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SUMMARY 

A theoretical analysis of an airplane automatic control system 
incorporating a compensating network is presented. The compensating 
network is a computing network that has characteristics that are the 
inverse of the airframe; consequently, airplane dynamics are eliminated 
from the system response. The transfer function of this type of control 
is developed, and the result is applied to the analysis of roll control 
systems. The basic roll control system is a displacement or bank-angle 
control system. This basic system was modified by feeding back rolling 
velocity and acceleration to the input of the compensating network to 
obtain velocity and acceleration control systems. In addition to the 
linear analysis, an analog-computer study was made to determine the 
effects of limiting the control-surface rate and displacement and of 
Incomplete compensation on the command response of the roll control 
systems. 

The results are presented in the form of time histories of the 
lateral airplane variables and control-surface motions. 

For the forward-loop compensating network, the effects produced by 
limiting and incomplete compensation on the response characteristics of 
the system indicate that the system cannot at present be considered as 
a satisfactory automatic control system for interceptor airplanes. 

INTRODUCTION 

The manned all-weather interceptor has assumed an important role 
as an air defense weapon. Since it is anticipated that the interceptor 
may be automatically controlled in the attack phase of the intercept 
mission, an effective automatic control system is a necessary component
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of the automatic interceptor system. The interceptor airframe, as 
presently conceived, is a monowing design that rolls to turn toward the 
interception point. Therefore, an automatic roll control system is a 
necessary part of the guidance system for these interceptors. As part 
of a general investigation of the attack phase of the automatic inter-
ceptor, a roll control system Incorporating a compensating network has 
been studied. 

Reference 1 proposes the use of a compensating network, as part of 
an automatic pilot, to compensate all or part of the lateral and longi-
tudinal modes of the airframe. Compensating networks that wholly or 
partially cancel the longitudinal modes of the airframe, when controlled 
by a human pilot, have been discussed in references 2 and 3. 

The compensating network, as used in the roll control system of the 
present investigation, is a control-deflection computer designed to 
eliminate the lateral modes of motion from the response of the system 
to a command Input. If the roll control system operates in a linear 
manner and if the compensating network Is correctly designed, cancellation 
of the airframe dynamics is always obtained. However, in this investiga-
tion physical limits were imposed on control-surface rate and displace-
ment; thus the system became nonlinear. Also, small inaccuracies in the 
mass and aerodynamic data required to design the compensating network 
and changes in the airplane flight condition were used to introduce 
incomplete compensation into the system operation. The effect of these 
nonlinearities and inaccuracies on the behavior of the system in response 
to command inputs for a forward-loop compensating network Is discussed in 
this paper. 

The results are presented as time histories of the lateral motions 
of the interceptor and control-surface motions, which were obtained on 
the Reeves Electronic Analog Computer (REAC) at Project Cyclone and at 
the Langley Aeronautical laboratory. Some of these results have been 
previously summarized in reference 14. 

SYMBOLS 

t	 time, sec 

D	 differential operator, dt 

a	 arbitrary constant In exponential input Ø(i - et) 

F(D)	 compensating-network transfer function, forward loop
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compensating-network transfer function, feedback loop 

S(D)	 first-order-servo transfer function 

s1(D)	 integrating-servo transfer function, s1(D) = s(D) 

G(D)	 primary airplane transfer function 

N(D)	 numerator of G(D) 

8(D)	 denominator of G(D) 

G1(D)	 secondary airplane transfer function 

n	 exponent of integrator in compensating network 

(D), x(D)	 degrees of freedom of airplane 

M	 externally applied disturbance function 

0(D)	 output of feedback-loop compensating network 

servo time constant, sec 

K	 compensating-network gain constant 

R(D)	 arbitrary polynomial defining airplane response, used in 
feedback-loop compensating network 

K1	 velocity-command gain constant, sec-1 

K2	 acceleration-command gain constant, sec-

b	 wing span, ft 

S	 wing area, sq ft 

relative density factor, -a--
pSb 

M .	 mass of airplane, W/g, slugs 

W	 weight, lb 

g	 acceleration due to gravity, ft/sec2 

KX	 nondiinenslonal radius of rration in roll about longitu- 

dinal stability axis, /Kx0 2cos2T1 + KZ02sin21
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KZ	 nondiniensional radius of gyration in yaw about vertical 

stability axis, J o i + K2sin2T 

KXZ	 nond.iinensional product of inertia, (KXO2 - KZO2) sin Tj cos 

Kxo	 nond.imensional radius of gyration about principal X body 
axis of airplane 

KZO	 nond.imensional radius of gyration about principal Z body 
axis of airplane 

0	 roll angle of airplane 

sideslip angle of airplane 

11	 yaw angle of airplane 

angle of attack 

TI	 inclination of principal longitudinal axis with respect 
to flight path 

Y	 flight-path inclination from horizontal, 0 - a.. 

ba	 aileron deflection angle 

p	 rolling angular velocity, radians/sec 

r	 yawing angular velocity, radians/sec 

H	 altitude, ft 

P	 mass density of air, slugs/cu ft 

V	 true airspeed, ft/sec 

M	 Mach number 

C 1	 rolling-moment coefficient, Rolling moment 
qSb 

c	 yawing-moment coefficient, Yawing moment 
qsb 

Cy	 lateral-force coefficient, Lateral force 
qS 

CL	 trim lift coefficient



NACA RM L55E20
	

5 

Cl 
=


p
\2V 

Cn 
Cnp

 
2VJ 

Cyp
	

Cy 
= _____ 

(POV) 

- Cl 

C1 - frb 
2V 

Cn 

C = 
(2V)
rb 

Cy
r

Cy
 = _____ 

 
(TV)
rb

 
Cl C1  =

'Cn 
CflQ - - 

I-,	 13 

Cy 

13 

Subscripts: 

i	 input 

o	 output 

1	 limiting value of a variable 

A dot over a symbol indicates differentiation with respect to time;
do for example,	

= 

All angles are measured in radians unless otherwise noted.
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BASIC CONSIDERATIONS 

The automatic control system studied in this investigation incor-
porates a compensating network, 'a device that eliminates airplane dynamics 
from the system response. The compensating network is essentially a 
computer that solves a set of equations that are the inverse of the 
equations of motion of the airplane. The input to the network is either 
an angular displacement, velocity, or acceleration and the output is the 
control-surface deflection required to give the input value of the 
variable. 

