report should be use-
ful in a qualitative way in estimating pylon effects. Further research
is needed, however, to obtain a better understanding of pylon effects
and to obtain quantitative information for design use.

CONCLUSIONS

The results of a supersonic wind-tunnel investigation at a Mach
number of 1.6 in which separate forces were measured on a store, a fuse-
lage, a swept wing, and a swept-wing——fuselage combination for a very
wide range of store positions provides the following conclusions:

1. Large changes in store and wing-fuselage drag may occur with
small changes in store position - either spanwise, chordwise, or
vertically.

2. The interference drag of the store in the presence of the wing
or fuselage is explained in a qualitative (and to some extent quantita-
tive) way from consideration of the pressure field of the wing or fuse-
lage and the resultant buoyant forces on the store.

5. The store interference drag measured in the presence of the wing-
fuselage combination compares favorably with the sum of the store inter-
ference drags measured in the presence of fuselage alone and in the
presence of the wing slone.

4. The interference drags of the wing and fuselage arising from the
flow field of the store are similarly explained from considerations of
the position of the wing and fuselage in the pressure field of the store.
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5. The fact that in most store positions investigated the simple

" buoyancy considerations were useful indicates that reflected disturb-
ances and the possible presence of local choking between components did
not materially contribute to the interference. )

6. Store positions for which high drag is encountered by the store
are the same positions, in general, for which high drag is also encoun-
tered by the wing-fuselage combination. The same is true, in general,
for store positions for low drag.

7. Drag data presented in the form of contour plots show that store
positions for high drag for the complete configuration (wing fuselage
plus store) were in the vicinity of the wing inboard on the span. For
store positions toward the wing tip, forward, or back of the wing, the
drag decreases rapidly to the interference-free value and to a value
considerably lower in some positions. Increasing the vertical displace=-
ment between store and wing substantially decreases the mutual interfer-
ence (both favorable and unfavorable).

8. No consistent correlation was obtained between the drags of the
complete configuration and a visual inspection of the area diagrams for
these configurations determined according to the supersonic area-rule
concept.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., January 3, 1955.
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TABLE I.- PERTINENT MODEL DIMENSIONS

Store:

Meximum diameter, in. .« o o o o ¢ ¢ ¢ ¢ o o ¢ ¢ ¢ 2 o o s o o 1.5
Maximum frontal area, sq ft . . . . « . o ¢ ¢ ¢ o o o . . . . 0.0123
Base diameter, In. & v ¢ ¢ ¢ ¢ ¢ e o ¢ o o o o o o 0 e o o o 0.96

Base area, sq ft ¢« v ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ o 4 4 o e o e e 4 e 0 o 0.005
Overall length, In. . o ¢ o ¢ o o o ¢ ¢« o « s . ¢ « o o o o o 12
Nose fineness ratio . ¢« ¢ ¢ ¢ ¢ o ¢ « ¢ o o o ¢ o o o o o o

Afterbody fineness ratio . ¢« o ¢ v 4 ¢ ¢ ¢ 4 4 e 4 . e e . o @ 1.82
Overall fineness ratio « o o o o ¢ o o o ¢ o o o o o o o o o » 8
Ratio of wing area to store maximum frontal area . . . . . . . 40.6

Fuselage:
Maximum diameter, IN. « & o o« ¢ o ¢ ¢ ¢ ¢ ¢ ¢ o o o« o o « o « 3,942
Maximum frontal area (semicircle), sq ft . « « « o « « o « » o 0.0206
Base diameter, in. « o o o s o o s s s s s s s o s e s s o 1.372
Base area (semicircle), S ft « « « « ¢ ¢ o« « o « o « « « « . 0.0051
Overall length, IN. + &« & o o o o 2 o ¢ o o o o o« o« o o« o « « 37450
Nose fineness ratio « « ¢ o o ¢ o ¢ o o o « o o o o & . e e e k.75
Afterbody fineness ratio « « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o 4 0 4 4 e e 3
Overall fineness ratio « ¢« & ¢ & ¢ o ¢ ¢ o ¢ o o ¢ ¢« o o o o & 13

Swept wing:

Semispan, Ine o ¢ & ¢ ¢t 4 ¢t 4 6 o e 6 e s e b 0 6 s s e e s 12
Mean aerodynamic chord, In. .« « « ¢« « o « o o« o ¢ ¢ « « « « « 6.580
Area (semispan), SQ £t o« o o o o o o ¢ ¢« ¢ o ¢ 2 o s e o o o o 0.50
Sweep (C/l), A8 « ¢ o v o o o o o o b e b 0 4 e e e e . 45
Aspect ratio v v 4 4 ¢ ¢ 4 e 6 e e 6 o o b e e e e e e e e 4
Taper ratio .« ¢ o o ¢ ¢ o ¢ ¢ o o o o s o o o o o o s o o o 0.3
| Center line chord, in. © o 4 o o o o o o s e s e s e o o o @ 9.23%
| . BeCtiON .+ 4 4 s 4 4 4 4 4 e e e o s s e e e e s o o o o o NACA 650006
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(b) Photograph of model. Transition strips not shown.

Figure 1.- Concluded.
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o Store pitched in the plane of the normal-force beam
o Store pitched in the plane of the side-force beam
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Figure 2.- Aerodynamic characteristics of the isolated configuration
components.
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o Wing- fuselage

o Wing alone

& Fuselage alone
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Figure 40.~ Effect of store pressure field on drag of the wing alone.
z = 1.15 inches; a = 0°.
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Figure 41.- Comparison of drag of fuselage, wing, and wing-fuselage com-
bination in presence of store. =z = 1.15 inches; a = 0°. Dashed line
indicates presence of interference of store sting.
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Figure 42.- Comparison of wing fuselage drags measured in the presernce
of the store with values calculated from the drags of the wing alone
and the fuselage alone in the presence of the store. 2z = 1.15 inches;
@ = 0°. Short-dashed line indicates bresence of interference of store
sting.
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Figure 43.- Relative contribution of store drag and wing-fuselage drag
to configuration total drag. Coefficients based on wing area.

z = 1.15 inches; a = 0°. Dashed lines indicate presence of inter-
ference of store sting.
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Figure 48.- Effect of store vertical position on total (wing fuselage
plus store) drag. Dashed lines indicate presence of interference of
store sting. a = 0°.
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Figure 54.- Effect of angle of attack of wing-fuselage combination on
total (wing fuselage plus store) drag. 2z = 2.09 inches. Dashed lines
indicate presence of interference of store sting.
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Figure 55.- Effect of angle of attack of wing-fuselage combination on
total (wing-fuselage plus store) lift. 2z = 2.09 inches. Dashed lines
indicate presence of interference of store sting.
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