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SUMMARY

A wind-tunnel investigation has been conducted at subsonic Mach
numbers up to 0.9 and Reynolds numbers from 1 to 2 million to measure the
root-mean-square variation of the normal forces on 27 representative NACA
airfoil sections. The effects of thickness-chord ratio, camber, location
of minimum pressure, and leading-edge radius were investigated. The prin-
cipal statistical measures describing the unsteady normal force as a sta-
tionary random function of time were also determined. These measures are
the spectral densities (sometimes referred to as generalized harmonic
analyses) and the probability densities.

For Mach numbers of 0.75 and above, and 1lift coefficients below 0.6,
maximum thickness was found to have the greatest effect on unsteady
normal-force characteristics, reductions from 12 to 8 percent applied to
the symmetrical NACA 65-series profiles diminishing the force as much as
two-thirds. Decreases below 8 percent for these sections generally pro-
vided no further improvement, except in the small range of Mach numbers
between 0.75 and 0.85 and for lift coefficients above 0.6. Camber up to
0.4 design 1ift coefficient had little influence on unsteady normal forces.
A further increase to 0.6 design 1ift coefficient resulted in decreased
magnitudes for the 12-percent-thick 65-series profiles even at Mach num-
bers as high as 0.88. The variations with position of minimum pressure
and leading-edge radius were mostly unimportant, although an abnormally
large leading-edge radius increased to some extent the magnitude of
unsteady normal force.

Unsteady normal force was found to be a stationary random function
of time with probability densities that are normally distributed. Repre-
sentative spectral densities indicated that, for the 6-inch-chord models
and the Reynolds numbers of the investigation, practically all of the
unsteady normal force at low Mach numbers and high 1lift coefficients
occurred at frequencies below 200 cycles per second. At high Mach numbers
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and high unsteady normal-force coefficients, however, evidence was found
that a significant proportion existed above this frequency.

Comparisons of buffet boundaries of four aircraft having straight
wings, aspect ratios 4 to 6, with results for the corresponding airfoil
sections show sufficiently good correlation at high Mach numbers and low
1ift coefficients to suggest that the wind-tunnel measurements of unsteady
normal force on the profile are directly related to the buffeting found
Ineflsohta

Some of the unsteadv force measurements were affected by the airfoil
structure and spanwise variation of the unsteady forces. The methods
derived to account for these effects, which make use of linear filter
theory, the frequency response function of the airfoil structure, and the
theory of stationary random time functions, may be useful in analyzing
aircraft buffeting.

INTRODUCTION

The buffeting of an airplane may be defined as an aerodynamically
forced vibration of the airplane or of one or more of its components. of
the various recognized sources of buffeting - tail surfaces immersed in
the wake of the wing, separated flow about the fuselage adjacent to loca-
tions such as the wing-fuselage juncture, and fluctuating 1ift on the wing
associated with separated flow over the wing surface - the fluctuating 1ift
is the least understood. The results reported in references 1 and 2 for
the buffeting of tailless aircraft, moreover, indicate this source to be
important, particularly at transonic Mach numbers.

Some wind-tunnel data concerning fluctuating lift on wings has been
obtained from the measurement of pressure pulsations on the surfaces of
airfoil sections reported in references 3 and 4, and from the instantaneous
measurements of normal force described and discussed in reference SRl wlrhe
present investigation was undertaken to supplement and amplify these
results. In particular, it was desired to measure the unsteady normal
forces of enough airfoil sections to determine the extent of occurrence
and, in addition, the influence of the principal geometric parameters
(maximum thickness, camber, position of minimum pressure, ieading-edge
radius) upon the unsteady force magnitudes.

The term "unsteady normal force" is defined as the difference between
the mean and instantaneous values of normal force. It is distinguished
from buffeting in that buffeting is a structural vibration; unsteady normal
force is the force causing the vibration.

During the course of the investigation statistical analyses indicated

that unsteady normal force is a stationary random process. Application
of the theory of such processes (refs. 6, T, and 8? to the unsteady force
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problem determined the statistical functions required to define the pro-
cess completely. The theory also suggested a means for relating unsteady
normal force to the buffeting of elastic bodies. This relationship was
applied to the airfoil models to obtain an alternative method for measuring
unsteady normal forces. The successful outcome of this application sug-
gested a procedure for relating aircraft buffeting to the unsteady normal
force measured in two-dimensional flow; as a consequence, it may eventually
be possible to predict, from wind-tunnel data, the buffeting of an air-
plane without the necessity of testing dynamically similar models. Because
of its underlying importance, and relative unfamiliarity to aerodynami-
cists, a short account of the theory of stationary random functions of time
is presented before discussion of the investigation itself.