Figure 1 presents the block diagram of an automatic control system 
incorporating a forward-loop compensating network. The dynamic response 
of this system is studied by a linear analysis and by simulation on an 
analog computer where nonlinearities and imperfect compensation were 
introduced into the problem. Inasmuch as the regulatory response charac-
teristics, the return of the airplane to a specified steady-state condi-
tion when disturbed from that condition by an externally applied moment, 
may be of some interest, this type of control-system operation was studied 
in addition to the command-response dynamics. Appendix A presents the 
theoretical analysis of the forward-loop compensating-network type of 
control system and the transfer function is developed. In addition, the 
feedback-loop compensating network is subjected to a brief analytical 
study in appendix A. This type of compensating-network control system 
appears to eliminate some of the disadvantages of the forward-loop 
compensating network but mechanization difficulties may bar it as a 
practical system. 

Application of the Compensating Network to Roll Control Systems 

In order to evaluate a specific application of the compensating 
network for the automatic control of airplanes, the principles set forth 
in appendix A were applied to three automatic roll control systems. 
These roll control systems differ in the number and types of feedback 
used and in this report the roll control systems are identified by the 
highest order feedback used. Thus the basic control system (fig. 2(a)) 
is a displacement control or bank-angle-feedback system. The second 
system (fig. 2(b)), herein called the velocity control system, is 
derived from the first by the addition of a rolling-velocity feedback 
and a gain Kl . The third system (fig. 2(c)), called the acceleration 
control system, was obtained by adding a rolling-acceleration feedback 
and a gain K2 to the velocity control system. 

In a compensating network control-system feedbacks are not required, 
as in other types of control systems, to add damping and thereby improve 
the system response, since the cancellation of the airplane dynamics
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eliminates the problems of poor airplane stability and.damping. Thus, 
feedbaks are always made to the input side of the compensating network, 
since feedbacks to the servo for additional damping are unnecessary and 
if made would destroy the cancellation of the airplane dynamics. The 
feedbacks shown in figure 2 are used to determine the airplane variable - 
bank angle, rolling velocity, or rolling acceleration - that is used in 
the compensating network to compute the desired control-surface deflec-
tion. This value of 8 is determined so that airplane dynamics are 
eliminated from the system response as the airplane assumes the value 
of the variable that Is fed to the compensating network. 

Since these roll control systems are considered as a part of a 
complete interceptor system, it is desirable to correlate the simulation 
used for the roll control systems with the automatic interceptor system. 
In an actual interceptor system the outputs of the airborne radar and 
director computer determine an azimuth error and an elevation error. 
These errors are used in the command computer to define a roll command 
and a normal-acceleration command. The roll command depends upon the 
particular type of guidance system used and may be either a desired bank 
angle in space coordinates or a bank-angle error in interceptor coordi-
nates. If an interceptor system is designed to command a 'bank angle in 
space coordinates, the bank-angle feedback Is a necessary part of the 
roll control system. Therefore, in order to simulate this system, the 
radar and computers need only be replaced by a bank-angle input to 
obtain a simple analog of the more complex system. However, if the 
radar-computer system operates in interceptor coordinates, the system Is 
closed by a feedback loop through the radar. In this case the basic 
command to the roll control system is a rolling-velocity command that 
is proportional to the azimuth and elevation errors. Therefore, replacing 
the radar and computer by a bank-angle input, a bank-angle feedback, and 
a gain to convert the bank-angle error to a rolling-velocity command 
constitutes the, first approximation to the analog of the more complex 
system. Thus, the roll control systems shown in figure 2 are applicable 
to either one of the two guidance systems mentioned above. 

Simulator Setup 

Airplane equations of motion. - All airplane transfer functions, and 
consequently the transfer function of the compensating network, used in 
this Investigation were derived from the linear equations of lateral 
motion with 7.= 0, which are as follows:
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(2p h D - CyP)P = 0	 j 
The general form of the airplane transfer function G(D) is 

G(D) 
= 0(D) =	 aiD2 ± a2D + a3	

(2) 
a( D) b1D1 + b2D3 + b3D2 + bD + b5 

In equation (2) the coefficients a1 to a3 and b1 to b5 are func-

tions of the mass and aerodynamic characteristics of the airplane and 
can be obtained by expanding the determinant of the airplane equations of 
motion, which is obtained from equations (1). 

Flight condition A, presented in table I,, is the standard flight 
condition used in both the airframe and compensating-network equations 
when perfect compensation was desired. Incomplete compensation was 
introduced, aerodynamically, by substituting the singular or group varia-
tions (flight condition A-i or A-2) into the airplane equations. When 
it was desired to use two flight conditions in the problem, flight 
condition A remained in the compensating network and flight condition B 
of table I was used in the airplane equations of motion. 

Compensating network. - The generalized transfer function of the 
compensating network is

K
	

(3) 
DG( D) 

where G(D) is the transfer function. O/öa of the airplane (eq. (2)), 
K is the gain or amplification through the network, l/D is an inte-
grator, and the exponent n prescribes the order of integration. In 
general, the maximum value of n that can be used is one greater than 
the highest order of the derivative of the bank angle that is fed back 
to form the input to the compensating network (see fig. 2).
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/ 
The servo. - The servo used through the investigation is a first-

order time-lag servo, defined by equation (Al). The servo time constant T 

is one of the variables of the investigation. 

