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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 


RESEARCH MEMORANDUM 

ESTIMATION OF INCREMENTAL PITCHING MOMENTS DUE TO 

TRAILING-EDGE FLAPS ON SWEPT AND TRIANGULAR WINGS 

By Harry A. James and Lynn W. Hunton 

SUMMARY 

A method is presented whereby incremental pitching moments can be 
estimated for swept and triangular wings having arbitrary types of 
trailing-edge high-lift flaps. In the method use is made of span-loading 
theory together with two-dimensional airfoil data adjusted for the effects 
of sweep. The method as presented was limited to low speeds and small 
angles of attack. 

Application of the method is demonstrated for some 58 cases covering 
various types of flaps on wings having a wide range of sweep, aspect 
ratio, and taper ratio. For all wings, swept as well as triangular, a 
mean deviation from experiment of about 0.02 in incremental pitching-
moment coefficient was found. 

Two-dimensional-flap data pertinent to the general application of 
the method are summarized in graphical form. 

INTRODUCTION 

The theory of references 1 and 2 permits the rapid determination of 
the spanwise distribution of lift, lift-curve slope, aerodynamic center, 
and induced drag for wings having arbitrary plan forms and trailing-edge 
flap configurations. Calculations of the pitching moment with trailing-
edge flaps deflected, however, are outside the scope of this theory since 
no method of estimating the chordwise distribution of the loading due to 
flap deflection was included. 

The work of reference 3 has demonstrated, on a particular 1150 swept-
back wing with flaps, how two-dimensional airfoil data and sweep theory 
can be used to estimate the chordwise load distribution on a swept wing 
when the spanwise load distribution is known. Once the chordwise and 
spanwise load distributions are known, of course, the pitching moment can 
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readily be determined. The purpose of this report is to present a method 
for estimating the incremental pitching moment due to trailing-edge flaps 
on swept and triangular wings by using two-dimensional airfoil data and 
theory in conjunction with sweep theory. To demonstrate the range of 
applicability of the procedure, a study has been made wherein measured 
and estimated pitching moments are compared for a wide variety of flap 
configurations on swept- and triangular-wing plan forms. 

To facilitate the general application of the method, some attention 
has been given to collecting from numerous sources relevant two-dimensional 
data for the commonly used types of high-lift flaps, including some data 
for flaps with area suction or blowing. These results have been summarized 
herein in graphical form.

NOTATION 

A	 aspect ratio 

b	 wing span 

c	 local chord

1b/2 c2dy 
mean aerodynamic chord, rb/2 c dy 

Jo 

CL	 lift coefficient lift , qS 

Cm	 pitching-moment coefficient about	
pitching moment 

qS 

section lift 
c 1	 section lift coefficient, 	 qc 

CM	 section pitching-moment coefficient, section pitching moment qc2 

c 1	 rate of change of section lift coefficient with angle of attack, 
per deg 

cze	 rate of change of section lift coefficient with flap deflection, 
per deg 

cm5	 rate of change of section pitching-moment coefficient with flap 
deflection, per deg

CONFIDENTIAL



NACA B1'l A55D07	 CONFIDENTIAL	 3 

C.P.	 center of pressure, percent chord 

S	 wing area 

K	 factor equal to 3- 
ioo(A,1)2 

q	 free-stream dynamic pressure 

x	 longitudinal coordinate from c/4 to local c.p. 

y	 lateral coordinate from plane of symmetry 

a	 angle of attack, deg 

ab	 flap effectiveness parameter, - 

A	 incremental value 

angle of flap deflection, measured in plane parallel to plane of 
symmetry, deg 

angle of flap deflection for effective section measured in plane 

normal to the reference sweep line, 5n = tan-l(Lan o), deg 

angle of flap deflection measured in plane normal to hinge line, 
deg 

taper ratio 

fraction of semispan, 

A	 sweep angle, deg

Subscripts 

a	 additional lift due to angle of attack 

b	 basic lift due to camber 

f	 flap or increment due to flap deflection 

av	 average
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A	 yawed flow 

A=o	 two-dimensional or equivalent two-dimensional 

ThOD AND APPLICATION 

The intent of this report is to supplement references 1 and 2 for 
the purpose of obtaining estimates of the pitching moment with flaps 
deflected.' The chordwise distribution of the loading due to flap deflec-
tion as determined from two-dimensional data are applied, by means of 
simple-sweep theory, to swept wings and to highly tapered plan forms such 
as triangular wings. 