SYMBOLS

b airfoil span, ft

cy section 1ift coefficient, dimensionless

. design section 1lift coefficient, dimensionless

ai

Cyn instantaneous section normal-force coefficient,
dimensionless

Acp instantaneous section unsteady normal-force coefficient,
corrected, Acy = cp - Cp, dimensionless

Acn' instantaneous section unsteady normal-force coefficient,
uncorrected, dimensionless

Acnav average of absolute value of section unsteady normal-force
coefficient referred to the mean value,
Acp,, = |Cn = Cpl|, dimensionless

|

Acnrms root-mean-square-section unsteady normal-force coeffi-
cient, referred to the mean value, calculated from
Ac assuming the first-probability density to be

Ngv

normal, dimensionless

SN il :

=22 . .
[}Acn') J root-mean-square value of Acp', dimensionless
© girfiotifcheord,; £t



G(f)

GACn' (f)
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amplitude of output voltage of the wave analyzer, v

instantaneous value of a voltage wave form, v -
frequency, cps

resonant frequency of airfoil model, cps

resonant frequency of wind tunnel, cps

1b-force

instantaneous normal loading per unit span, Tt

spectral density, (time dependent variable)z/cps

spectral density of uncorrected section unsteady normal-
force coefficient, l/cps

spectral density of the instantaneous pressure coefficient,
1/cps

spectral density of unsteady normal force, (lb-force)z/cps
J-1, dimensionless

constant of proportionality

elastic constant of the bending of the airfoil model caused
by the normal force, lb-force/ft

Mach number, dimensionless

equivalent mass of airfoil model, slugs

instantaneous normal force on airfoil model, lb-force
pressure, lb-force/ft2

autocorrelation function, (time dependent variable)2

correlation coefficient, dimensionless

spectral density of uncorrected section unsteady normal-
force coefficient normalized with respect to corresponding
mean-square value of Acn', dimensionless -

time interval over which the average value of a function is
computed, sec




NACA RM A55C02 5

time, sec
free-stream velocity, ft/sec

probability density of a stationary random function of time,
dimensionless

distance along the airfoil span, ft

frequency response function, dimensionless

time dependent variable of a stationary random function of time
variable of integration

section angle of attack, deg

iihsE
velocity damping coefficient of airfoil model, =b-Toree
ft/sec
1b-f
critical velocity damping coefficient of airfoil model, ?t/ZZZE

deflection of airfoil model at midspan caused by the normal
force, ft

base of natural logarithms, dimensionless

integral scale of correlation of normal loading per unit span,

0
A =\/p r(x)ax, ft
o

noise factor, a measure of the extraneous unsteady normal-force
S 1 : : -
coefficient subtracted from Ac, to obtain Ac,, dimension-
less

time interval between two values of a stationary random function
of time, sec

frequency, used as a variable of integration, cps
angular frequency, radians/sec

undamped natural angular frequency of the airfoil models,
radians/sec
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Superscripts

y(t) average with respect to time of a stationary time-dependent

L
variable, y(t) = lim % \/ﬁ y(t)dt
{}=2+00 o]

Subscripts
A airfoil
P pressure cell
R resonance compensating amplifier
S strain gage
T wind tunnel
e thermocouple meter
W wave analyzer
1 input (except when used as Cli)
o output (except when used as ao)

STATIONARY RANDOM FUNCTIONS OF TIME

A thorough understanding of the principles underlying the techniques
developed for this project, and of many of the results obtained, depends
upon a knowledge of the principles of the theory of stationary random
processes. This theory has been employed extensively in the study of the
effects of noise in communication networks, and in servomechanism theory
(refs. 6 to 8). It has been found to be directly applicable to the inves-
tigation of unsteady normal forces on airfoil sections as well. The chief
aspects of this theory therefore will be briefly recounted, emphasis being
placed upon an orderly development from basic principles. An effort will
also be made to explain the physical significance of the main concepts;
and, further to impart a feeling for the subject, the relationships most
frequently used in practice will be distinguished from those which are
primarily of theoretical interest. The discussion will be confined to
stationary random functions of time. A stationary random function of time
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is not the same thing as a stationary random process. The distinction
between the two, however, and the relation of one to the other (see
refs. 7 and 8) involve the use of the ergodic hypothesis and other con-
cepts, avoided here for the sake of simplification.