Limiting was applied to the servo to simulate control-surface rate 
and displacement restrictions of a physical system. Two types of limiters 
were used, the winding and nonwinding types of limiters. When 6, the 
control-surface angular displacement, does not reach its limit, both 
types of limiters operate in an identical manner, even though 8, the 
control-surface angular rate, is limited. However, when 6 reaches its 
limit, important differences occur in the operation of these limiters. 
In the winding-type limiter, when 6	 the following condition 

I 
must be satisfied before 8 can move off the stop. In the nonwinding 
type of limiter for 8 ? 81

f0t
: T T 51	 (5) 

which implies that for 6 < 0, 8 moves off the stop immediately. It 
should be noted that the above discussion applies to positive limits. 
An equivalent representation can be written for the negative limits. 
These two types of limiters were included in the study because it was 
felt that winding limiters more closely approximate the operating charac-
teristics of the proportional servo and its stroking motor when they are 
operating in a saturated condition, whereas the nonwinding limiter repre-
sents a perfect proportional servo and stroking motor. 

The nonwinding-type limiter as used in this problem was set up so 
that	 goes to zero when 8 is limited. This return to zero by 6 
was not carried through to the recorders; consequently, t always shows 
a value on the record whether or not 8 is limited. Therefore, in order 
to determine.when 6 is limited from these records for the nonwinding 
limiter, the behavior of 6 must be taken into account as well as the 
behavior of 8.
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SCOPE 

The investigation included both a linear analysis and a REAC study 
of the three types of roll control systems. The main purpose of the 
linear analysis is to show the effect of the system gains and servo time 
constant on the roll response of the airplane to a command input. The 
REAC study was conducted to investigate the effect of incomplete compen-
sation and nonlinearities. 

Incomplete compensation results when the transfer function of the 
compensating network is not the. exact inverse of the airplane transfer 
function. In the REAC simulation, incomplete compensation was introduced 
by changing the airplane flight condition from the flight condition for 
which the compensating network was designed and also by varying the 
stability derivatives singly and in combination in the airplane transfer 
function as shown in flight conditions A-i and A-2 of table I. The 
latter simulates the problem which may arise in practice, where the 
compensating-network design is based on estimated stability derivatives, 
and the resulting network transfer function is not the exact inverse of 
the actual airplane transfer function. The nonlinearities incorporated 
in the system are limits imposed on the maximum values of control-surface 
rate and displacement.

RESULTS AND DISCUSSION


General 

The transfer functions used in the linear analysis of these control 
systems were derived as outlined in appendix A, assuming perfect compen-
sation and linear operating conditions. The transfer function for each 
of these systems is as follows: 

For the displacement control system

K	 (6) 
- r(i + TD) + K 

For the velocity control system

KK1	
(7) 

01 D"( 1 + TD) + 1<]) + KK1
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For the acceleration control system 

-	 KK1K2	
(8) 

01 Dn( 1 + TD) + KD2 + KK2D + K1K2K 

Routh's discriminant was applied to the characteristic equation of 
each of these systems. Unstable conditions were indicated as follows: 

For the displacement control system 

n>l
	

(9) 

For the velocity control system 

n>2
(10) 

Ki<	 (n=2) 

For the acceleration control system 

n>3 

K<Kjy-1	 (n=2)	
(u) 

K<	
K,	

(n=3) 
l-TK2 

In addition, system stability requires that all gains be positive. 

The rise time (the time required to reach 90 percent of the steady-
state value) and the response time (the time required for the motions to 
reach and remain within 5 percent of the steady-state value) were used 
to analyze system responses and to make comparisons of different operating 
conditions. The linear analysis was used to determine the effects of 
varying the gains and servo time constant on the command response of the 
system, The variations were checked on the REAC and it was found that, 
when no limiting was present, there was good agreement between the linear 
and REAC results. However, when n, the exponent of the compensating 
network, 'is equal to 1 and a step input is used, initial conditions arise 
in the problem that destroy compensation. This situation, with REAC 
records, is discussed in the section on the displacement control system, 
and an analysis of this condition for the same control system is presented 
in appendix B. When limiting of the control-surface rate and displacement 
was added, the problem became nonlinear. The REAC was used to investi-
gate this phase of the problem. Therefore, only REAC records showing the
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effect of varying the limits on the control-surface rate and displacement 
are presented in this report. 

Equation (A6) partially predicts the limiting condition introduced 
by increasing the gains because it shows that the forward-loop gain 
appears as a multiplicative factor in the amplitudes of 6 and 8. 

In general, the comments relative to the gains apply in the same 
way when T the servo time constant, is varied. However, BEAC results 
indicate that the value of T that is optimum in the linear analysis 
may not be the best when the control-surface rate and displacement are 
limited. For the displacement control system, where limiting is present, 
the oscillations introduced by T combine with the oscillations caused 
by the rate limiting to produce a system response that approaches the 
linear result. This effect Is shown In figure 3. 

When the roll response of the airplane is compensated, the 0 and 
4r motions are uncompensated. This occurs, as Indicated by equation (A6), 
because airplane characteristics appear as a factor of the characteristic 
equation of the 0 and 4' transfer functions. 

Incomplete compensation was introduced by changing the stability 
derivatives individually or in groups or by changing the flight condition 
as Indicated in table I. The resulting system response was in general 
unsatisfactory. However, in the case of the n = 3 acceleration control 
system, a satisfactory system response was obtained for the mixed-flight-
condition type of incomplete compensation. More detailed results of this 
study are presented in the sections on the displacement and acceleration 
control systems. The regulatory response for the basic control system 
and the two variations studied were uncompensated, as Indicated by equa-
tion (A8). Although the response was uncompensated, it showed stable 
characteristics. For the magnitude of the disturbances considered 
(Cj = C = 0.1) limiting of the control-surface rate and displacement 
was troublesome only at high values of the forward-loop gain or servo 
time constant, or both. Since the regulatory response was uncompensated, 
this mode of control-system operation was not extensively Investigated 
and no results are presented. 

The linear analysis and the REAC investigation of the effects of 
limiting are presented in the following sections for each of the control-
system variations considered. When applicable, results on incomplete 
compensation are also presented. 

