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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

A COMPARISON AT MACH NUMBERS UP TO 0.92 OF THE 
CALCULATED AND EXPERIMENTAL DOWNWASH 
AND WAKE CHARACTERISTICS AT VARIOUS 
HORIZONTAL TAIL HEIGHTS BEHIND A 

WING WITH 150 OF SWEKPBACK 

By Jack D. Stephenson, Ralph Selan, 
and Angelo Bandettini 

Wind-tunnel tests were conducted at Mach numbers from 0.27 to 0.92 
to measure downwash and dynamic pressure in the region of the tail of a 
wing-fuselage-tail model having a wing with 150 of sweepback, an aspect 
ratio of 5.5, and NACA 64AO10 sections normal to the quarter-chord line. 
The data were analyzed in order to determine the origin and character of 
variations in the contribution of the horizontal tail to static longi-
tudinal stability observed in tests of the model with the tail in various 
vertical positions. The spanwise distribution of downwash at the tail 
and the effect of tail height on downwash were not accurately predicted 
by a theory in which it is assumed that horseshoe vortices are distrib-
uted along the wing quarter-chord line and that there is no rolling-up 
of the vortex sheet. A somewhat improved prediction of the spanwise 
distribution of downwash was provided by an approximate theory based on 
the flow induced by a single swept vortex, but this theory still did not 
predict the large downwash at high angles of attack that were observed 
experimentally at the higher tail positions. 

INTRODUCTION 

Results of an investigation of the static longitudinal stability of 
a wing-fuselage-tail model having a wing swept back 45 0 and an aspect 
ratio of 5.5 were presented in reference 1. The model (which is the same 
as that used in the tests reported herein) had a severe longitudinal 
instability resulting from an extreme forward movement of the center of 
pressure of the wing with increasing lift coefficient. Reference 1 indi-
cates that this instability, which is a characteristic of wings of this 
general plan form, might either be seriously aggravated or somewhat 
ameliorated, depending upon the choice of the vertical location of the



2	 NACA RM A77D27a 

horizontal tail. When the tail was added below the wing chord plane, it 
provided a nearly uniform positive contribution to stability, but as the 
tail height was increased, progressively to 0.255 semispan above the wing 
chord plane, the tail produced increasingly powerful positive pitching 
moments at high angles of attack. 

In order to study in more detail the characteristics of the flow 
that caused the large variations in tail contribution to stability, 
dynamic-pressure surveys and downwash-angle surveys have been made in 
the region of the various horizontal tails. These surveys were made both 
with and without wing fences, since tests showed that the fences had a 
significant effect upon the tail contribution to stability. 

The downwash behind the model without fences has been calculated in 
the region of the tail, and the results are compared with the measured 
downwash angles and with the effective downwash. One objective of this 
comparison was to determine whether a simple mathematical approximation 
assumed to represent the flow behind a wing with an extensive region of 
tip stall might be used to predict the effect of tail height on tail 
contribution to stability at high angles of attack. 

NOTATION 

wing span 

bt	 tail span 

c	 local wing chord parallel to the plane of symmetry 

rb/2 

wing mean aerodynamic chord, °b/ c2dy 

ff	 cdy o 

cay	 average wing chord 

CD	 drag coefficient, drag qSw 

lift 
CL	 lift coefficient, CISW 

C l	 section lift coefficient 

Cm	 pitching-moment coefficient about the quarter point of the wing 
pitching moment mean aerodynamic chord.,	

(Isw
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1	 length of body 

it	 tail length, distance from the quarter point of wing mean 
aerodynamic chord to the quarter point of horizontal-tail 
mean aerodynamic chord 

M	 free-stream Mach number 

q	 free-stream dynamic pressure 

qt	 dynamic pressure at the tail 

Aq	 increment in dynamic pressure, qt - q 

R	 Reynolds number based on wing mean aerodynamic chord 

r	 local radius of body 

r0	 maximum radius of body 

SW	 area of basic semispan wing 

St	 area of semispan tail

St it 
Vt	 horizontal-tail volume, 

YO	
seinispan of swept vortex 

z	 perpendicular distance from wing chord plane 

x,y,z1	 coordinates for the system of wind axes with the origin at 
the apex of the quarter-chord line 

x',y',z 1 t coordinates for the system of wind axes with the origin in 
the plane of the trailing vortices 

M	 angle of attack 

downwash angle 

11 
qt	

product of the tail efficiency and the effective dynamic 
pressure ratio at the tail
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Subscripts 

1	 local 

t	 horizontal tail 

TE	 wing trailing edge 

av	 average value 

u	 uncorrected

MODEL AND APPARATUS 

Figure 1(a) is a sketch of the model, which was the same as that 
described in reference 1. Table I lists geometric data for the model. 
The wing had an aspect ratio of 5.5, a taper ratio of 0.53, and 45 0 of 
sweepback at the quarter-chord line. The airfoil normal to the quarter-
chord line was the. NACA 64AO10. During part of the tests, the full-
chord fences shown in figure 1(b) were mounted on the wing at two stations, 
liJ and 69 percent semispan. 