For the purpose of this report a random function of time is considered
to be a single-valued function which varies in such a manner that no
knowledge of previous values, however extensive or complete, is sufficient
to predict any future value with certainty. Such a random functiocn is
stationary if the statistical quantities defining it are invariant with
time and, hence, do not depend upon the origin selected for time measure-
ments.

The fundamental quantities defining a stationary random function of
time are the probability densities. For any stationary random function
of time, y(t), such as the one shown in part (a) of figure 1, it is pos-
sible to plot a histogram (fig. 1(b)) illustrating the proportion of total
time the instantaneous amplitude lies between O and Ay, between Ay and
oAy, between 2Ay and 3Ay, etc. The choice of the interval Ay is arbi-
trary; allow it to approach zero. In the limit the discontinuous stepped
curve of figure 1(b) will then approach the continuous curve of figure Uie).
The function represented by this continuous curve is the first probability
density. It is a function of y only, and is not dependent upon time.
Denoting this function as Wl(y), Wl(yn)Ay represents the proportion of
time the amplitude of y(t) lies in the interval between yn and yp + Ay.
It also represents - and it is mainly for this reason that the concept
is important - the probability of finding a value at any time ¢t lying
in such an interval.

In a similar manner, one may conceive of the joint probability of
finding a pair of values of y at times t and t + T 1in the intervals
(Yi» Y + Oyy) and (yy, y3 + 4&yy), respectively. This probability will
be equal to the product of the two intervals and the second probability
density; expressed symbolically it is W,(yyx, vy, T)&yklyy;. For a sta-
tionary random function of time this probability density likewise is not
a function of time +t, although it is dependent upon the time interval, T.
Inasmuch as it is a function of the three independent variables, yj, Vs
and T, its graphic representation would require, in the general case, a
space of four dimensions.

It is possible to continue in this fashion. One may thus obtain the
third probability density, Wa(yk, Y12 Yms Tis 12), representing the joint
probability of finding a triple of values of y at times t, t + T,, and
t + T, in the intervals (yyx, yyx + Ayvik), (¥1, ¥ + Ayy), and (yp, ¥y + L) »
respectively. For a stationary random function of time this quantity
likewise is independent of time. Extension to the fourth and higher
probability densities is obvious.
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Since the first and second probability densities provide most of the
information useful in applications, nothing further will be said concern-
ing those of higher order, other than to emphasize two facts: (a) for
any stationary random function of time, the probability densities furnish
complete quantitative information, and may therefore be considered as
defining the function, and (b) from the probability density of any order,
all those of lower order may be derived (see refs. 7 and 8); for example,

W]_(Yk) =f Wg(yk; Yo T)dyl (1)

-00

Although the probability densities are the basic quantities defining
a stationary random function of time and provide the foundation for the
theoretical development of the subject, they are not extensively used in
practice. Certain auxiliary variables derived from them are used instead.
The more important of these are the mean value, the mean square, the
autocorrelation function, and the spectral density. They are obtained from
the probability densities by assuming that time averages are equal to the
statistical averages furnished by the probability densities; namely,

g opl =
T2 lim & (t)at = Waly)a 2)
% T_)mT_/;y J;y;yy (
(©)3(t *+ 1) lfT()( (32)
y(t)y(t + ) = 1im & y(tly(t + 7)dt 3a
T%coTo
=‘Jf J[\ ykylwz(yk, Yy T)dYRdYZ (3b)

A little reflection will show that these relationships are plausible; a
more sophisticated line of reasoning, developed from fundamental considera-
tions purposely avoided here, will be found in references 7 and (G

Proceeding on this basis, one obtains immediately from the first
probability density the mean values:

7> =f Wily)ay = 1 (4)
y =f yWi(y)ay (5)

-00
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y2 =f°° yaw (v)dy (6)
o f yoi 3 (y)ay (7

Also, the autocorrelation function, defined as

R(T) = y(t)y(t + 1) (8)

comes directly from the second probability density by use of equations (3).
Last of all, from the Wiener-Khintchine theorem, the spectral density is
defined in terms of the autocorrelation function:

G(£) = ufw R(7)cos 2xfT 4t (9)
(e]

The significance of the autocorrelation function may be understood
from consideration of the defining equation 3(a). If one imagines two
curves y(t) and y(t + T,) - the latter curve being derived from the former
by shifting it T; time units to the left - and computes. the average
value of the product of the two curves over a time T, which in the limit
approaches infinity, one value, R(Tl), will have been calculated for the
autocorrelation function. Repetition of this procedure for other values
of T determines the function. It is apparent that the result (i.e., the
autocorrelation function) is independent of time, being dependent only on
the time interval, T.