The Displacement Control System 

Linear analysis. - Equation (6) subject to condition (9) was used to 
determine the effect of varying K and T on the response of the linear 
system. A step function, Øi = 600, was used as the command input.
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Figure Ii. shows that, as K is increased from 5 to 12, both the rise 
time and the response decrease. As T is increased from 0.01 to 
0.5 second (fig. 5), an oscillatory mode is introduced into the system 
response. An examination of the characteristic equation of the system 

indicates that these oscillations occur for T >1 and that the fre- 
WR 

quency of the oscillations is proportional to L	 - 4KT. 
2T 

REAC study. - In order to evaluate the effects of limiting and 
incomplete compensation, the control system was set up on an REAC type 
of analog computer. To check the REAC setup, a run was made under 
linear conditions. A step input of Ø = 600 was applied to the system 
and, inasmuch as no limiting occurs, the 0 motion shown In figure 6(a) 
should be directly comparable with the linear curve in figure 6(b). A 
comparison of these two curves shows that the frequencies and rise times 
of the two motions are radically different. An examination of the equa-
tions of motion of this control system indicated that initial conditions 
arising in the compensating network from the use of the step input were 
causing incomplete compensation. The analysis presented in appendix B 
shows that, in order for complete compensation to take place, Øj(o) 
The command-input network was changed so Øi(t) = Ø(i - e-at) and Øc 
was set equal to 600. Figure 7 shows the time histories of the recorded 
variables for the exponential input. A comparison of the 0 motion 
with that shown in figure 6(b) shows that the linear and REAC results 
are now in approximate agreement. 

As Indicated by equation (A6), the motions r, 0, b, and 6 due 
to Ø, shown in figure 7, will be uncompensated and contain the oscil-
latory characteristics determined from (TD 2 + D + K) (alD2 + a2D + a3) 
which is the characteristic equation of the system. Thus, In addition 
to oscillatory modes that come from the control system, oscillatory 
characteristics determined by alD2 + a2D + a3, the numerator of G(D), 
will also be present in the ijr and 0 motions. In terms of the mass 
and aerodynamic characteristics of the airplane, the coefficients a1, 
a2, and a3 are

al =2Kz2I\2c 
V ) 1a 

a2 = -	 (2KZ2CY + Cfl)C16 

83 = (21LCn -	 rC' + 2 CnCy)Cz
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For the airplane and control system studied herein, the airplane induced 
oscillations are predominant. The period of-the airplane oscillation, 
for the flight condition considered, is 1.65 seconds, which is very close 
to the period of the Dutch roll oscillation. 

The effect of limiting 8 and 8: The effect of limiting 6 and 
8 was studied by using the nonwind.ing type of limiter. Comparing 
figure 7 where 6 is unlimited with figureà 8(a) and 8(b) where 

is set at 100 deg/sec and 50 d.eg/sec, respectively, shows that the effect 
of limiting 8 is to Introduce a low Initial peak and an oscillation in 

the 0 motion. Further reductions in 8 1 cause more limiting to occur, 

which In turn causes the severity of the limiting-induced oscillation to 
Increase. 

When 8 is limited and 61 held constant, the effects are the same 

as noted for limiting of 6. As bj is reduced from 200 to 100 (figs. 9(a) 
and 9(b)), the amplitude of the oscillations increases. Setting 81 

equal to 5 (see fig. 9(c)) causes the entire pattern of the oscillations 
to change. The 8 motion now approxiipates a square wave. The high-
frequency oscillation in the 0 and 0 responses is the third harmonic 
of the basic frequency of the 8 square wave, the second term of the 
Fourier series for a square wave, and disappears as soon as the 6 square 
wave decays. A reduction In 61 to 40 deg/sec (fig. 9(d)) produced no 
major change in the motion observed in figure 9(c), where 81 = 0 and 

= 100 deg/sec. Thus, it appears that, for small values of 61, the 

effect of reducing 8j is not critical. 

Incomplete compensation: The aerodynamic stability derivatives of 
the airplane were varied singly and as a group as shown In table I. Only 
two of the derivatives, Cno and Cj, produced a noticeable effect on 

the system response, the effect of Cn o being more pronounced than the 

effect of Cj. When C	 was increased to 0.32 (fig. 10(a)), a very 

lightly damped hunting oscillation was introduced in the 0 and 0 
responses. The characteristics of this oscillation and its effect on 
the response time are such that the system response is considered 
unsatisfactory. 

Decreasing Cno to 0.25 or increasing C 1 to -0.08 had the same 

effect on the system response. Figure 10(b) shows an example of this 
effect on the system response for Cj = -0.08. This oscillation Is 

less persistent than the one introduced by increasing Cn (fig. 10(a)). 

However, comparing the system responses for CI O = -0.08 with a similar 

case for C1 = -0.106 (fig. 9(a)) shows that the oscillations in the 

0 and 0 motions are more lightly damped for the incomplete-compensation
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case (fig. 10(b)). Decreasing Cj to -0.13 produces a negligible 

effect on the system response. 

When the flight condition of the airplane was changed from flight 
condition A to flight condition B (table I), the oscillation shown in 
figure 10(c) occurred. The motion is completely unsatisfactory with 
8 and	 being limited most of the time. 

The Velocity Command System 

Linear analysis of the n = 1 system. - A linear analysis of the 
n = 1 system was made by using equation (7) subject to condition (10) 
to determine the effects of varying the gains K and K1 and the servo 
time constant T on the system response. A step input of Ø 1 (t) = 60° 

was used in this analysis. 

The effect of varying K and 1(1 is shown in figures 11(a) and 
11(b) for T = 0.01 and 0.3 second, respectively. The effect of 
increasing K is to decrease the rise and response times for small 
values of K1 at both values of T. This effect is much less marked 
at high values of K1. For combinations of K, K1, and T which 

result in oscillatory motions, that is, when 4KK1T > (K + 1)2, 
increasing K adds damping to the system. 

The most pronounced effect of increasing K1 is to reduce the rise 
and response times. As can be seen from figure 2(b), the gain K1 
appears as a multiplicative factor on the bank-angle error, and thus 
the rolling-velocity command which controls the speed of response is 
directly proportional to 1(1. 

In order to improve the system response, K1 should be increased 
to control the rise and response times while K is increased to add 
damping to the system. The servo time constant T should be kept as 
small as possible. 

