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ASSOCIATED WITH COMBUSTION OF ALUMINUM BOROHYDRIDE 

IN A SUPERSONIC WIND TUNNEL 
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and Edward A. Fletcher 

SUMMARY 

Static-pressure changes resulting from steady combustion of aluminum 
borohydride in a supersonic wind tunnel were studied. Static pressures 

i-l ~ were measured along the top wall of a 3.84- by 10-inch tunnel adjacent to 
I 

o the flame that filled the upper portion of the test section . 
o 

Pressure increases of the order of 20 t o 40 percent of the initial 
static pressure were measured during combustion. The magnitude of the 
pressure changes suggests that further use of aluminum borohydride to 
study the effects of heat addition on supersonic flow is warranted. 

INTRODUCTION 

Theoretical studies of heat addition to supersonic flow (refs. 1 to 
4) predict that the static pressure of a supersonic gas stream will in
crease if heat is added to the stream. Applications of this effect were 
considered in references 5 to 8. Reference 5 shows theoretically that 
significant improvements in the lift coefficient and in the lift-drag 
ratio result if heat is added directly to the supersonic stream adjacent 
to the lower surface of an airfoil. 

Until recently, combustion had not been stabilized in a supersonic 
stream; there are little or no experimental data on pressure changes asso
ciated with direct heat addition. Consequently, it has not been possible 
to compare the theoretical results with experimental data. 

A method of adding heat to a supersonic stream was recently demon
strated in reference 9, which showed that aluminum borohydride could be 
burned stably in a supersonic airstream. Liquid aluminum borohydride in
jected through an orifice in the top wall of a wind-tunnel test section 
burned in the adjacent supersonic stream. No flameholders were needed to 
prevent blow-out. 
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This report extends the work reported in reference 9 . Static
pressure changes were measured along the top wall of the tunnel adjacent 
to the flame in the supersonic stream at Mach numbers of 2 and 3. The 
research reported herein was done at the NACA Lewis laboratory. 

APPARATUS AND PROCEDURE 

A 3.84- by 10 - inch supersonic wind tunnel operating at nominal Mach 
numbers of 2 and 3 was used. Tunnel stagnation pressure was held between 
44 and 47 inches of mercury. The tunnel air had a dewpoint of approxi
mately -200 F and was preheated to 850 to 1050 F. The side walls of the 
tunnel were made of l-inch-thick plate glass, which permitted convenient 
visual and schlieren observation or photography of flow phenomena asso
ciated with combustion. 

Static-pressure changes were measured along the centerline of the 
top wall of the test section. Statham strain-gage pressure transducers 
were connected by short tubes to static taps in the top wall of the test 
section at stations 14.25, 18.25, and 32.25 inches downstream of the fuel
injection point. The signal output from each strain-gage pressure
transducer bridge was amplified and recorded by an oscillograph. Addi
tional static taps in the top wall were connected to a small mercury 
manometer board, which was sequentially photographed with an Air Force 
K-24 (aerial) camera at the rate of 2 to 3 pictures per second. 

The fuel was injected for a 1- to 2-second period through a single 
orifice 1/64 inch in diameter which was flush with the top wall of the 
tunnel. The orifice was located at the upstream end of the test section 
on the centerline of the top wall. Helium usually pressurized to 38 
pounds per square inch gage was used to inject the fuel. The injection 
rate could be changed by varying the helium pressure. The fuel-injection 
apparatus is shown in figure 1. A spark plug (1 joule, 5 sparks/sec) or 
a capsule fuel ignitor (ref. 9) was located 25.25 inches downstream of the 
fuel - injection point. After ignition, the flame rapidly traveled upstream 
to the injection region and remained seated there until all the fuel was 
injected. A photograph of the flame seated in the injection region is 
shown in figure 2. 