Local downwash angles, total pressures, and dynamic pressures were 
measured in the region of the tail, using a survey rake. This rake con-
sisted of three directional pitot tubes and three rows of pressure tubes 
(each row containing 25 total-pressure tubes and 6 static-pressure tubes). 
The survey data were recorded with the directional pitot tubes lying in 
the wing chord plane and 0.127b/2 and 0.255b/2 above this plane. These 
locations correspond to three of the vertical positions of the horizontal 
tail which were studied previously in the tests reported in reference 1. 
Dimensions and details of the rake and of the directional pitot tubes 
are shown in figures 1(a) and 1(b), and in the photographs presented in 
figure 2.

TESTS 

Experiments were conducted to determine the spanwise distribution 
of downwash at three positions of the tail. The vertical distributions 
of total and dynamic pressure were measured at three spanwise stations, 
0.10b/2, 0.24b/2, and 0.38b/2, to provide wake profile data in the region 
of the tail. Downwash and wake data were obtained at Mach numbers from 
0.25 to 0.92 and 2 million Reynolds, number and at a Mach number of 0.25 
and 10 million Reynolds number for the model with and without fences.
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In order to observe the progress of separation as stalling occurred, 
tufts were added to the wing. The model with tufts (with and without 
fences) was tested at Mach numbers of 0.27, 0.87, 0.9, and 0.92 and 
2 million Reynolds number and at a Mach number of 0.25 and 10 million 
Reynolds number.

CORRECTIONS TO DATA 

The test data have been corrected to account for the blockage effects 
due to the tunnel walls, for tunnel-wall interference effects due to model 
lift, and for the drag tares associated with the turntable upon which the 
model was mounted. 

Blockage corrections to the test-section Mach number and dynamic 
pressure were computed by the method given in reference 2 and are shown 
as functions of the corrected Mach number in table 11(a). 

The following corrections, calculated as indicated in reference 3, 
were added, respectively, to the measured angles of attack, pitching-
moment coefficients, and drag coefficients, to account for the jet-
boundary effect induced by wing lift. 

Aa = KC 

Cm = K2CL (model without tail) 

ACM = K3CL (model with tail) 

ACD = 0.0053 CL 

A correction (also calculated using ref. 3) has been applied to account 
for the tunnel-wall interference effect on the downwash angle measured 
with flow-angle survey tubes. This correction Act was calculated as 
follows and added to the measured flow-angle data. 

Act = K4C 

Possible variations of this correction due to varying the position of the 
tail in relation to the wind-tunnel jet boundaries were neglected. The 
values of K1 , K2 , 1(3 , and 1(4 are listed in table 11(b). 

The drag tare corrections, which were subtracted from the measured 
drag coefficients in order to account for the drag of the exposed area 
of the turntable are listed in table 11(c). 

Tests of the isolated rake showed that the static pressures varied 
with angle of pitch and with position on the rake. In tests of the model,
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a correction was applied to the static-pressure data to account for this 
effect. Since the correction was a function of the rake angle of attack, 
this angle had to be estimated from the flow-angle data. When the flow 
angle varied significantly across the rake span (i.e., large lateral 
variations of downwash) the effect of the flow angles on the dynamic-
pressure measurements could only be estimated, so that some errors, 
believed to be small ., were introduced into the values of 	 for such 
conditions. 

The vertical location of the wake 1s influenced by the jet-boundary 
effect induced by model lift. The amount of displacement of the wake due 
to this effect was estimated to be small and was neglected. 

RESULTS AND DISCUSSION 

The lift and pitching-moment characteristics of the model were pre-
sented in reference 1 and are again presented for convenience in figures 3 
through 8. The data show the effects of adding two full-chord fences and 
of varying the vertical position of the horizontal tail. 

Local Downwash 

Figures 9 through 12 show the downwash measured by the directional 
pitots at three spanwise stations at each of three horizontal planes, 
which were the planes of the center-line, the medium, and the high tails. 
It was shown in reference 1 that a rapid increase in downwash with angle 
of attack was the cause of a decrease or reversal of the tail contribu-
tion to longitudinal stability under certain conditions. A comparison of 
the data for the different spanwise locations at each vertical position 
indicates that at high angles of attack there were regions of particularly 
high downwash at the outer two directional pitots in the two higher tail 
locations. The large increases of downwash generally occurred earliest 
at the outer survey station. The slope of the downwash curve for the 
inboard station was least affected by increase in angle of attack. When 
sufficiently high angles of attack were attained, the downwash began to 
decrease with further increase in angle of attack. This effect is evident 
first near the outer survey station, being delayed to slightly higher 
angles of attack at the higher positions above the wing chord plane. 