REAC study of the n = 1 system. - The n = 1 system was studied 
on the REAC by using the nonwinding type of limiter and the exponential 
input. 

With 8 1 set at 200, 8j was decreased from 100 deg/sec 

(fig. 12(a)) to 40 deg/sec (fig. 12(b)). This reduction in 61 causes 
the system to become more oscillatory, and the rise and response times 
are increased. A comparison of figures 12(a) and 12(c) shows the effect 
of reducing a,. to 50 while 6 1 remains at 100 deg/sec. For this 
condition the 6 motion closely approximates a square wave, and again
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the third harmonic of the basic frequency of this wave appears in the 

0 and	 motions. The rise time of the system is increased while the 
response time is almost unchanged. Reducing 5 1 from 200 to 50 when 

j is 11.0 deg/see (figs. 12(b) and 12(d)) produces results similar to 
those previously obtained. A comparison of figures 12(c) and 12(d) 
indicates that a reduction in bj when 6 is 50 does not appreciably 

affect the system response. The square-wave phenomenon and the insen-
sitivity to reductions in 61 for 51 = 5 were also noted in the dis-
placement control system. 

Linear analysis of the n = 2 system. - Equation (7) subject to 
condition (10) was used to make a linear analysis of the velocity control 
system for n = 2. A step input of Oi(t) = 600 was used as the forcing 

function. As in the linear analysis of the n = 1 system, K, K1, and 

T were varied to determine their effect on the system response. Fig-
ure 13(a) shows the effect of increasing r from 0.01 to 0.3 second on 
the system response. As T is increased the system response becomes 
oscillatory, a condition that would be expected since the condition for 

neutral oscillatory stability is 	 = K1. Thus for constant K1 the 

severity of the oscillation increases directly with T. 

As K1 is increased from 1.5 to 16 (fig. 13(b)), the system 
response becomes oscillatory. However, in spite of the oscillatory 
mode, both the rise time and response time show large decreases. The 
oscillations may be reduced or eliminated by increasing K. With 
K1 = 16 increasing K to 61 gives a deadbeat response for the system 
and further decreases the rise and response times. The gains K and 
K1 perform the same functions for this system as they did for the 
n = 1 velocity control system, K1 controlling the speed of response 
and K the damping. However, in the n = 2 system, in order to mini-
mize the oscillatory characteristics in the response, when T is 
constant, K must be greater than K1. 

REAC investigation of the n = 2 system.- The n =.2 velocity 
control system was studied on the REAC with both types of limiters; a 
step input of Oi(t) = 600 was used as a forcing function. 

Two types of limiting were used for the n = 2 velocity control 
system, the nonwinding and winding types of limiters. These limiters 
have been discussed in a previous section of this paper. 

When 6 is made unlimited by setting T = 0, the two types of 
limiters are equivalent. This condition is used to show the effect of 
limiting B. Figures 14(a) and 14(b) show that, as bi is decreased 

from 200 to 100, the smooth response of figure 14(a) is modified by an 
oscillatory mode. A decrease in 5 1 to 50 (fig. 111(c)), causes this 
oscillation to become more severe.
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The effect of reductions in 6 1 is shown for b, = 200 in fig-

ures 15(a) and 15(b) and for bj = 50 in 15(c) and 15(d) for the non-
winding type of limiter. For 81 = 200 a reduction in 51 from 

100 deg/sec to 40 deg/sec causes oscillations to develop in the 0 and 
) motions. When a similar reduction is made for 51 = 50, no appre-
ciable change occurs in the motion. However, the square-wave condition 
at low values of 51 noted for the preceding systems occurs in this 
case. The results for the winding type of limiter are shown in fig-
ures 16(a) and (b) for 6 1 = 200 and in figures 16(c) and 16(d) for 

bi = 100 . When 6 1 is reduced from 100 deg/sec to 40 deg/sec for 

= 200, the oscillations occurring in the 0 and 0 motions become 
more severe. When bj is 10 0, a reduction of 61 from 100 deg/sec to 
60 deg/sec causes the system to become unstable. No stable cases for 

= 50 were found for the winding-type limiter. Until the system 
became unstable, the rise times varied very little, but, because of the 
oscillations, the response time was gradually increasing. 

The Acceleration Control System 

Linear analysis of the n = 3 system. - A linear analysis of n = 3 
acceleration control system was made by using equation (8) subject to 
condition (ii). The system constants that were varied during this inves-
tigation are K, K1 1 K2, and T. 

Figure 17 shows the effect of varying K on the 0 response. As 
K is increased from Ii. to 20, the oscillations and overshoot are elim-
inated. This increase in K is accompanied by an increase in rise time 
and a decrease in response time. The oscillations that occur for K = Ii. 
would increase with decreasing K since for the values of K1, K2, and 

T used the system is approaching the condition for neutral oscillatory 
stability, which occurs at K = 1.55. 

As K1 is increased from 0.75 to 2.0 (fig. 18), both the rise time 
and response time decrease. At K1 = 2.0, an overshoot and slight oscil-
lation occur in the response. Further increases in K1 would cause this 
oscillation to become more severe. 

As K2 is increased from 3 to 6 (fig. 19), the 0 response gradually 
flattens until at K2 = 6 a visible change in slope occurs at t = 0.8 
second. This change in slope is probably caused by a change in the damping 
introduced by the change in K2 and the limits placed on the velocity 
and acceleration commands because of the way In which they are determined. 
With K2 = 6, increasing K1 to 2 improves the system response and 
decreases the rise and response times. The Increase in K1 has decreased 
the system damping and liberalized the limits on the velocity and acceler-
ation commands.
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As T is increased from 0.1 to 0.2 second (see fig. 20), the 0 
response is practically the same up to some point between T = 0.1 to 
0.2 second. At this point an oscillation starts to develop, which is 
quite evident at T = 0.2 second (see dashed curve in fig. 20). As 
T is further increased., this oscillation will become more severe until, 
at T = 0.3 second, neutral stability occurs (see eq. (8) and conditions 
for unstable operation). 

