
. 
I • 

N 62 6 1 2 S 33 ']I ~ 
C::opy ~ v 

RM L55D22 

RESEARCH MEMOR 

EFFECTS OF SPANWISE LOCATION OF SWEEP DISCONTINUITY 

ON THE LOW -SPEED STATIC LATERAL STABILITY 

CHARACTERISTICS OF A COMPLET E MODEL 

WITH WINGS OF M AND W PLAN F ORM 

By Paul G. F ournier 

Langley Aeronautical Labor ator y 
Langley Field, Va. 

CLASSIFIED DOCUMENT 

This material contains infor mation affecting the National Defense of the United States within the meaning 
of the espionage laws , Title 18, U.S. c., Sees. 793 and 794, the transmission or r evelaUon of which In any 
manner to an UllauthorlZed per son Is prohibited by law. 

@ 
~ 
v)" 
C/) 

d 
5 
0 
E-t 

(;l 
eJ 
Z 

~ 
(.) 

z 
0 
H 
(--l 
~ 
C,.) 
H 

~ 
lfJ 
lf~ 

~ 
C,.) 

NATIONAL ADVISORY COM MITTEE 
FOR AERONAUTICS 

WASHINGTON 
May 25,1955 

~ 
r-f . 
~ 
f-f 
C,.) 

g 
V) 
t:Q 
~ 

::r; 
U 

~ 
V) 
1£1 
~ 

c3 
~ 

:>-; 

~ 
~ 
:l1 
E-! 
:::> 
-::r: 

\() 

~ 
rl 

-. 
-;:r 
~ 

~ 
0 z .. 
1:4 
E-i 
~ 
A 

~ 
E-< 
U 
1£1 

~ 



, 



A 
NACA RM L55D22 CONFIDENTIAL 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

EFFECTS OF SPANWISE LOCATION OF SWEEP DISCONTINUITY 

ON THE LOVI-SPEED STATIC IATERAL STABILITY 

CHARACTERISTICS OF A COMPLETE MODEL 

WITH WINGS OF M AND W PlAN FORM 

By Paul G. Fournier 

SUMMARY 

An investigation was made of the low-speed static lateral stability 
characteristics of a complete model having a series of M- and VI-wings . 
These wings were obtained through modification of a basic 45 0 swept wing 
and were designed to cover a range of spanwise location of the sweep 
discontinuity. All wings had an aspect ratio of 6, a taper ratio of 0.6, 
and 45 0 sweepforward or sweepback of the various wing panels. 

The results indicate that, for the range of spanwise location of 
sweep discontinuity investigated (outboard of midsemispan for the VI-wings 
and inboard of midsemispan for the M-wings), the variation of effective 
dihedral with spanwise location of sweep discontinuity was appreciable 
for the VI-wings but was very small for the M-wings. 

In general, all the configurations investigated with the M-wings 
and some of the configurations with the VI-wings gave positive static 
directional stability over the lift-coefficient range investigated 
including the stall. 

INTRODUCTION 

In reference 1 it has been shown that the static longitudinal 
stability characteristics of a sweptback wing at high lift coefficients 
can be improved by modification of the wing to one of the composite 
(M or W) plan forms, that is, plan forms made up of combinations of 
sweptback and sweptforward panels. During the investigation reported 
in reference 1, the same series of M- and VI-wings was tested in sideslip 
in order to determine the effect of spanwise location of sweep 
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discontinuity on the static lateral stability characteristics. These 
results are presented herein. The M-wlngs tested had sweep discontinu
ities located at 30-percent, 40-percent, or 50-percent semispan; and 
the W-wings had sweep discontinuities located at 50-percent, 60-percent, 
or 70-percent semispan. All wings had an aspect ratio of 6, a taper 
ratio of 0.60, NACA 65A009 airfoil sections parallel to the plane of 
symmetry, and ±45° panel sweep of the quarter-chord lines. 

The results of the static lateral stability tests are presented for 
conditions with the horizontal and vertical tails off and on and for two 
vertical locations of the horizontal tail. One location (referred to as 
the low tail) was on the wing chord plane extended, and the other loca
tion (referred to as the high tail) was at 20.83-percent wing semispan 
above the wing chord plane extended. 

COEFFICIENTS AND SYMBOLS 

The stability system of axes used for the presentation of the data 
and the positive direction of forces, moments, and angles are shown in 
figure 1. All moments are referred to the quarter-chord point of the 
wing mean aerodynamic chord. 