At a Reynolds number of 10 million and a Mach number of 0.25, slopes 
of the downwash curves increased sharply with angle of attack as the 
angle of attack exceeded 110. When the Reynolds number was decreased to 
2 million, such increases occurred at substantially lower angles of attack. 
Variation of Mach number from 0.25 to 0.92 had no large consistent effect
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upon the angle of attack where these increases in slope occurred or upon 
the variation of slope of the downwash curves with spanwise or vertical 
position in the region of the survey. 

All of the data for the tail position in the wing chord plane show 
nonlinearities in the downwash curve near zero angle of attack, such 
that the slopes of the downwash curves become negative within a small 
angle-of-attack range. The origin of these nonlinearities has not been 
completely established, but they appear to be due primarily to the effect 
of the dynamic-pressure gradient at the edge of the wake from the wing, 
resulting in erroneous indications of flow angle when measured with a 
relatively large diameter, spherical-head-type, directional pitot. (See 
fig. 1(b).) At most of the Mach numbers and a Reynolds number of 2 mil-
lion, the variation of downwash angle with angle of attack at the out-
board station for the medium-height tail position indicated nonlinearities 
within a small angle-of-attack range (from 90 to 110) that are also 
apparently associated with the directional pitot tube entering and sub-
sequently moving out of the wing wake. This explanation, however, does 
not account for the very high values of € occurring at slightly higher 
angles of attack. These values appear to originate from strong vorticity 
concentrated near the wake outboard of the outermost survey tube. 

A comparison of the data presented in figures 11 and 12 with data 
in figures 9 and 10 indicates that the addition of fences to the wing 
strongly affected the downwash at the locations of the two outer direc
tional pitots. For moderate angles of attack at the outer station and 
medium-height tail position, adding fences eliminated the high downwash 
and produced negative variations of downwash with angle of attack. At 
higher angles of attack (above about 130 ) the downwash was substantially 
decreased at both of the outer survey stations for Mach numbers below 
0.90. At a Reynolds number of 10 million, there were only small effects 
on downwash at the other locations shown. At a Reynolds number of 
2 million, the fences had little effect on the downwash curves at the 
survey plane nearest the plane of symmetry up to 'relatively high angles 
of attack. Within some limited ranges of angle of attack, when the strong 
negative variations of downwash with angle of attack developed at the 
outermost survey station, the downwash curves for the intermediate survey 
station (at the medium and high tail positions) had positive slopes that 
were even greater than those measured for the model without fences. This 
indicates that the downwash is distributed laterally as if the spanwise 
loading on the wing decreased abruptly with lateral distance at some 
station inboard Of the fence at 0.44b/2 and subsequently increased at 
some station Outboard of the fence. 

Varying the Mach number from 0.27 to 0.92 did not greatly change 
the character of the downwash distribution for the model either with or 
without fences.
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Figures 13 and 14 show the vertical distribution of downwash at the 
three spanwise survey stations behind the model. The effect on this 
distribution of adding fences to the wing is also shown in the same 
figures. The greatest effect of the fences was in the localized region 
near the outer pitot tube in the plane of the medium tail. 

Dynamic Pressure in the Wake 

The vertical distributions of dynamic pressure loss at a Mach number 
of 0.27 and a Reynolds number of 10 million are shown at various angles 
of attack in figure 17 at three spanwise stations, 0.10b/2, 0.24b/2, 
and 0.38b/2 from the plane of symmetry. A better illustration of the 
effect of angle of attack upon the wake and upon the location of the wake 
relative to the tail positions is provided by the type of graphs shown 
in figures 16 through 18, in which the vertical locations of the contour 
lines of constant	 are plotted against angle of attack. 

At a Reynolds number of 10 million (figs. 15 and 16), losses in the 
wake near the tail remained small everywhere except at the medium tail 
location near the plane of symmetry when the angle of attack exceeded 150. 
A decrease of Reynolds number to 2 million had only a small effect, such 
that losses in the wake occurred at slightly lower angles of attack. 

The data indicate that the region where large dynamic-pressure losses 
occurred would be avoided at all of the Mach numbers of the tests and at 
angles of attack where longitudinal instability occurred, if the tail were 
located above the wake center in the high position or below the wake center 
on the fuselage center line. At the medium tail position at angles of 
attack somewhat larger than those where model instability first occurred, 
decreases in the local dynamic pressure were measured which resulted in 
values of	 as low as 0. 1, but even at this position the effect of 
such losses was probably not large, because they occurred within only 
limited portions of the tail span. The losses were substantially smaller 
at the outer survey station, but since this station is near the wing mid-
semispan, it is probable (judging from general observations of the char-
acteristics of the wake from swept wings) that they would again be large 
still farther from the plane of symmetry. The wake survey data indicate 
that at low angles of attack the dynamic pressure was low in the region 
of the tail located on the fuselage center line, which is in accord with 
the low values of n(t/ q) shown in reference 1. However, the low values 
of T(q/q) which were calculated for the tail in the medium position at 
low angles of attack cannot be similarly correlated with the measured 
local dynamic pressure.. 