A further understanding of this function is provided by a comparison

with the correlation coefficient, r, used in probability theory and defined
by the following equation for any two variables x, z:

_—

V2 V2= (10)

if

N
1l
S
i)
+
-+
-
P
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then oo S
x2 = [y(t)]® = y2

[y(t + 7)1% = [y(£)]® = ¥

N
N
Il

_y(t)y(t + 1)

y2
r = §% R(T) (11)

It is thus apparent that, since §§ is independent of time, the

quantity y(t)y(t + 7) is a direct measure of the correlation coeffi-
cient r of the two variables y(t) and y(t + T); hence, the source of
the term "correlation" in "autocorrelation function."

An interpretation of the spectral density can be derived from the
defining equation (9), which, in effect, states it to be the cosine trans-
formation of the autocorrelation function. Inasmuch as this latter func-
tion is even, the Fourier integral theorem may be used to establish the
inverse relationship

(o]
R(T) =f G(f)cos 2xfT 4f (12)
o
For T = O, there is obtained

R(0) =fo° Gg(f)ar
(@)

and from the definition of R(7) (eq. (8))

R(0) = y(t)y(t) = y2
hence

foo g(£)af = y2 (13)
(@]

and
y2 = lim  [G(O)Af + G(f,)Af + G(f2)Af+ . . . ]
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The spectral density therefore represents the spectrum (or frequency
content) of the mean square value of the time-dependent variable, y. If
one considers y to be composed of an infinite number of infinitesimally
small, time-dependent sinusoidal waves, the frequencies of which are con-
tinuously distributed from zero to infinity (i.e., all frequencies are
present), then the spectral density represents the relative magnitudes of
the squares of the amplitudes of these infinitesimally small sinusoids.
This interpretation closely parallels that of the Fourier transform of a
transient function, which also decomposes a function of time into a fre-
quency spectrum.®

The central importance of the spectral density lies in the fact that
not only does it furnish valuable information in itself, but also most of
the other useful quantities can be calculated from it. It has already
been shown (egs. (12) and (13)) how the autocorrelation function and mean-
square value can be obtained from the spectral density. Another applica-
tion, often used in the present investigation, is the relation between the
spectral densities of the input and output of a linear filter? (see
ref. 8):

Go(£) = |¥(exyt) [ o5(£) (14)

where Y(2xjf) is the complex frequency-response function of the filter
defined and discussed in reference 8. During the course of the investiga-
tion it was experimentally observed that the airfoils behaved as linear
mechanical filters. Since the impressed aerodynamic forces were stationary
random functions of time, the experimental (or analog) solution of equa-
tion (14) afforded one means of measuring both the instantaneous normal
force and the corresponding spectral density.

This variable also furnishes the mean-square value of dy/dt, or: of
any higher derivative:

11t is not surprising, therefore, to find that G(f) can be expressed
in terms of the Fourier transform of y(t). This approach is used in
references 7 and 8.

®The term ™linear filter" is used in the broad sense to designate any
frequency sensitive device - electrical, mechanical, acoustical, etc. -
the output of which is related to the input by a linear differential
equation with constant coefficients. It consequently is a device which
(a) responds to a sinusoidal input in such a fashion that the ratio of
the amplitudes of output to input is a function only of the frequency
(together with the physical constants of the filter), (b) has physical
constants which are invariant with time, and (c) yields an output corre-
sponding to the sum of any number of inputs which is equal to the sum of
the outputs corresponding to each individual input (i.e., conforms to the
principle of linear superposition).
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PR ) b
@_1:%) -_-L (2x£)®Gy (£)af (15)

a relation which may be established with the aid of equation (14). Set
z(t)
d

i

Then Eﬁ, the quantity desired, is:

-y o0
z2 =b/\ Gy(f)df
)

_f°° S S
J, [x(ewn)]®

Y(2njf) =

(Ju)"
( > . (Qﬂf 120G (£ )ag (15)

This brief sketch of the theory of a stationary random function of
time may be summarized in the following manner. First, the basic variables
from which the mathematical relationships are developed are the proba-
bility densities, a knowledge of which is both sufficient and necessary
to define the function completely. Second, the principal tool required in
this development is the hypothesis that time averages are equal to statis-
tical averages. Third, the most useful quantities in practice are ordi-
narily not the probability densities, but the mean value, the mean square,
the spectral density, the autocorrelation function, and others, all of
which (except the mean value) can be computed directly from the spectral
density. Fourth, for any linear filter there exists a simple relationship
between the spectral density of the input and the output.