Section loadings on finite swept wings having moderate taper can, 
rather successfully be related to those in two-dimensional flow through 
the simple-sweep-theory relations by treating them as untapered wings 
having a sweep angle equal to that of the c/4 line, as demonstrated in 
references 3 and 11. The primary assumption made is that each section 
(streamwise) of the finite wing is assumed to behave as that of a yawed 
infinite wing having identical streamwise geometry and a sweep angle 
equal to that of the finite wing as illustrated in figure 1. For the 
yawed infinite wing the chordwise load distributions and centers of pres-
sure of streamwise sections are identical to those of sections normal to 
the leading edge. These normal sections designated as effective sections 
can be related directly to two-dimensional airfoil data through simple-
sweep-theory relations. 

To attempt to apply sweep theory to determine an effective section 
on wings with large amounts of taper leads to a rather complicated section 
owing to the variation in sweep angle of the constant-percent-chord lines. 
Obviously, in the interest of simplicity of application, some approximation 
is required for this case. Such an approximation is discussed in detail 
in a subsequent section.

Untapered Swept Wings 

A method is developed first for the simpler case involving no taper. 
One effective section is used for both the additional and basic types of 
chordwise loading. The following steps are then taken for the purpose of 
obtaining estimated local centers of pressure. 

1Another approach to this problem more limited in its applicability 
is presented in NACA TN 167 11 entitled "Estimation of Effectiveness of 
Flap-Type Controls on Sweptback Wings, " 1948, by John G. Lowry and 
Leslie F. Schneiter.  
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1. Determine the incremental spanwise load distribution due to flap 
deflection from available theory such as reference 1 (c j versus 9 as 
shown in fig. i). 

2. Obtain the centers of pressure for the sections (streamwise) of 
the wing that intersect the flap as follows: 

(a) Assume each finite-wing section to be equivalent to one on a 
yawed infinite wing having a sweep angle equal to that of the finite 
wing.

(b) Determine the geometry of the effective section on the yawed 
infinite wing. Being untapered, the flap deflection angle is the only 
important parameter which differs between the streamwise and effective 
sections. The flap-chord ratio remains unchanged and the variation in 
thickness can be ignored. 

(c) Solve for an equivalent two-dimensional lift coefficient in 
unyawed flow for each section that is being considered on the flap of 
the finite wing.

C ZA
C	

= _____ 

A=o cos2A 

where CiA is the incremental lift coefficient due to flap deflection 
and is equal to c1. 

(d) Determine a center of pressure from two-dimensional airfoil 
data or from theory of a section having the geometry of the effective 
section in (b) and at the lift coefficient obtained in (c). Since the 
section (strearnwise) of the finite wing is assumed as identical to 
that on the infinite wing, the local center of pressure can be assumed 
to be that found for the effective section. 

3 . Assume the center of pressure for the unflapped sections of the 
wing to be located at the 0.25-chord line, except in the regions within 
0.20 semispan of the ends of the flap. In this transition region, the 
center-of-pressure variation can be approximated by the relation 
c.p. = 0.25 + K(ic.p.). The value of the constant K and the definition 
of tc.p. are given in figure 2. This assumed variation for the center 
of pressure near the ends of the flap was based primarily on the experi-
mental data shown in figure 3. 