The locations of the regions of large dynamic-pressure loss at the 
two outer survey stations were strongly affected by the addition of 
fences. The data from tests at a Reynolds number of 2 million indicate
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that the large increase in downwash accompanying the initial stalling of 
the wing without fences deflected the wake downward; whereas with fences 
on the wing, the center of the wake moved continuously farther away from 
the wing chord plane with increasing angle of attack. The upward dis-
placement of the wake due to fences means that at high angles of attack 
the outer portion of the horizontal tail mounted either in the high or 
medium position would be in a region of lower dynamic pressure than when 
the fences were off.

Mean Downwash at the Tail 

Local measured downwash angles have been used to estimate an average 
downwash over the complete span of the horizontal tail. This average 
downwash was determined graphically using the following relation, 

lDt 
2
 

f	 (cic 
av = bt 	 €	 Le av,) dy
	 (1) 

t 

in which the local downwash angles from the data obtained with the direc- 
tional pitots at spanwise stations 0.17b/2, 0.31b/2, and 0.45b/2, are 
weighted according to the spanwise loading on the tail surface as calcu-
lated from reference -i-. The effect on the spanwise load distribution 
of the variations of local angle of attack along the tail span was 
investigated. To take this effect into account, the local lift coefficient 
c 1 in equation (1) was calculated as 

= cZa + CLcIb
 

where c .,	 is the additional loading on the isolated tail and c 	 is 
ba 

the basic loading obtained when it is assumed that the tail is twisted 
by an amount equal to the lateral variation of downwash. Calculations 
using this expression for c 1 indicated that the effect of the basic-
type loading on the average downwash was small except at some of the very 
high angles of attack. Since these high angles of attack were beyond 
the angles where model longitudinal instability due to downwash was con-
sidered significant, it was concluded that the effect of the basic loading 
could be neglected, so that the section lift coefficient in equation (1) 
would be the lift coefficient due to the additional loading. Since the 
local downwash angles required in equation (1) were not measured in 
regions corresponding to the portion of the tail near the plane of sym-
metry, they were obtained by extrapolating the data from the more outboard 
survey stations. Although such extrapolations may not be accurate, if 
errors in the extrapolations are similar for the two tail heights, it 
would be expected that the average downwash could be correlated to some
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extent with effective downwash (calculated from force and moment data 
presented in reference 1). The average downwash was compared with 
effective downwash to determine whether such a correlation could be made 
of the variations in slope of the downwash curves with varying angle of 
attack and tail height. 

The downwash obtained by averaging the local downwash measured with 
the directional pitots is compared in figure 19 with the effective down-
wash. Good agreement between data from these two sources was not obtained. 
The main reason for the lack of agreement probably was that the flow-angle 
data could not be accurately extrapolated to the plane of symmetry, as 
mentioned above, and that the fuselage apparently introduced significant 
localized flow angles which could not be evaluated from the directional 
pitot-tube data. The effect of the wing wake on the local indicated flow 
angles near the wing wake was discussed earlier and is apparent in this 
figure as the decreased and reversed variations of downwash with angle of 
attack near zero angle of attack for the centrally located tail. 

Although the data for the model without fences (fig. 19(a)) show 
generally an increase in slope of the downwash curves with angle of attack, 
the averaged data do not show some of the particularly large variations in 
slopes that are evident in data derived from analysis of the measured lift 
and pitching moments. Apparently the method of obtaining the average 
values did not take into account adequately the large changes in downwash 
observed near the outer portion of the tail. If the effect of the lateral 
variation of downwash on the spanwise loading of the tail had not been 
neglected (as mentioned earlier) in calculating the average downwash, 
higher values of average downwash would have been calculated, but calcu-
lations (for typical angles of attack and Mach numbers) indicated that 
such increases would be small, that is, less than 0.20 at about .100 angle 

of attack. 

Reference 1 indicated that the addition of fences decreased the 
effective downwash at the tail with the result that the tail contribution 
to stability was maintained up to high angles of attack. The average 
downwash data (fig. 19(b)) determined from the survey indicate that the 
fences decreased the slopes of the downwash curves at the center-line tail 
location, but at the medium tail location the average downwash does not 
indicate such decreases. Although the local downwash data at spanwise 
station 0. 11-53b/2. shown in figures 11 and 12 do indicate such decreases, 
this station was so far outboard that it did not greatly affect the average 
downwash. It is concluded from figures 19(a) and 19(b) that a considerably 
more extensive and detailed survey of the downwash field, using more suit-
able survey apparatus, would be required to correlate the measured downwash 
angles with the downwash indicated by the model force and moment data.
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Tuft Studies 

The results of tuft studies of the flow on the model with and without 
fences are presented as graphic plan-form sketches of the model wing, 
showing the progress of separation through the angle-of-attack range. 