RESULTS AND DISCUSSION 

Static-pressure increases of the order of 20 to 40 percent of the 
initial static pressure were measured at the top wall of the tunnel adja
cent to the flame in the supersonic stream. Typical static -pressure pulse 
traces from the oscill ograph are shown in figure 3 for Mach numbers 1.95 
and 2.9 at the three pressure - transducer stations . These traces show that 
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the actual pressure pulses due to heat addition were essentially rectan
gular in form with respect t o time and that the comoustion was fairly 
steady during the runs . As dis cussed in reference 9, the flow in the 
portion of the tunnel stream oelow the flame was supersonic throughout 
the runs. 

The change in static pressure at various stations downstream of the 
fuel orifice is shown in figure 4. The pressure changes at the three 
pressure-transducer stations are connected oy a smooth dashed curve that 
gives static-pressure changes indicated oy the sequential photographs 
of the manometer board. Because of incomplete response of the manometer 
ooard in many of the runs, the pressure changes indicated oy the manome
ter board were normalized with respect to the value given by the Statham 
at the l8.25-inch position . Figure 4 (a ) shows the results of two runs 
at Mach 1.95. In each run, the change in static pressure increased with 
distance downstream of the injection point until a plateau of fairly con
stant pressure change was reached at 14 to 18 inches . The sharp rise in 
the pressure-change curves oetween 25 and 31 inches indicated oy the ma
nometer ooard was prooaoly due to the effect of the spark plug or the 
ignitor capsule on the flame and pressure field. The ignitor position is 
indicated in the figure. 

Figure 4(a) also shows that a change in fuel - injection rate from 3 
to 10 cc per second caused a consideraole increase in the pressure change. 
The equivalence ratios assuming that comoustion occurred in the upper 
third of the tunnel volume were 0.012 and 0.038. From the average depth 
of the flame and the average width of the ash pattern on the top wall, 
these appear to De reasonaole estimates. 

The pressure-change curves for two runs at Mach 2.9 are shown in fig
ure 4(0). Both runs at Mach 2.9 were with fuel-injection rates of 3 cc 
per second (equivalence ratio, 0.028) and gave quite similar pressure 
changes. In addition, the runs at Mach 2.9 are similar in form to the 
runs at Mach 1.95. They differ primarily in the amplitude of the pres-
sure changes. .' 

An appreciation of the magnitude of the effect of combustion on "tlie 
static pressure can De seen from figures 5 and 6. The static-pressure 
distrioution along the top wall of the test section before comoustion is 
shown in figure 5. The ratio of the change in static pressure resulting 
from combustion to the static pressure Defore combustion is shown in fig
ure 6. This figure shows that, for the same fuel - flow rate (3 cc/sec), 
the ratio of ~P/Pi is larger for the higher Mach numoer. Increasing 

the fuel-flow rate to 10 cc per second at Mach 1. 95 gave a greater per
centage effect than the 3-cc-per-second rate at either Mach number. 

Some difficulty was encountered in controlling the fuel-injection 
rates because of partial plugging of the orifice during the runs. This 
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may have been caused by the ash deposits around the edges of the fuel 
orifice. In addition, the ash deposits occasionally plugged the first 
few static-pressure holes. 

The effect of the tunnel boundary layer on the character of the heat
addition region and consequently the static pressure is not known. The 
boundary layer of this tunnel and its possible effects on combustion were 
discussed in reference 9. It would be desirable to investigate the effect 
of the boundary layer on the pressure change resulting from heat addition. 

CONCLUDING REMARKS 

Static pressure increases significantly when aluminum borohydride 
burns in a supersonic stream. The order of magnitude of this pressure 
increase further substantiates the suggestion of reference 9 that aluminum 
borohydride may be useful in the study of the effects of heat addition on 
supersonic flow. 

On the basis of the work reported in reference 9 and herein, it ap
pears possible to establish a steady flame adjacent to a model located in 
the center of the stream of a supersonic tunnel. The associated pressure 
changes in the heated stream adjacent to the model could then be studied. 
A detailed study of the associated pressure changes would permit an evalu
ation of suggested practical applications such as improvement in the lift 
coefficient of a wing (ref. 5). 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, June 7, 1955 
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Figure 3. - Typical pressure pulses observed with oscillograph. 
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