4. With the local centers of pressure and the span loading deter-
mined, an integration of the section moments about a common axis thus 
yields the incremental pitching-moment coefficient due to flap deflection 

CONFIDENTIAL
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b/2 
C	 CZACX dy 

Tapered Swept Wings 

Introducing taper into the problem rather complicates the determina-
tion of an effective section from sweep-theory concepts, owing to the 
variation in sweep angle of the constant-percent-chord lines. With flaps 
retracted, the loading is primarily of the additional type and may 
generally be assumed as concentrated close to the 0.27-chord line. With 
flaps extended, however, a large portion of the loading is of the basic 
(camber) type having a much more rearward center of pressure. Since the 
load line for the additional loading (i.e., quarter-chord line) has been 
shown (ref. ii-) to serve quite satisfactorily as the reference sweep line 
to define an average effective section for this type of loading, it 
would then appear reasonable to expect that the basic load line might in 
similar fashion be used as a reference sweep line to define an effective 
section for the basic type of loading. Thus, the effect of the varying 
sweep angle of the constant-percent-chord lines on the chordwise loading 
can be approximated in a rather simple manner. For the highly tapered 
wing, two different reference sweep angles become involved in the problem 

as illustrated in figure 4. Combining these two loads one may derive a 
local center of pressure as follows: 

c A	 a(	 + ctbA=o (cosAb) = c1aA + cib 

	

c	 c, 
\\	 ___ 

=	 taA+ C.P.bcj) 

However, it can be shown that the procedure can be simplified still fur-
thur'by use of only the basic load line as the reference sweep line for 
both components of the loading (additional and basic). Proof that use 
of only the one load line yields an identical value of c.p. to that0 
found by using both load lines is given in Appendix A. Hence, the more 
detailed procedure by parts resolves into one no more difficult than that 
used for untapered wings where only one effective section for both the 
additional and basic parts of the loading was necessary. 

The basic-load reference sweep line required in this method was 
determined from calculations of center of pressure of the basic load for 
a plain flap using the section theory of reference 5. In the present 
analysis the plain-flap theory of this reference has been used for all 
flap configurations irrespective of the type. This procedure is illus-
trated in Appendix B and in figure -i-. It should be noted that the 
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streamwise geometry of the section considered on the finite wing is 
identical to that for the fictitious yawed infinite wing; moreover, the 
effective section is defined on the fictitious yawed infinite wing and 
not on the finite wing.

Two-Dimensional Data 

To facilitate the use of the method, a summary of some pertinent 
flap parameters and flap data from two-dimensional airfoil tests and 
theory is given in figure 5. Values of a6, c15, c.p.b, and c% for a 

plain flap from the theory of reference 5 are shown in figure 5(a). 
The values of ao and Cmf for various types of flaps given in figures 5(b) 
and 5(c) were obtained from available test data of references 6 to 51. 
Use of values of a and Cmf from plain-flap theory are generally appli-
cable for area-suction- and blowing-type flaps employing only sufficient 
amounts of suction or blowing for maintenance of attached flow on the 
flaps of the finite wing. Use of these data is demonstrated in Appendix B. 

DISCUSSION 

A complete summary of the calculations made of the incremental pitch-
ing moments due to flaps for some 58 cases on swept and triangular wings 
at low speed is presented in table I. The measured pitching-moment results 
for the sample wings were obtained from references 55 to 79. A represent- 
ative sampling of these results is illustrated in figures 6(a) and 6(b) 
for the swept and the triangular wings, respectively. Here an attempt has 
been made to show briefly some results for each of the various types of 
flap configurations examined. The absolute values of lift and moment 
indicated in these results were obtained by combining the calculated 
increments of these quantities with the respective measured values deter-
mined from tests of the wing with flaps retracted. The slopes of the 
estimated pitching-moment curves were determined from the theory of 
reference 2. An examination of these results shows, surprisingly enough, 
that little difference in accuracy exists between the swept- and triangular-
wing results. An over-all indication of the accuracy of the method for 
all 58 cases can be seen in the correlation plot of figure 7 where a mean 
deviation of the order of 0.02 in ACm was found. The method as presented 
was limited to the low-speed, small-angle-of-attack range where the 
longitudinal characteristics are essentially linear, and in the lift range 
where the loading due to flap deflection can be calculated with reasonably 
good accuracy. Sample comparisons of measured and estimated span load 
distributions and local centers of pressure at a.=O° are shown in 
figure 8 for a swept and a triangular wing. 
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CONCLUDING REMARKS 

The low-speed incremental pitching-moment coefficients due to 
deflection of arbitrary types of partial-span, trailing-edge, high-lift 
flaps on swept and triangular wings at 00 angle of attack have been 
estimated and the values correlated with test results for a wide variety 
of swept- and triangular-wing configurations.. The estimates were based 
on span-loading theory combined with two-dimensional airfoil data 
corrected to yawed flow conditions. 