One additional observation should be made. If the first probability
density is normally distributed, that is, is of the form

St BLR R &
Waily) \/e_ﬂ\[y__z_eyz
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then a knowledge of it, together with the autocorrelation function, is
sufficient to obtain the second and all higher probability densities,
which also are normally distributed. The stationary random function of
time is therefore defined completely. Furthermore, when such a signal is
transmitted through a linear filter, the probability densities of the out-
put signal likewise are normally distributed, and may consequently be
calculated by use of the foregoing equations.

APPARATUS AND INSTRUMENTATTION

Tunnel, Models, and Instrumentation for
Steady Force Measurements

This investigation was conducted in the Ames 1- by 3-1/2-foot high-
speed wind tunnel, which is a two-dimensional flow tunnel having a test
section of the dimensions indicated. The two-dimensional airfoil models,
of 6-inch and 12-inch chord, were constructed of solid aluminum alloy and
mounted in the tunnel to span completely the 1-foot dimension of the test
section (fig. 2). Contoured sponge-rubber gaskets were compressed between
the model ends and the tunnel walls to prevent end leakage.

Static lift forces were measured by integrating the pressure reactions
on the tunnel floor and ceiling, produced by the forces on the airfoil, in
a manner similar to that described in reference 9. The pressure fluctua-
tions at the orifices arising from unsteady 1ift forces were small and had
no perceptible effect on the static values. Drag forces, used for Mach
number corrections, were determined from wake survey measurements made
with a rake of total head tubes. Angle of attack was measured to the near-
est 0.05°.

Instrumentation for Unsteady Normal-Force Measurements

Two separate sets of instrumentation, each based upon a different

principle, were developed to measure the instantaneous airfoil normal force.

The first unit - the pressure-cell equipment - integrated the instantane-
ous pressure distribution around the profile. The second unit - the
strain-gage equipment - measured the instantaneous normal-force reaction
of the model itself.

Pressure-cell equipment.- The general arrangement and some of the
details of the pressure-cell equipment are shown in figures 2 to 5. This
equipment consisted of a group of capacitance-type pressure cells mounted
in one wall of the tunnel adjacent to the model surface, as shown in
figures 2 and 3. The output of the cells was combined electrically to
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obtain an integrated signal proportional to the instantaneous normal force.
Twenty-two pressure cells disposed in two lines of eleven cells eaech

(fig. 3) were employed. Two different cell arrangements were utilized -
straight line and curvilinear. The straight-line arrangement was better
adapted to accommodate the variety of profiles tested, and consequently
supplied the majority of the data reported.

A cross-sectional view of a pressure cell showing the main features
and over-all dimensions is presented in figure 4, A complete description
of the cell and some information concerning the methods of fabrication
may be found in reference 10. As may be seen from the figure, the dia-
phragm forms one plate of a capacitor, and the spindle, the other. In
operation, the diaphragm deflects under pressure, thus changing the capa-
citance by an amount proportional to the pressure imposed. The rear face
of the diaphragm was vented to test-section static pressure for a known
reference.

The cells were statically calibrated, after installation in test posi-
tion, to *#0.1 inch of water for a calibration range of +60 inches of water.
Repetition of the calibration from time to time showed the cells to! be
very stable, no significant drift from any source, including temperature,
being detected during the course of the investigation. The cell resonant
frequency was high enough - approximately 25,000 cycles per second, or 20
times the highest aerodynamic component - to have no influence on the
results. The sensitivity of each cell was kept within 5 percent of the
average value of the group.

Power was supplicd to the cells at 100 kilocycles per second and 50
volts (see fig. 5). This carrier wave was modulated by the change in cell
capacitances caused by the variation of pressure on the diaphragms; after
amplification it was demodulated, filtered to reject all frequencies above
3000 cycles per second, and measured with standard laboratory indicating
instruments capacitor-coupled to reject the direct-current component. A
highly damped, average-reading, vacuum-tube voltmeter indicated the average
unsteady normel force, and a thermocouple meter indicated the root mean
square.