In order to indicate whether the tufts themselves affected the pattern 
of separation in such a way as to alter the longitudinal stability, 
pitching-moment data are presented for the model with and without tufts. 
(See figs. 20 through 29.) At a Reynolds number of 10 million and a Mach 
number of 0.27, addition of tufts had a noticeable effect on the stability, 
so that the separation patterns probably differed from those on the wing 
without tufts. At the lower Reynolds number, 2 million, the pitching-
moment data for the model with tufts were similar to the data for the 
model without tufts and the observed patterns of separation should be 
generally applicable to the model without tufts. 

At a Mach number of 0.27 (figs. 20 through 23), the initial separation 
occurred at the leading edge near the tip. Addition of the fence had 
little effect on the angle of attack at which separation first occurred, 
but eliminated or retarded the separation just outboard of the fence.' 
Decreasing the Reynolds number from 10 million to 2 million resulted in 
the initial separation occurring at a lower angle of.atack; however, the 
general pattern of separation was similar to that at 10 million Reynolds 
number. 

At Mach numbers of 0.87, 0.90, and 0.92 (figs. 24 through 29), 
separation first occurred a short distance behind the leading edge, prob-
ably due to the effect of compression shocks at these positions. Addition 
of fences produced a.region where separation was retarded or eliminated 
just outboard of the fences as in the case of a Mach number of 0.25. The 
substantial increases in lift coefficient where longitudinal instability 
occurred that were apparent in the force and pitching-moment data at Mach 
numbers up to 0.85 (fig. 1) can be correlated , with this retarded progress 
of the separation (figs. 20 through 25), indicating that the fences delayed 
the loss of lift near the tip that was characteristic of the plain wing. 
At Mach numbers. of 0.90 and 0 .92 (figs. 26 through 29) the fences had 
little effect on pitching-moment characteristics up to angles of attack 
where the stalled region had progressed over most of the wing, even though 
they still retarded some of the separation. With further increase in 
angle of attack, however, an abrupt forward movement of the center of 
pressure occurred for the model with the plain wing and was avoided when 
fences were added. The tuft data indicate that this improved moment 
characteristic observed for the model with fences was associated with the 
region of unseparated flow adjacent to the fences, and with the other areas 
shown in the sketches on the rearward and outboard portions of the wing 
where separation was delayed up to the highest angles of attack of the 
test.
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Theoretical Calculation of Dowriwash 

Distributed horseshoe vortices.- The downwash behind the wing without 
fences has been calculated for three vertical positions of the horizontal 
tail by the method described in reference 5, which provides for calculation 
of the veloities induced at the tail by horseshoe vortices distributed 
along the quarter-chord line of the wing. It is assumed in the theory 
that the induced velocities at any point having known coordinates with 
reference to the actual vortex sheet would be the same as those calculated 
at a point having the same coordinates referred to the vortex sheet if the 
vortex sheet were flat and undistorted. The shape and position of the 
vortex sheet was calculated by integrating the vertical displacement of 
the flow between the trailing edge and the quarter chord of the tail using 
the expression

pX 
LZV =J 

tan €vdx	 (2) 
XTE 

where E V is the downwash in the vortex sheet. 

Typical wing spanwise load distributions which were used in the 
calculations are shown in figure 30. They were obtained from pressure 
distributions measured experimentally in tests reported in reference 6 
of a full-span model having a wing and fuselage similar to those of the 
model used in the present tests. The spanwise loading data were obtained 
on the wing only outboard of 0.2b/2. The loading curves were extrapolated 
to the wing-fuselage juncture (as shown by the dotted portions of the 
curves in figure 30) on the basis of pressure measurements on the fuse-
lage, considering the effects of wing-body interference. The part of the 
loading curve over the wing enclosed by the fuselage is not shown, but an 
extrapolation of the illustrated curves to the body center line was made 
using (unpublished) pressure distributions obtained experimentally at the 
plane of symmetry in the tests reported in reference 6. This extrapolation 
gave slightly higher values of loading on the fuselage than would be pre-
dicted from theory. The spanwise distributions of downwash calculated 
by the method of reference 5 for three positions of the tail are shown 
for several angles of attack in figure 31. The distributions measured 
with the directional pitots at a Reynolds number of 2 million are also 
shown (dashed curves) in this figure for comparison. It is evident that 
the experimental distributions differed considerably from the theoretical. 
The high values of downwash measured at the outer positions at high angles 
of attack were not predicted by the theory. A comparison of the levels 
of the data for the various tail positions indicates that the theory does 
not predict the large increases in downwash with increased tail-height 
that appear in the effective downwash data. The vertical and lateral 
distributions of the measured downwash suggest that there existed in the
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vortex sheet behind the wing a strong concentration of vorticity near 
the wing mid-semispan and near the plane of the medium tail. 