The results of the study clearly showed that satisfactory estimates 
of pitching-moment increments could be made for wings with sweepback 
including those with large amounts of taper such as triangular plan forms. 
For all wings, the estimated increments of moment coefficient deviated 
from experiment by a mean value of about 0.02. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Apr. 7, 1955 
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APPENDIX A 

USE OF THE BASIC LOAD LINE AS THE REFERENCE SWEEP LINE 


FOR DETERMINING LOCAL CENTERS OF PRESSURE 

The general expression for the loading made up of basic and 
additional components can be expressed in coefficient form as 

cl = C l + cib	 (Al) 

Since the shape.s of the loadings are assumed to be invariant with magni-
tude, the following expression can be used to define local center of 
pressure for either the finite or two-dimensional case. 

c.p. = O.25() + c. P . b(-)	 (A2) 

The analysis by parts for the tapered swept wing indicates that 

c iA = CiaA=o (cos
2Aa) + c 1	 (cos2Ab)	 (A3) 

and

C.P.A = O.27() + c.P. b(cA)	 (Au) 

It is the intent now to show that only the value of Ab is required in 
the determination of c.p. 

For a particular flap-chord ratio and deflection, c ZbA=o and 

can be determined from theory or two-dimensional data from which the 
basic loading for the finite wing section can be expressed as 

	

c 1	 =c 
bA	 ZbA5Ab	

(A7) 

which then defines the additional loading 

	

C 	 = C	 - Cib	 (A6)
aA 
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Substitution of equations (A5) and (A6) into equation .(Al--) gives 

Cjb C0S2Ab 

C.P.A = (
	 °1	

)(C.P'b - 0.25) + 0.25 	 (A7) 

The two-dimensional pitching-moment coefficient may be expressed as 

_cmA_-o
	

Cl
bA=O (

c.p. b - 0 .25)	 (A8) 

Substitution of equation (A8) into (A7) gives 

C. P .A 
= 0.25 - (crnA).	

(A9) 

which, it can be seen, does not involve the value of the additional lift 
reference line Aa.
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APPENDIX B 

SAMPLE CALCULATIONS FOR AN ASPECT-RATIO-2 TRIANGULAR WING 

WITH A FULL-SPAN ., CONSTANT-CHORD, PLAIN FLAP DEFLECTED iO° 

TI 

r0.107 

Cf/C a C2 C.p. b Ab, 6j C
® 

CiA C•P• 

0 0.39 0.137 0.69 31.0 11.6 -0.1116 o.181+ 0.86 
.1 .112 .42 .143 .69 31.4 11.7 -.1137 .197 .83 
.2 .130 .1+5 .160 .68 32.0 11.8 -.1197 .222 .79 
.3 .150 .1+8 .177 .67 33.3 11.9 -.1257 .257 .71+ 
.1+ .175 .52 .203 .66 33.8 12.0 -.1307 .295 .69 
.5 .210 .76 .2 1+0 .61+ 31+.5 12.1 -.1386 .351+ .61+ 
.6 .270 .63 .265 .61 37.0 12.5 -.11+50 .1+16 .60 
.7 .360 .70 .313 .57 1+0.0 13.0 -.1388 .532 .71 
.8 .530 .81+ .379 .8 1+6.0 11+.3 -.1106 .788 .39 
.9 1.000 1.00 .610 0 --- .25 

1.0 1.000 1.00 0 -0
1 Intervals of 0.1 will suffice generally. 
2 From streamwise flap geometry. 