A 

b 

Cy 

CY[3 

aspect ratio 

wing span, ft 

lift coefficient, Lift 
qS 

rOlling-moment coefficient, 

yawing-moment coefficient, 

lateral-force coefficient, 

Rolling moment 
qSb 

Yawing moment 
qSb 

Lateral force 
qS 

rolling moment due to sideslip per degree, dCl/d[3 

yawing moment due to sideslip per degree, dCn/d[3 

lateral force due to sideslip per degree, dCy/d[3 
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d dCz 

Cz :; df3 
SCL dCL 

C 

Ct 

D 

ZF 

lt 

q 

S 

St 

v 

x 

y 

a 

!-.c/4 

p 

Notation: 

M or W 

F 
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wing mean aerodynamic chord, ft 

horizontal-tail mean aerodynamic chord, ft 

diameter of fuselage, in. 

fuselage length, in. 

tail length, distance from c/4 to ct/4, ft 

free-stream dynamic pressure, pV2/2, lb/sq ft 

wing area, sq ft 

horizontal-tail area, sq ft 

free-stream velOCity, ft/sec 

chordwise distance fram leading edge of root chord to 
c/4 (positive rearward of leading edge), in. 

3 

distance from plane of symmetry to any spanwise station, ft 

lateral location of sweep discontinuity, percent b/2 

angle of attack, deg 

angle of sideslip, deg 

sweep of quarter-chord line, deg 

mass density of air, slugs/cu ft 

basic sweptback wing 

composite plan-form wings (used with subscript 30, 40, 50, 
60, or 70 indicating spanwise location of sweep discon
tinuity in percent b/2) 

fuselage 
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v vertical tail 

horizontal tail, high 

horizontal tail, low 

W wing 

MODEL AND APPARATUS 

For the present investigation, a series of seven plan forms were 
tested - each in combination with a fuselage and tail. The wings are 
the same as those presented in reference 1. The wings had an aspect 
ratio of 6, a taper ratio of 0.60, an NACA 65A009 airfoil section 
parallel to the plane of symmetry, and 45 0 sweepback or sweepforward 
of the ~uarter-chord lines. The wings include a sweptback wing (basic, 
~/4 = 450 ), three M-wings, and three W-wings. The three M-wings had 
their sweep discontinuities located at 30-percent, 40-percent, and 
50-percent semispan; whereas the three W-wings had sweep discontinuities 
at 50-percent, 60-percent, and 70-percent semispan. These wings are 
designated as M30, M40, M50, W50, W60, and W70 wings, respectively. 
The horizontal tail has an aspect ratio of 4, a taper ratio of 0.60, 
45 0 sweepback of the ~uarter-chord line, and NACA 65A006 airfoil sections 
parallel to the plane of symmetry. The fuselage has a fineness ratio of 
10.86 which was achieved by cutting off a portion of the rear of a 
fineness-ratio-12 closed body of revolution, the ordinates of which are 
presented in reference 1. The fuselage was constructed of wood and the 
wings were constructed of wood bonded to steel reinforcing s~rs. A 
three-view drawing of the model with a representative wing is shown in 
figure 2. A photograph of a typical complete-model configuration on 
the support strut is presented in figure 3. 

All the wings tested in this investigation are in a midwing position 
and are mounted so that the ~uarter-chord point of the wing mean aero
dynamic chord, about which all moments and forces are taken, is located 
at the same point on the fuselage for all the wings. Details of these 
wing plan forms are presented in figure 4. The model was constructed so 
that tests could be made with the horizontal t~il at two tail heights. 
The high tail was located 20.83-percent wing semispan above the wing 
chord plane extended and the low tail was on the wing chord plane extended. 

The model was mounted on a single support strut, which in turn was 
attached to the mechanical balance system of the Langley 300 MPH 7- by 
10-foot tunnel. 
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TESTS AND CORRECTIONS 

All tests were made at a dynandc pressure of 45.22 pounds per square 
foot which for average test conditions corresponds to a Mach number of 
about 0.17 and a Reynolds number of 1,270,000 based on the wing mean 
aerodynamic chord of 1.02 feet. 