Another comparison that illustrates the source of some of the 
differences between the predicted and measured downwash characteristics 
can be made by comparing the calculated position of the vortex sheet with 
its position as indicated by the wake survey data. If it is assumed that 
the downwash causes a vertical displacement of the wake leaving the rear 
portion of the wing equal to the displacement of the potential flow leav-
ing the wing trailing edge, then the vertical position of the vortex 
sheet corresponds to the center of the wake. The predicted vortex-sheet 
locations and the wake-center positions at the three wake survey stations 
are shown as functions of angle of attack in figure 32. A downward dis-
placement of the wake at the outer stations as the angle of attack 
increased indicates high downwash in the wake in regions generally in 
agreement with those indicated by the flow-angle surveys (fig. 10). The 
effect of the high downwash in these regions is to produce a considerable 
difference between predicted and observed locations of the vortex sheet 
under some conditions. When such differences exist, it cannot be expected 
that the magnitude and distribution of downwash would be predicted with 
any accuracy. 

Single swept vortex.- The observed positions of the vortex sheet and 
the measured lateral distribution of the downwash behind the wing illus-
trate some of the important characteristics of the downwash field. Some 
simple vortex systems that will induce distributions of downwash with 
similar characteristics have been examined to see if an approximate 
procedure for predicting downwash might be applicable. In one such pro-
cedure, it is assumed that the •spanwise loading on the wing can be replaced 
by a rectangular loading distributed over a reduced span and that the 
resulting flow can be represented by the flow due to a simple swept horse-
shoe vortex. This flow would have some of the characteristics of the flow 
observed in the experimental survey: a large variation of downwash with 
lateral and vertical positions, and large values of downwash in regions 
above the wing chord plane relatively far from the plane of symmetry. 
It is evident that the accuracy of this type of calculation depends on 
the accuracy of representing the actual flow behind the wing by a flow 
due to a rectangular loading on the wing. A consideration of the factors 
(discussed in ref. 7) that determine the downstream distance where the 
vortex sheet is essentially rolled up indicates that the flow behind a 
high-aspect-ratio wing at low angles of attack cannot be well represented 
by such a flow. However, with increasing angle of attack, as the wing 
stalls and loses lift at the tips, the span load curve of a plane swept 
wing changes in such a way that it has some of the characteristics of the 
loading on a lower aspect ratio wing for which the rolling up of the 
vortex sheet takes place considerably nearer the wing. The changes in 
load distribution for the moderately high-aspect-ratio swept-wing model 
used in the tests reported herein were examined and downwash calculations 
were made based on the replacement of the measured loadings (from ref. 6) 
with simple rectangular loadings.
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The span of the bound vortex was assumed to be the same as the 
distance between the trailing vortices formed by the complete rolling-up 
of the vortex sheet. As indicated in reference 7, this distance, which 
is designated as 2y0, can be computed for a wing alone by the relation 

- CLSW 
(cjc)Y=O 

where ( c j c )y0 is the loading parameter at the plane of symmetry. 
Whether this relation is directly applicable to the loading on a wing-
fuselage combination is doubtful, even if an accurate experimentally 
determined loading at the plane of symmetry were available. It was 
thought that a more realistic indication of the spacing of the rolled-up 
vortex would be provided by considering the circulation at the plane of 
symmetry in equation (3) to be equal to the value at the wing-fuselage 
juncture. Typical values of the loading parameters used in the calcula-
tions are shown in figure 30 as the inner extremity of the loading curve 
(at 0.09 semispan). On the basis of observations of the vertical dis-
placement of rolled-up vortices behind some low-aspect-ratio wings, such 
as those reported in reference 7, it was assumed that the trailing 
vortices were parallel to the free-stream flow, that is, that they were 
undisplaced vertically and laterally after leaving the wing. Another 
simplification that is believed to be consistent with the accuracy of the 
method was the assumption that the bound vortex lay in the plane of the 
trailing vortices, rather than in the plane of the wing inclined at the 
angle of attack. The orientation of the vortex system with reference to 
the model components is illustrated in figure 33, where the vortex is 
assumed to lie along the line ABO'CD and the location of the chord plane 
of the wing is determined by the points BOC which are on the quarter-
chord line of the wing. It was first assumed that the trailing vortices 
left the wing at the trailing edges. Preliminary calculations indicated 
that with this assumption the predicted regions of high downwash were 
closer to the chord plane than was indicated by experiment. Better agree-
ment resulted when it was assumed that the flow breaks away from the wing 
surface ahead of the trailing edge and extends downstream from this more 
forward position. In the calculations, this location was assumed to be 
25-percent chord (at the spanwise station y0 ). The downwash corresponding 
to the vortex system derived on the basis of the considerations discussed 
above has been calculated. The calculations were made by a graphical 
procedure which was equivalent to solving equation (34) of reference 7. 