A study of figures 17, 18, and 19 indicates that K controls the 
damping, while K2 controls the rapidity of the initial response and 
affects the damping. The gain K1 exerts an influence on the rise and 
response times that is inversely proportional to magnitude. Thus, 
increases in 1(i and K2 will improve the speed of response and 

increasing K together with the increase in K2 keeps the system 
response nonoscillatory and should give a better overall system response. 
Accordingly, K1 was increased to 3.25, K2 to 10, and K to 20 while 

T was held. constant. This response, shown in figure 21, is deadbeat 
with much smaller rise and response times than have previously been 
obtained for the n = 3 acceleration control system. 

REAC investigation of the n= 3 system.- A step input of 
0(t) = 60° was used as the forcing function in the REAC study of the 
n = 3 acceleration control system. A winding-type limiter was used 
for this system. Since the winding-type limiter gives a more conserva-
tive result for a given system than the nonwinding type of limiter, the 
trends for the n = 3 system as studied should also indicate the trends 
to be expected if the nonwinding limiter had been used. The major 
difference between the effect of the two types of limiters is that 
regions of unstable operation indicated for the system with the winding-
type limiter might not occur under similar conditions for a system 
equipped with the nonwinding limiter. 

The effect of limiting b and : In order to show the effect of 
reducing 5 1 on the system response, the limit on the control-surface 
rate was removed by setting T = 0. As bi is reduced from 200 to 100 
(figs. 22(a) and 22(b)), no apparent change occurs in the 0 motion 
and a very slight oscillation is noted in the 0 and 0 responses. 
When ö was reduced to 50 ., the system became unstable. 

With	 set at 100 deg/sec and 5 = 200 (fig. 23(a)), a non-
oscillatory response that is almost equivalent to the j = CO response 

(fig. 22(a)) was obtained. Reducing	 to 1+0 deg/sec (fig. 23(b)) 
introduces an extremely small oscillation into the 01 5, and 0 motions. 
Available results indicate that, for 5 1 = 100 and 6 1 = 100 deg/sec 

and 40 deg/sec, the system response does not change appreciably from 
that shown in figure 23 . When 5 1 was reduced to 50, unstable condi-

tions were encountered for all values of 81.
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Incomplete compensation: When the stability derivatives were varied 
individually or in a group, as indicated in table I, the n =3 acceler- 
ation control system response was modified in the same way as the response 
of the displacement control system. 

Changing the airframe flight condition from A to B (table I) 
produced unstable results for low values of K, thus following previous 
trends. However, when K was increased to 14 (fig. 24(a)), the insta-
bility was reduced to a hunting oscillation. Increasing K to 24 
(fig. 24(b)) practically eliminated these oscillations in the 0 response, 
and the oscillation in the other recorded variables is damped. 

Remarks on other control systems using acceleration feedback. - 
Acceleration control systems described by equation (8) with n ;71 or 2, 
were superficially investigated by a linear analysis. The general trend 
of these reduced-order acceleration control systems was to require a 
different distribution of the forward-loop gain between K1, K2, and K 

than for the n = 3 system for the most satisfactory response. In 
addition, there are indications that higher values of the forward-loop 
gain can be used before limiting oscillations become severe enough to 
affect the system response adversely. 

An acceleration control system with the	 feedback eliminated and 
K2 = 1 was investigated by linear methods. Routh's criterion indicated 
unstable conditions for n > 1. For n = 1 the system was stable for 
very small values of K and the allowable range of variation of K was 
small. The response of the system was very slow unless extremely large 
values of K1 were used. These large values of K1 commanded airplane 
accelerations that are considered as too high to be practical. Because 
of the high accelerations and the narrow band of K for stable operation, 
this system was not investigated on the REAC. 

CONCLUDING REMARKS 

The concept of the compensating network, a computing device that 
eliminates the dynamics of the controlled element from the system response, 
has been applied to automatic control systems. The general characteristics 
of this type of control system have been determined and the results applied 
to the analysis of three related automatic roll control systems for air-
planes. These roll control systems differ in the number and type of feed-
backs that are used to supply information to the compensating network for 
use in computing the control orders that produce cancellation of the air-
plane dynamics.
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Within the limitations imposed by control-surface rate and dis-
placement limiting and by imperfect compensation, the compensating net-
work can give adequate command roll control that is free of airplane 
dynamic characteristics. Limiting of the control-surface rate and dis-
placement introduces oscillatory modes into the system response that 
become more severe as the limiting time Increases. Because of the way 
in which the limiting affects the system, restrictions were placed on 
the gains, the order of integration in the compensating network, and the 
servo time constant. The most critical effect caused by imperfect com-
pensation occurs when a change in airplane flight condition, not accounted 
for by the compensating network, introduces an unstable response. Inaccu-
racies in the airplane mass and aerodynamic parameters used to design the 
network are not critical except In the case of Cn and C1 (partial 

derivatives of yawing-moment and rolling-moment coefficients with respect 
to sideslip angle) when hunting oscillations are introduced, into the 
response. In addition to the difficulties introduced by limiting and 
incomplete compensation, the control of the yaw and sideslip motions are 
characteristically uncompensated in the command mode of operation. 

The effects of limiting and imperfect compensation on the regulatory 
response are the same as for the coimnani, response. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 


Langley Field, Va., May 12, 1955.



NPLCA RN L75E20

APPENDIX A 

DEVELOPMENT OF TRANSFER FUNCTIONS FOR COMPENSATING-NETWORK 


CONTROL SYSTEMS 

In this appendix the transfer functions of automatic control sys-
tems using compensating networks are developed. The transfer functions 
are derived for linear operating conditions and perfect compensation. 
The forward- and feedback-loop compensating network are discussed in 
the order mentioned. 

The Forward-Loop Compensating Network 

The block diagram of an airplane equipped with an automatic con-
trol system is shown in figure 1 where F(D), S(D), and G(D) are 
the transfer functions of the compensating network, servo, and airplane, 
respectively. 