Theoretical values from figure 5(a). 
Incremental span load distribution due to flap deflection. 

from available methods such as reference 1. 
(3 Plain-flap basic load c.p. from figure 5(a). 

Sweep of the constant-percent line through c.p.b from 

© 8n = tan-'(tan 8/cos Ab) = tan -'(tan 100/cos 

From two-dimensional data or theory (theory used in this case), 
such as in fie 5(a), for cf/c in G and flap deflec-
tion 8- in 

C iA = c zA/cos Ab =Ø/cos2 ® 

From two-dimensional data or theory at CiA	 from ®, for 

Cf/c in	 and flap deflectipn8 in 0; or computed by 
c.p. = 0.25 - (cmf/cZA ) = 0.25 - 

6/(D 
At this point, several of the accepted procedures may be used with 

the above information to obtain an incremental pitching-moment coef-

ficient due to flap deflection. The relation Cm f = 

from reference 80 is sometimes used; or more simply

fo 1.0 C
	

(2\f'2 
 r1 ...
 /4cav)b) 
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b/2 
Mf	 2r 

CIuf =	 =	 I	 dy = -CLf * 
U0 

(x is the distance to E/4 .from the wing center of pressure) which for 
the above example was found to be: 

Cmf = -o.2o6(l) = - 0.098 

Configurations having constant-percent-chord flaps naturally have 

singular values of	 ,	 ®,	 and	 and, consequently, 

the computations are reduced considerably. 
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TABLE I. - SUMMARY OF RESULTS OF MEASURED AND ESTIMATED 

FLAP PITCHING-MOMENT INCREMENTS 

Case 
No A ? Ad4 Type flap

Flap extent,
/b

/ Cf/C t Cm 

Measured Estimated. 

1 6.0 0.50 45 double-slotted 0.18 to 0.58 0.25 55 0.14 -0.13 
2 3.5 .145 60 double-slotted .21 to	 .57 .25 55 -.12 -.09 

3 3 . 5 .30 45 double-slotted .16 to	 .70 .25 55 -.30 -.30 
14 4 .51 35 area-suction .15 to	 .50 0.22 to	 .26 55 -.11 -.12 

5 5.1 .38 45 single-slotted . 1 14 to	 .45 .25 20 _.04 -.014 
6 5.1 .38 145 single-slotted .14 to	 .145 .25 30 -.06 -.06 

7 5.1 .38 45 single-slotted .14 to	 .145 .25 40 -.07 -.07 
8 5.1 .38 145 double-slotted . 1 14 to	 .145 .25 30 -.07 -.o6 

9 5.1 .38 145 double-slotted .114 to	 .145 .25 140 -.09 -.08 
10 5.1 .38 45 double-slotted . 1 14 to	 .45 .25 55 -.11 -.12 
11 6.0 .50 35 split .02 to	 .50 .20 60 -.03 -.03 
12 6.0 .50 35 double-slotted .02 to	 .50 .25 49 -.13 -.114 
13 8.0 .45 145 split 0	 to	 .50 .20 60 .07 .07 
14 8.0 .45 45 split 0	 to	 .60 .20 60 .02 .03 
15 3.8 .59 47 plain .10 to	 .58 .25 30 -.04 -.03 
16 3.8 .59 47 plain .10 to	 .58 .25 45 -.05 -.03 
17 3.8 .59 47 plain .10 to	 .58 .25 60 -.05 -.07 
18 3 . 5 .50 45 plain 0	 to	 .50 .20 20 -.04 -.014 
19 3 . 5 .50 45 plain 0	 to	 .50 .20 40 -;06 -.04 
20 3 . 5 .50 45 plain 0	 to	 .50 .20 60 -.07 -.05 
21 2.5 .42 40 plain .20 to	 .50 .20 53 -.05 -.014 
22 9.0 .40 0 split 0	 to	 .60 .20 60 -.16 -.17 
23 9.0 •140 0 split 0	 to	 .98 .20 60 -.19 -.20 
24 9.0 .40 0 single-slotted 0	 to	 .60 .25 45 _.314 _.35 
25 9.0 .40 0 single-slotted 0	 to	 .98 .25 45 -.41 -.42 
26 9.0 .40 0 double-slotted 0	 to	 .60 .25 50 -.50 -.50 