The lateral variation of downwash predicted by the calculations for 
three Mach numbers, 0.6, 0.8, and 0.9, are compared with experimental 
results in figure 314 . The calculations provide better predictions of the 
lateral variation of downwash than those obtained from the theory of 
reference 5, but still failed to predict the extremely high downwash at 
the outboard survey positions-and the large increase in d.ownwash with 
increased tail height (from the center to the medium position).

(3)
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A limited study has indicated that calculations based on certain 
other assumed vortex patterns representing the flow due to the wing would 
afford better correlation of calculated and measured downwash than the 
two methods described in this report. It is probable that some empirical 
rules for calculating downwash when the wing is partially stalled might 
be determined as a result of tests in which local flow angles are measured 
behind the wing. However, it was concluded that such rules could not be 
specified except after a considerably more detailed survey of the flow 
field than was conducted in the tests reported herein. 

CONCLUDING REMARKS 

Measurements of downwash in the region of the horizontal tail of a 
model with a wing swept back 450 indicated that at high angles of attack 
there were regions of particularly high downwash at the outer portion of 
the tail (31 and 115 percent wing semispan) at the two higher tail loca-
tions (12.7 and 25.5 percent wing semispan above the wing chord plane). 
Addition of fences to the wing at 44 and 69 percent semispan considerably 
reduced these high values of downwash at the outermost portion of the tail. 

Downwash data obtained from directional pitots were used to estimate 
the average effective downwash on the complete tail. These average values 
did not agree well with the effective values indicated by the force and 
moment data and it was concluded that the survey of the downwash field was 
not sufficiently complete to show the large observed effects of angle of 
attack and tail height on the longitudinal stability. 

Theory based on calculating the flow induced by horseshoe vortices 
distributed along the wing quarter-chord line failed to predict accurately 
the effect of tail height on the variation of downwash angle with angle of 
attack and also did not predict either the observed lateral and vertical 
distributions of doiwash at the tail locations, or the effective downwash 
at high angles of attack. An approximate procedure for estimating down-
wash at the tail based on calculating the flow induced by a single swept 
vortex did not indicate the large decreases in the tail contribution at 
high angles of attack that were indicated in the tests of the model, but 
afforded a slightly better prediction of the lateral and vertical 
distributions of downwash. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Apr. 27, 1955
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TABLE I. - GEOMETRY OF TEE MODEL 

Wing 
Aspect	 ratio	 ......................... 5.5 
Taperratio	 ........................ 0.532 
Sweep of quarter-chord line,	 deg	 .............. )45 
Section normal to quarter-chord line .	 .	 .	 .	 .	 .	 .	 .	 .	 NACA 64AO1O 
Area (semispan) sq ft ................... 3.812 
Semispan,	 ft	 ........................ 3.2)i-2 
Mean aerodynamic chord, ft	 ................. 1.215 
Dihedral .......................... o 
Incidence ......................... 0 
Positionon body	 ..................... on axis 

Wing fences 
Distance ahead of wing leading edge ............ O.05c 
Spanwise locations 

Inboard	 ........................ O.lb/2 
Outboard	 ........................ O.69b/2 

Body 
Finenessratio	 ....................... 12.5 
Length,	 ft	 ......................... 7.292 
Frontal area/wing area ................... 0.035 

Horizontal tail 
Aspectratio	 ........................ 
Taperratio	 ........................ 0.5 
Sweep, deg (50-percent chord)	 ............... 0 
Section	 .......................... 63Aoo'-
Area (semispan) sq ft ................... O.91i-5 
Semispan,	 ft	 ........................ 1.375 
Tail	 length	 (it)	 ....................... 2.O 
Location (vertical distance above wing chord plane extended) 
High	 tail	 ....................... O.255b/2 
Medium	 tail	 ...................... 0.127b/2 
Center	 tail	 ...................... 0 
Low	 tail	 ....................... -O.l2Tb/2 

Survey rake 
Directional pitots 

Spanwise locations	 ......... 0.170b/2, 0.312b/2, 0.453b/2 
Longitudinal distance to l/I- point of wing M.A.0 ..... 
Vertical locations	 ............ O,O.127b/2, 0.255b/2 

Total pressure tubes 
Spanwise locations ....... O.lOOb/2, O.241b/2, 0.382b/2 
Longitudinal distance to 1/4 point of wing M.A.0	 2.15 Zi
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TABLE II. - CORRECTIONS TO DATA

(a) Constriction due to tunnel walls 

Corrected 
Mach number

Uncorrected 
Mach number 

0.25 0.250 1.001 
.60 .599 1.002 
.80 .797 1.004 
.8 .846 1.005 
.90 .893 1.008 
.92 .911 1.010 