The present investigation consists of tests made to determine the 
lateral characteristics of the model. The parameters CI~' Cn~' and 

Cy~ were determined from tests at sideslip angles of ±50 through the 

angle-of-attack range from approximately -40 to 320. The angles of 
attack were corrected for jet-boundary effects and were computed on the 
basis of unswept-wing theory by the method of reference 2. Reference 3 
shows that the effect of sweep on this correction is small. The dynamic 
pressure has been corrected for blocking, caused by the model and its 
wake, by the method of reference 4. 

Vertical buoyancy on the support strut, tunnel air-flow misalinement, 
and longitudinal pressure gradient have been accounted for in the compu
tation of the data. These data have not been corrected for the tares 
caused by the model support strut; however, tare tests of a similar 
complete-model configuration have indicated that the tares corresponding 
to the lateral coefficients are small. 

RESULTS AND DISCUSSION 

Presentation of Results 

The results of the present investigation are presented in the 
following figures: 

Basic data . . . . . . . . . . . . . . . . . . . • . . 
Effect of spanwise location of sweep discontinuity on Cr~ 

Variation of CI~CL with spanwise location of sweep 

discontinui ty ...... . . . . . . . 
Effect of spanwise location of sweep discontinuity on Cn~ 

Effect of spanwise location of sweep discontinuity on Cy~ 
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Lateral Stability Characteristics 

Rolling moment due to sideslip.- The static lateral stability deriv
atives for the wing-fuselage configuration (fig. 13(a)) indicate, in 
general, that the effective-dihedral characteristics of the M-wings are 
similar to those of the swept wing. The M-wings indicate relatively 
little effect of spanwise location of sweep discontinuity on CI~-

probably because the changes in area involved, as the location of sweep 
discontinuity was moved inboard of y* = 50, had small moment arms. The 
characteristics of the W50 wing is more like the characteristics that 
would be expected for a sweptforward wing (ref. 5), probably because the 
sweptforward portion of the W50 wing has the greatest moment arm. How
ever, a reduction in the span of the sweptforward portions of these W-wings 
allows the effective dihedral to approach that of the sweptback wing, 
probably because the considerably larger areas of the sweptback portions 
of the wing offset the effect of the greater moment arm of the swept
forward portions of the wing. 

The lateral stability characteristics of the model with wing off 
are shown in figure 12. The results indicate that the contribution of 
the fuselage to CI~ is negligible. The vertical-tail contribution to 

CI~ decreased with increasing angle of attack, which probably is due in 

part to the fact that the force on the vertical tail moves toward the 
roll axis with increasing angle of attack. The general trend of CI~ 

with Y* (fig. 13) of the complete-model configurations, as well as the 
complete model less the horizontal tail, is the same as that of the wing
fuselage configuration and indicates that the sidewash effect is small. 
Within the range of horizontal-tail height investigated, there is little 
effect of tail height on CI~' except at the higher lift coefficients. 
(See figs. 5 to 11.) 

Within the range of spanwise location of sweep discontinuity inves
tigated, figure 14 shows that the W-wings afford a greater range of 
CIA than do the M-wings. The experimental wing-fuselage data for the 

~CL 
basic sweptback wing are in good agreement with the theoretical results 
of reference 6. 

Yawing moment due to sideslip.- Results for the wing-fuselage con
figurations (fig. 15(a)) indicate, in general, that there is very little 
effect of the plan-form variations investigated on Cn~' except at the 
high lift coefficients where both the M- and W-wing configurations 
eliminated static directional instability noted for the swept-wing con
figuration. For all the wing-fuselage configurations, the fuselage 
produces almost the entire amount of directional instability up to • 
maximum lift coefficient, as may be seen by comparing the wing-fuselage 
data of figure 15(a) with the fuselage-alone data of figure 12. 

( 
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Comparison of figure 15(b) (WFV) with figure 15(a) (WF) shows that 
the contribution of the vertical tail to Cn~ is relatively independent 

of spanwise location of sweep discontinuity for either the M- or W-wings. 

Comparison of the data for the complete-model configurations WFVHH 
of figure 15(c) and WFVHL of figure 15(d) with results for the horizontal
tail off (fig. 15(b)) indicates that the addition of the horizontal tail, 
at either of the heights investigated, had no appreciable effect on 
directional stability. In general, all the configurations investigated 
with the M-wings and some of the configurations with the W-wings gave 
positive static directional stability over the lift-coefficient range 
investigated, including the stall. 