An examination of the response characteristics of typical high-
performance servos indicated that over the range of airplane frequencies 
a first-order time-lag servo was a good first approximation of a phys-
ical servo. Accordingly, the servo transfer function was taken as 

S(D) =	 1	 (Al) 
1 + TD 

where T is the servo time constant. The closed-loop transfer function 
of the system is

Xo = F(D) s(D) G(D)	
(A2) 

Xi 1 + F(D) s(D) G(D) 

It is desired to determine the transfer function of the compensating 
network F(D) so that the airframe dynamics are canceled and that as 
a command system the closed-loop response has zero steady-state error. 
Basic servomechanism theory requires that, in a closed-loop system, an 
integration take place to satisfy the zero-steady-state-error condition 
(see ref. 5). Therefore, a logical choice for the compensating-network 
transfer function is

F(D) = K	 (A) 
DG(D)
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Substituting for F(D) and s(D) in equation (A2) results in the 
closed-loop transfer function

K (Alt) 
X1 - TD2 + D + K 

and

urn	 (A5) 
D—O i 

Thus, the requirements that the airplane transfer is canceled and the 
steady-state error is zero are both satisfied. It should be noted that 
in compensating-network control systems the integration must always be 
introduced explicitly because implicit integration in the airplane trans-
fer function is eliminated by the cancellation process. 

In the foregoing analysis the transfer function F(D) was deter-
mined to give complete compensation for a particular degree of freedom 
of the airplane X. If there Is another degree of freedom n, which is 
related to X by the transfer function G1 (D), (see fig. 1), no/Xi 

given by

K
  
_	

G1 (D)	 (A6) 
xi xi xo xi	 TD2+D+K 

If G1 (D) is the ratio of two polynomials, the output motion 

will contain modes determined by the denominator of G1(D) since It 

appears as a factor of the characteristic equation of the system, and 
thus the response is uncompensated. 

Behavior of the compensating-network control system as a regulator.-
In addition to providing compensated control in response to command inputs, 
the control system Is sometimes called upon to act as a regulator. If a 
disturbance M(D) is applied to the airframe, as shown In figure 1, and 
the Input Xi 0, the closed-loop transfer function Is 

=	 G(D)	
(A7) 

M	 + F(D) s(D) G(D)
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Substituting S(D) = 1	 and F(D) - K 
1+TD	 1x(D)

into equation (AT) yields 

(A8) 
Xo = -D(1 .+ TD) G(D) 

M TD2+D±K 

If G(D) is the ratio of two polynomials in D and the denominator 
contains a constant, the steady-state condition for the regular response, 

urn XO = 0 1 is satisfied. However, G(D) that appears in equa-
D — O M 
tion (A8) is a transfer function of the airplane. Since the denominator 
of G(D) is a factor of the characteristic equation of the system, the 
response will contain airplane characteristics. Thus, the forward-loop 
compensating network does not eliminate airplane dynamics from the regu-
lator response. 

When the control system is responding to external disturbances 

(that is, when moments are applied to the airplane) the motion 71 0 is 

related to the disturbance M by the following transfer function: 

10- X0	 =	 a(D) = D(l + TD)
G(D) G1 (D)	 (A9) N	 TD2+D+K 

Thus, motions determined in part by the denominator of G(D) will 
appear in the i 0 (D) motion. Thus, in most cases the response 

will contain airplane modes and therefore the response is uncompensated. 

The Feedback-Loop Compensating Network 

Figure 25 is a block diagram of a simple displacement type of con-
trol system incorporating a feedback-loop compensating network. The 
transfer function of this control system for the command mode of opera-
tion, X t 0, M = 0, is 

2. =	 S1 (D) G(D) 

Xi 1 + F1 (D) s1 (D) G(D)
(Ala) 

and for the regulatory mode of operation, X = 0, M j 0, the transfer 

function is
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X0 -	 G(D)	 (All) 
M - + F1 (D) s1 (D) G(D) 

where S1 (D), G(D), and F1 (D) are the transfer functions of the servo, 

airframe, and compensating network, respectively. 

For the feedback-loop compensating-network control system, the 
servo transfer function assumed for this study is 

s1 (D) = 1 s(D) =1	 (Al2) 
D(l + TD) 

and if the transfer function of the compensating network is assumed to be 

R(D) s1 (D) - KB(D)	
(A13) F1(D) -

	 Ks1(D) N(D) 

the following system transfer functions result: 

2. - KN(D) 
Xi R(D)

(Ai) 

Lo =Kii(D) G1(D)	 (A15) 
X 	 Xi X0 R(D) 

for the conme.nd responses and 

Xc = KD(1 + TD) N(D)	 (A16) 

	

M	 R(D) 

X0 i	 KD(l+TD) N(D) G1 (D)	 (Al7) 

	

MM XO 	 R(D) 

for the regulatory responses. 

In these transfer functions R(D) is an arbitrary polynomial in 
D that defines the airplane response. If R(D) is taken so that 
(1 + TD) appears as a factor, the transfer functions for the regulatory 
response will become simpler.
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Perfect compensation is present in contrast to the lack of com-
pensation for some phases of operation found in the forward-loop com-
pensating network obtained for all these responses. For equations (All.) 
and (A16) there are no airplane characteristics in the characteristic 
equation of the system. In equations (A15) and (A17) the denominator 
of G1(D), which is N(D), is canceled by N(D) in the numerator. In 
addition, equations (Ali-) to (A17) meet the required steady-state condi-
tions for the command and regulatory responses. 

It would appear that the feedback-loop compensating network-is-an-
ideal compensating system. However, there are two practical difficulties 
that arise with respect to this system. First, it appears that R(D) 
must be a seventh-order polynomial in order to prevent derivatives from 
appearing in the system transfer function. Second, in the compensating 
network the numerator has a higher order than the denominator, which 
introduces derivatives into the system and the order of the derivative 
is such that it might make it very difficult to mechanize the compensating 
network. The use of a seventh-order polynomial for R(D) would aggravate 
this condition. 