The side-wall location of the pressure cells for the measurement of
unsteady normal forces has no precedent; it was chosen largely because of
the mechanical difficulties inherent in any other arrangement. The results
reported in reference 11, together with calculations based upon potential
theory, however, suggested that approximately 90 percent of the static
normal force would be measured. To verify this conclusion a comparison
was made between the static normal force, measured by the pressure cells,
and the static 1ift force, measured with the conventional wind-tunnel
instrumentation, for a few models over the range of Mach numbers and angles
of attack of interest. A typical result is summarized in figure 6 which
shows several loci, on the Mach number and lift-coefficient plane, for
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which the ratio of static normal force to static 1lift force is constant.
Using this figure, it is possible to estimate immediately, for any com-
bination of Mach number and lift coefficient, the proportion of normal
force measured by the pressure cells. The area in which unsteady normal-
force coefficient exceeds 0.005, the smallest magnitude reported in the
ensuing results, is also shown. Comparison of this region with the loci
demonstrates that, in the region of unsteady normal forces, the expecta-
tion of measuring 90 percent of the static normal force was approximately
fulfilled.

A direct parallel cannot, of course, be drawn between results obtained
for steady and unsteady normal force. The influence of the tunnel-wall
boundary layer and the measurement of pressures in a nonisotropic turbulent-
flow stream perpendicular to the direction of the desired component would
be expected to exert a greater influence upon the unsteady results than on
the steady ones. The realization of these difficulties, in fact, and the
desire to appraise these and other effects was one of the major factors
motivating the development of an alternative method of measurement. For
reasons discussed further on, however, the pressure-cell arrangement was
considered adequate for investigation of unsteady normal-force trends with
airfoil geometry.

Strain-gage equipment.- The measurement of unsteady normal force with
the strain-gage equipment, in essence, consisted of measuring the instan-
taneous vertical deflection of the airfoil at midspan by use of a strain
gage, and of computing the imposed force causing this displacement from
the differential equation describing the motion. To perform the required
computations readily, an analog computer (termed a "resonance compensating
amplifier"), operating directly on the strain-gage signal and providing
the unsteady normal force continuously during testing, was developed. The
root-mean-square value of the output of the resonance compensating ampli-
fier was measured with a thermocouple meter.

The theory underlying the strain-gage technique, schematically
illustrated in figure T, is dependent upon the experimentally established
fact that the airfoil models, when subjected to unsteady aerodynamic
forces, behave very nearly as simply supported beams vibrating in the
fundamental mode. The differential equation descriptive of this system
(derived in ref. 12) is:

dad a%s
Ny = = s
1i=kd+7 eraldl P (16)

This equation is more suitable for the present investigation if the
dependent variable & is replaced by an equivalent normal force. Define

N, = kb (17)
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No (18)

Substituting equation (18) in equation (16):

4 y Ao m d3Ng
Bp=Io B T TR oo
k
&
Z.27
k= Onois
L
oI - B 0 (19)

Wy Yo At w2 dt2

Where N, according to the defining equation (17), is the static normal
force required to produce the displacement &. The quantity- Ny may
therefore be taken as the output normal force corresponding to the input
normal force Ny for the system described by equation (16). Since equa-
tion (16) is a linear differential equation with constant coefficients,
the airfoil may be regarded as a linear mechanical filter, having input
N; and output Ny. Accordingly, by application of equation (1k4),

oy (f) = | ¥(30) | Zy, (£) (20)

If the amplitude of the frequency-response function of the resonance
compensating amplifier, IYR(quI, is the reciprocal of the amplitude of

the frequency-response function of the airfoil, |YA(jw)|, that is, if

)] = e (21)
[ Ya(iw) |

the mean-square value of the output of the resonance compensating ampli-
fier will be directly proportional to the mean-square value of the input
normal force. From equation (13):

[er(t)]2 = eg? =f Gr(f)af
&)
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Gr(£) = |Yr(Jw)|Zas(£)
at

| YR(3w)| = |¥a(jw)]
Gg(f) = Ky7G,(f)

f) = Klz __géifl_E
= IYA(Jw)l

ca(f) = [¥a(30)| ey, (£)

2—»00
er” = K, \/ GNi(f)df
O

This derivation assumes nothing about the effect of the resonance
compensating amplifier on the phase relationships of the input and output
signal. Consequently, if mean-square values are the only results required,
it is not necessary to preserve phases, although the resonance compensat-
ing amplifier does so.