27 9.0 .40 0 double-slotted 0	 to	 .98 .25 50 -.60 -.61 
28 10.0 .40 40 split .07 to	 .46 .20 30 .01 -.02 
29 10.0 .40 40 split .07 to	 .46 .20 60 .04 0 
30 2.6 .41 60 split .07 to	 .50 .20 60 -.03 -.03 
31 3.4 .4.4 48 plain .07 to	 .59 .20 20 -.04 -.02 
32 3.4 .44 48 plain .07 to	 .59 .20 60 -.06 -.03 
33 3.4 .44 48 plain .07 to	 .99 .20 20 -.07 -.06 
34 3.4 .44 48 plain .07 to	 .99 .20 60 -.13 -.12 

35 2.0 0 56 single-slotted 0	 to	 .70 .21 I-tO -.28 -.27 
36 2.0 0 45 plain .18 to 1.00 .25 20 -.14 -.15 

37 3.7 .40 44 area-suction .16 to	 .50 .22 61 -.16 -.14 
38 3.7 .40 44 area-suction .16 to	 .75 .22 61 -.28 -.27 

39 2.0 0 56 area-suction .17 to	 .72 .11 to	 .33 59 -.29 -.34 
40 2.0 0 56 single-slotted .18 to	 .70 .21 40 -.23 -.21 
141 4.0 0 37 single-slotted .13 to	 .67 .13 to	 .33 40 -.25 -.23 
42 2.3 0 52 split .08 to	 .67 .11 to	 .32 49 -.15 -.13 
43 2.3 0 52 plain .08 to	 .67 .11 to	 .32 53 -.16 -.13 
44 2.3 0 52 double-slotted .08 to	 .67 .11 to	 .32 50 -.32 -.29 
45 2.0 0 56 plain 0	 to 1.00 .11 to 1.00 10 -.10 -.10 
46 2.0 0 53 plain .12 to 1.00 .13 to 1.00 -10 .10 .09 
47 2.3 0 52 plain 0	 to	 .50 .13 to	 .25 20 -.08 -.09 
48 2.3 0 52 plain 0	 to	 .50 .13 to	 .25 40 -.13 -.13 
49 2.3 0 52 plain 0	 to 1.00 .13 to 1.00 10 -.08 -.09 
50 2.3 0 52 plain 0	 to 1.00 .13 to 1.00 20 -.15 -.15 
51 2.3 0 52 plain 0	 to 1.00 .13 to 1.00 30 -.22 -.18 
52 2.0 .20 45 single-slotted .18 to	 .96 .11 to	 .41 40 -.26 -.24 

53 2.0 .33 37 single-slotted .19 to 1.00 .13 to	 .33 40 -.26 -.26 
4 3.0 0 45 single-slotted .15 to	 .77 .13 to	 .50 40 -.15 -.18 

55 3.0 .140 16 area-suction .15 to	 .75 .29 60 -.29 -.27 
56 4.8 .51 35 blowing .14.to	 .50 .23 45 -.12 -.13 

57 4.8 .51 35 blowing .14 to	 .50 .23 60 -.16 -.17 
58 1	 2.010 1	 56 1plain 10	 to	 .70 .211 22 _.114 1	 -.12
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Figure 1.- Theoretical loading for untapered wing with trailing-edge flap. 
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Figure 2.- Method of estimating center of pressure on the unflapped 

sections near ends of flaps. 
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Figure 3 . - Measured centers of pressure on two wings with partial-span 
flaps showing the assumed variation used in the transition region 
near ends of flaps.
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Figure 4.- Tapered swept wing with reference sweep lines shown for

additional- and basic-type loading. 
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Figure 7.- Correlation of measured and estimated flap pitching-moment 

results for configurations in table T. 
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