Thus, before the feedback-loop compensating network can be evalu-
ated, more basic research is required to determine whether the above-
noted difficulties are inherent in the system.
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APPENDIX B 

THE INITIAL CONDITIONS IN THE COMPENSATING-NETWORK 

CONTROL SYSTEM 

In the REAC study of the displacement control system, it was found 
that when a step input was used the response of the control, in the 
absence of control-surface rate and displacement limiting, was incon-
sistent with the results of the linear analysis for a similar input. 
Since servomechanism theory prescribes that, in order for a transfer 
function, as used in this paper, to exist, all initial conditions in 
the system must be zero (see ref. 5, p. 84), the characteristics of the 
step input and the equations of motion of the system were examined to 
determine if the assumption of zero initial conditions through the sys-
tem had been violated on the REAC. 

The step input was examined (see ref. 6) and it was found that for 
t = 0 the step input has an average mean value of 1/2. This means that 
for the 600 step used the value of Oi at t = O is 300. 

Figure 26 is a block diagram of the displacement control system as 
it was set up on the REAC. The equations of motion of this system are 
as follows:

=OiOo	 (Bl) 

€1 = K(Øi - O)	 (B2) 

Vi = K(O1 -	 - x0 	 (B3)

 .0]V0 = g (D) [K ( -	 -	 (M) 

(D - k1)x0 - (k2D2 + k,D) - kj = k5V0 	 (B5a) 

+6D + k7) 0 + (D2 - k8D) - k9 = 0	 (B5b)
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- k11 I 
t 

Xo -	 + (D -	 = o k13)
	

(B5c) 

V0 = (i + TD)ba
	 (B6) 

(D2 - kiD)Ø - (k2D2 + k3D)	 = k7ba 

- (1D2 + k7D) + (D2 - k8D) -	 = o	
(B7) 

- (k1 + k11) 0 - k12Di + (D - k13) 0 = o 

where k1 to k 13 are functions of the airplane mass and aerodynamic 
parameters, €, €, and V0 are defined in figure 26, and X0, t y 
and t correspond to 0, 41, and P, respectively. The transfer func-
tion of the high-gain amplifier is g(D) and	 is the gain of this 
amplifier. 

After assuming the transfer function of the high-gain amplifier g(D) 
to be unity and taking account of the initial condition on Øj, the deter-
minant of the equations of motion was expanded for Ø0 (D). This expan-
sion gave

+	
- 

00 
= + f2(D) 	 ^ TD)	 f2(D) 

+	
- fl (D){Kf2(D) +	 -  

-	 - kin) - kki2]k6 + 	 fl(D)}x0(o)	
(p8) 

+ TD) 12 (D) + f1(D} -	 +	 - 2Kfi(D)}
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and

=	 kØ	 +	 (k2D - k3)(D - k1)	 k5 - kkl21k6 +	 f1 (D)i 

TD

Xo(o) 
lim. 00 __________ 

2 +D+K	 (TD2+D+K)f2(D)

(B9) 

In this equation f1 (D) is the numerator of the transfer function ø/a 
and f2 (D) is the denominator of that transfer function. 

The first term on the right-hand side, after being divided by 01, 
is easily recognizable as the transfer function for Oo/Ø .j used in the 

linear analysis. The second term is a function of-the initial value 
of X0. If x0 (o) 0, this term is zero and complete compensation takes 

place. If x0 (o) 0, this term is not zero and complete compensation 
does not occur. By evaluating equations (Bi) to- (B5) at t = 0, it can 
be shown that

x0(o) = KØ1 (o)	 (Blo) 

Thus, if a step input is used, complete compensation will not take place. 

However, if O(t) = Oc(1 - e-at), then Ø(o) 0 and from equa-

tion (Blo) x0 (o) 0; thus the second term on the right-hand side of 
equation NO becomes zero and complete compensation takes place. 

This analysis was extended to cover the velocity and acceleration 
control systems. For these systems it was found that when n = 1 the 
exponential input had to be used to get complete compensation. For 
n > 1 the step input could be used and complete compensation was 
obtained.	 -
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TABLE I. - AIRPLANE FLIGHT CONDITIONS AND


CHARACTERISTICS CONSIDERED 

Parameter

Flight condition 

A A-i A-2 

(
(singular (group B 

variations) variations)  

H, ft 6o,00o 6o,000 
p, slugs/cu ft 0.000224 0.00(2211. 
W, lb 26,547 26,514.7 
by ft 35.81 35.81 
5, sq ft 401 11.01 
V, ft/sec 1,911.2 1059 
€, deg 6.95 I 0 
a, deg 3.58 5.04 

= € + a, deg 10.53 5.014. 
256 

Kx2 0.0151 0.0124 

o.us o. 1-16 

Kxz 0.0188 0.00916 
b/v. 0.01844 0.02635 
M 2.0 1.11. 
C] 0.0411. 0.0635 

CL 0.157 0.520 
Cj5CL -0.0773 -0.117 

CI p -0.205 -0.15,-0.25 -0.15 -0.275 

CIO -o.io6 -o.08,-o.13 -0.13 -0.128 

C ir 0.18 0.12,0.2 0.12 0.189 
Cnp 0.0275 -0.01,0.05 -0.01 _0O114. 
Cn 0.285 0.25,0.2 0.52 0.345 

Cnr 0.600 0.5,0.7 -.500 0.690 
Cy	

j
_-0.695 -o.6,-o.8 -0.600 -0.785
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0._	 >F(D)rO  .00.J  

(a) Displacement control system.. 

Oi
ø __ 	 F(D)  

(b) Velocity control system.

I 

(c)Acceleration control system. 

Figure 2. - Block diagrams of roll control systems incorporating a com-




pensatory network.
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(a) BEPLC result for step input Øj = 600. 

Figure 6.- Response of displacement control system. K = 5; T = 0.1 second;

flight condition A; no limiting.
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Figure 7 . - Response of displacement control system. K = 5; T = 0.1 second;


a = 8; flight condition A; exponential input 01 = Øj (l - e-at ); no 

limiting.
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Figure 15.- Effect of limiting of S on the response of the n = 2 
velocity control system. K1 = 1.5; K = 8.0; r = 0.01 second; flight 

condition A; step input ç7f = 600 ; nonwinding limiter.
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Figure 15. - Concluded.
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