The amplitude of the frequency response function cf the amplifier,
obtained directly from the differential equation (19) by taking the Fourier
transform of both sides, is

|¥g(j0) | = —F—
[Ya(dw)|

g B 21 » it e

P - e (30)|

T 0T =@

The strain-gage bridge used to measure airfoil deflection consisted
of four active legs, connected to minimize thermal effects, and mounted
as indicated in figure 2 in shallow pockets machined in the airfoil surface.
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The bridge was located at the chordwise position of maximum thickness at
the midspan station, and the individual gages were oriented to maximize
the signal resulting from lateral bending in the first mode.

The resonance compensating amplifier performed the computations indi-
cated by the right-hand side of equation (19). It consisted of an ampli-
fier followed by 2 units, each composed of a differentiating circuit plus
an amplifier. The outputs of the first amplifier and the two following
units, after passing through attenuators, were combined in a summing cir-
cuit, the output of which represented the instantaneous unsteady normal
force. The attenuators were used to adjust the coefficients of the time
dependent terms on the right-hand side of equaticn (19) to their proper
relative magnitudes. A filter in the circuit ahead of the resonance com-
pensating amplifier limited the band width of the strain-gage signal to
frequencies between 10 and 600 cycles per second, a range determined ade-
quate by inspection of typical unsteady-normal-force spectral-density
curves. The mean-square value of the unsteady normal force was indicated
by the thermocouple meter.

Three series of tests were made to determine the extent to which the
airfoil obeyed the relationship (19), that is, constituted a linear mechan-
ical filter: (a) dead-weight calibrations to determine linearity of
deflection and of strain-gage output with load, (b) impact loading to
measure linearity of velocity damping and conformance of N, with the
transient solution of equation (19), and (c) comparison of the calculated
value of resonant frequency with that measured during free vibration, and
with the resonant frequency existing during tunnel operation.

From the first group of tests it was determined that the strain gage
versus load curve was linear within 1 percent and that the deflection was
directly proportional to the load to the nearest 0.0001 inch, the limit
of resolution of the measuring instrument.

The proportionality constant of velocity damping was more variable,
in the worst case departing as much as 10 percent from the selected value,
a result of nonlinear effects inherent in the complete system. However,
since the contribution to the total unsteady force arising from the damping
was less than 5 percent, this relatively large percentage error influenced
the net result to a very small degree. Examination of the recorded oscil-
loscope traces of the transient motion and comparison with the exponen-
tially damped sine wave calculated from equation (19) showed satisfactory
agreement in all other respects.

The resonance compensating amplifier was tested by comparing observed
values of gain at various frequencies with the corresponding quantities
calculated from equation (22). As may be seen from figure 8, the agree-
ment was excellent throughout the frequency range of interest.
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Another test also was made. Calculated values of the spectral den-
sity of unsteady normal force (obtained by applying egs. (20) and (22) to
the spectral density of the strain-gage signal) were compared with corre-
sponding values measured with the resonance compensating amplifier for air-
foils at various combinations of Mach number and angle of attack. Results
of one such experiment are shown in figure 9. While the agreement is not
s0 good as was achieved by the direct comparison of the preceding test,
it is considered satisfactory. Most of the discrepancy is thought to
result from the inability to maintain wind-tunnel conditions completely
constant for the period required to record the data.

Auxiliary instruments.- Certain auxiliary instruments were employed

in conjunction with the measurement of unsteady normal forces. An assem-
bly consisting of a narrow band pass (4.64 cps) wave analyzer, which auto-
matically swept through the frequency range at a slow rate, and which drove
a recording potentiometer, was used to obtain the continuous spectra from
which spectral densities were computed. In addition, a pair of capacitance-
type pressure cells - identical to those already described - was installed
in the floor and ceiling of the wind tunnel as shown in figure 2. The
signal from these cells was monitored to determine the onset of wind-tunnel
resonance.

TESTS

Test Variables

Twenty-seven profiles, listed in table I, were selected to provide a
variation of maximum thickness from 4- to 12-percent chord, of camber from
0 to 0.6 design 1lift coefficient, of position of minimum pressure from
30- to 60-percent chord, and of leading edge radius from O- to 1.5-percent
chord. These profiles were tested through the Mach number range between
0.5 and 0.9 and at 1lift coefficients generally extending from zero to maxi-
mum. Maximum 1ift, however, was not obtained at the highest Mach numbers
because of choked flow. The Reynolds numbers of the tests are plotted as
a function of Mach number for 6-inch-chord models in figure 10. In addi-
tion, Reynolds number was varied in two cases by doubling the chord of the
model.