Lateral force due to sideslip.- Results for the wing-fuselage con
figurations (fig. 16(a)) indicate, in general, that there is very little 
effect of the plan-form variations investigated on lateral force due to 
sideslip Cy~. Also, for the wing-fuselage configurations, almost the 

entire value of Cy~ is produced by the fuselage up to maximum lift 

coefficient, as may be seen by comparing the wing-fuselage data of fig
ure 16(a) with the fuselage-alone data of figure 12. 

CONCLUSIONS 

Results of a low-speed wind-tunnel investigation of a complete
model configuration having M- and W-wings with varying spanwise loca
tions o~ sweep discontinuity indicate the following conclusions: 

1. For the ranges of spanwise location of sweep discontinuity 
investigated (outboard of midsemispan for W-wings and inboard of mid
semispan for M-wings), the variation of effective dihedral with loca
tion of sweep discontinuity was appreciable for the W-wings but was 
very small for the M-wings. 

2. In general, all the configurations investigated with the M-wings 
and some of the configurations with the W-wings gave positive static 
directional stability over the lift-coefficient range investigated 
including the stall. 
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3. None of the lateral stability characteristics were appreciably 
affected by addition of the horizontal tail in either of the two posi
tions used. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., March 30, 1955. 
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La teral force 
Y 

Lift 

z 

Yawing moment 

9 

Figure 1.- Stability system of axes showing positive direction of forces, 
moments, and angles. 
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Figure 2.- General arrangement of test model with typical M-wing. 
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M-Wings 

Aspect ratio 
Taper ratio 
Sweep of C/4 J deg 
Span, ft 
Area} sq ft 

Basic 

i=-5.25/1 

* y =50 

i=-1.73" 

* y=40 

i = 2.54" 

* Y -=30 

Mean aerodynamic chord,ft 
A irfoil section parol lei to 

plane of symmetry 

w- Wings 

6.0 

.6 
~45 

6 
6 

1.02 

NACA 65A009 

NACA RM L55D22 

i = 12.75/1 

"* y =50 

i =1555/1 

* Y =60 

i=I7.66/1 

"* y =70 

Figure 4.- Details of the various composite wings. 
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Lift coefficient I CL 

Figure 5.- Effect of component parts on the lateral stability character
i stics of the model with the 450 swept wing (A). 
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Figure 6.- Effect of component parts on the lateral stability character
istics of the model with the M30 wing. 
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Figure 7.- Effect of component parts on the lateral stability character
istics of the model with the M40 wing. 
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Figure 8.- Effect of component parts on the lateral stability character
istics of the model with the M50 wing. 
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Figure 9.- Effect of component parts on the lateral stability character
istics of the model with t he W50 wing. 
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Figure 10.- Effect of component parts on the lateral stability character
istics of the model with the W60 wing. 
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Figure 11.- Effect of component parts on the lateral stabil ity character
istics of the model with the W70 wing. 

CONFIDENTIAL 



20 

0 

-.005 

-.010 

C~ 
-.015 

-.020 

-.025 

.004 

.002 

CnIJ 
0 

-.002 

.002 

0 

C~ 
-.002 

-5 o 5 

CONFIDENTIAL 

10 

o F 
o FV 
<> F VHL 

II FVHH 

15 

NACA RM L55D22 

20 25 30 35 

Angle of attackJ a ,deg 

Figure 12.- Effect of component parts on the lateral stability character
istics of the model without a wing. 
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Figure 13.- Effect of spanwise location of sweep discontinuity on rolling 
moment due to sideslip. 
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Figure 13.- Continued. 

CONFIDENTIAL 



NACA RM L55D22 CONFIDENTIAL 23 

II 
- -M50 

----- M;o 

.002 - -- M30 

0 

-.002 

-.004 

-.006 

/l 
0,8 --~ 50 

- ---- ~o 

.002 - --Ujo 

0 

-[XJ2 

-.004 

-.00 

-.008 
-4 -.2 0 .2 4 .6 .8 10 12 14 

Lift coe ffic ien t 7 CL 

Figure 13.- Continued. 
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Figure 15.- Effect of spanwise location of sweep discontinuity on yawing 
moment due to sideslip. 
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Figure 15.- Continued. 
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Figure 16.- Effect of spanwise location of sweep discontinuity on lateral 
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Figure 16.- Continued. 
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