(b) Jet-boundary effects 

M K1 - Cm K2 = -c-- Cm K3 = ---- K	 AEt = --

0.25 0.349 -0.0011 0.0038 0.14'! 
.60 .349 -.0010 .0052 .161 
.80 .3119 -.0008 .0080 .192 

.349 -.0006 .0095 .205 
.90 .349 -.0001 .0114 .223 
.92 .360 .0001 .0123 .231 

(c) Tare corrections 

Reynolds 
number

Mach 
number

CDTare 
10,000,000 0.25 0.00119 
2,000,000 .25 .0050 
2,000,000 .60 .0051 
2,000 1 000 .80 .0057 
2,000,000 .85 .0060 
2,000,000 .90 .006)-i-
2,000,000 .92 .0067
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Equation of body ordinates

.25 chord of 
- [ I (i 2 x a] 34 NACA 644010 secl 

-	
644010 sectioi 

Pitching .-moment axis 

Note: Dimensions given in inches 
unless otherwise specified. 	 Zz74 	 11 

50	 /	 /	 l6. 
(424 

- ̂ 1916 

21.62	 1 146-J L__26.86 L	 31.36-



t=87.50

3890 
Survey Sta.

Wake Flow angle 
----453b/2 

\_.382b/2
b/2 

4------i70 b/2 
.100 b/2 

Wake survey plane(0.50c7 
Plane through 

.25 chord MAO.	 Flow-angle 
Survey plane 

43.75	 31.36	 Survey 

	

High tail	 FA Sta. 
position -----255b/2 

Med	 tail 

Rake in-

Center tail position 

(a) Complete model showing tail and rake locations. 

Figure 1.- Drawings of the model.
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Drag coefficient, CD	 20 i6 .12 08 04 0 -04-08 -.12 -16-20-24 -28-32 -:36 -40 
-8 -4 0 4 8 12 16 20 24 28	 Pitching-moment 

Angle of attack , a ,deg	 coefficient, Cm 

(a) M=0.25, 0.60, and 0.80 

Figure 6.- The effect of tail height on the aerodynamic characteristics 
of the model at various Mach numbers. Plain wing; R=2,000,000. 
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M=0.85 

0 
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(b) 14=0.85, 0.90, and 0.92

Figure 6.- Concluded. 
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Figure 9.- The variation of local downwash with angle of attack at various 
points along the horizontal tail span and for three vertical locations. 
Plain wing; M=0.25; R=10,000,000. 
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(a) M=0.25 

Figure 10. - The variation of local downwash with angle of attack at 
various points along the horizontal tail span and for three vertical 
locations. Plain wing; R=2,000,000. 
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Figure 10.- Continued. 
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a,deg 

Figure 11. - The variation of local downwash with angle of attack at 
various points along the horizontal tail span and for three vertical 
locations. Wing with fences; M=0.25; R=10,000,000. 
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Figure 12. - The variation of local downwash with angle of attack at 
various points along the horizontal tail span and for three vertical 
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0

8 

4 

E,deg

0 

-4

0	 0.170	 0.402 

El	 0-312	 Q735 

0	 0.453	 1.068 

Wing	 Tail	 INEENNEENEEN, 

i•uui•uuriu 
EMMEMMEMME 

••Uul•UUlW!IlUU 

•u.uuuiiPu 

NOREEN No 
MENNEN 

•uuiuui•iuu• 
MEN i.uuu•MEN 
••W°iiiUULU•UJl 
•............... 

U0ii1UUUUIUUUUI 
MEEMEMEMEMNIMMEN 

0 MEN Wing with fences NIEMEN 
MENMENIMME MONOMER



NACA RN A55D27a
	

39 

0

8 

4 
E,deg

0 

-4 

-8
-8 -4	 0	 4	 8	 12	 16	 20 24 

a,deg 

(b) M=O. 60

Figure 12.- Continued.
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Figure 20. - Separation patterns on the wing, with and without fences; 
M=0.25; R=10,000,000.
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Figure 22.- Separation patterns on the wing, with and without fences; 
M=0.25; R=21000,000.
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Figure 24. - Separation patterns on the wing, with and without fences;
M=O.85; R=2,000,000.
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Figure 28.- Separation patterns on the wing, with and without fences; 
14=0.92; R=2,000,000.
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Figure 30.- Experimental spanwise loading for various lift coefficients.
Plain wing.
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Figure 31-- Comparison of the spanwise distribution of theoretical down-
wash (ref. 7) with measured local downwash at various angles of attack 
and at three vertical positions of the horizontal tail. Plain wing. 
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Figure 31.- Continued. 
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Figure 31.- Concluded. 
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(a) M=O. 60 

Figure 34.- Comparison of the spanwise distribution of theoretical down-
wash (computed assuming a single swept vortex) with measured local 
downwash at various angles of attack and at three vertical positions 
of the horizontal tail. Plain wing. 
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Figure 34 . _ Continued. 
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Figure 311. _ Concluded. 

NACA -Langley


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83