Test Procedure

Comparative results for the two different methods of measuring
unsteady normal force indicated that, although results obtained with the
strain-gage instrumentation were considered the more reliable, data
obtained with the pressure cells would be suitable for studying trends with
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geometry. Inasmuch as the latter arrangement was better suited for test-
ing large numbers of profiles, it was adopted, and strain-gage measure-
ments were made for a few airfoil sections for comparison. An account of
these comparative measurements may be found in Appendix A.

At each test point the signal from the floor and ceiling cells was
recorded to indicate the effect of tunnel resonance. A subsidiary investi-
gation conducted to appraise these results demonstrated that, while reso-
nance existed, its effects were small and could be ignored. The details
of this work are recounted in Appendix B, in which also is discussed the
influence of airfoil resonance. This latter phenomenon likewise was
decided to be of no importance.

The procedure for using the pressure-cell equipment was straightfor-
ward as, for the most part, was that entailed in the use of the strain-
gage equipment. For the latter instrumentation, however, it was necessary
to adjust the resonance compensating amplifier properly to account for the
inertial, damping, and spring forces of each airfoil model. The method
for doing so was established by noting from equation (19) that the adjust-
ment depended only upon the airfoil resonant frequency wp, and the damping
ratio 7/7C. Both of these quantities were measured with the tunnel oper-
ating at the test conditions for which the aerodynamic data were obtained.
The resonant amplitude was sufficientlyv pronounced to permit direct reading
of the frequency from the uncompensated strain-gage signal. The damping
ratio was computed from the frequency spectrum of the uncompensated strain-
gage signal; its determination was dependent upon the fact that at reso-
nant frequency, for the low damping ratios (0.02 to 0.04) invariably
present, the ratio of the amplitudes of the compensated and uncompensated
strain-gage signal is practically equal to 27/7c. The latter amplitude
was read directly from the frequency spectrum; that for the former was
obtained by fairing a curve for the estimated value of the compensated
strain-gage signal through the point of resonant frequency. It further
turned out in practice that the damping ratios were so low that the corre-
sponding adjustment was not at all critical. For this reason, after
experience had demonstrated that 0.04 damping ratio was not likely to be
exceeded, this value was used throughout the investigation.

Reduction of Data

Root-mean-square values of the unsteady normal-force coefficients
were obtained by two different methods. Most of the pressure-cell results
were calculated from the average values indicated by the vacuum-tube volt-
meter, using the theoretical ratio Jﬁ/? = 1,253, of root mean square to
average for a normally distributed probability density. Experimental data
confirming the use of this ratio are presented during discussion of the
statistical aspects of the data in the Results and Discussion section.

The strain-gage results, on the other hand, as well as all comparative
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pressure-cell data, were observed directly with a thermocouple meter,
which provided correct root-mean-square values for all signals.

Some corrections were applied to the observed data. The 1lift coeffi-
cients and the free-stream Mach number were corrected for tunnel-wall
effects by the methods of reference 13. Unsteady normal-force coefficients
at all Mach numbers were corrected to remove the small amounts (tare
values) of unsteady force invariably present at Mach numbers below 0.5 and
lift coefficients near O. These tares are thought to result from the tur-
bulence inherent in the wind-tunnel air stream, as well as from that pre-
sent in the tunnel-wall boundary layer. The procedures for making the
corrections are described in Appendix C.

Spectral densities were computed from the wave analyzer results with

the aid of the equation:

(B )1*

s +s .
K%K J[ [Yy(2njo) | do
_fo

GNi(fl) 2 (23)

where YW(QHJ@) is the frequency-response function of the wave analyzer,
and 2fg is the band pass width of the analyzer. The numerical value of

0

J[ IYW(Enjm)lzd@ (4.64 cps) was obtained by mechanical integration
-fq
of an experimental curve. Unless otherwise noted, the spectral-density
plots of unsteady normal-force coefficients were calculated from the spec-
tral densities of the output force, Ny, by use of this equation, together
with equations (15) and (22). Correct fairing of the curves between points
was determined from inspection of the continuously recorded frequency
data.

The relationship (23) was derived in the following manner (see Blge 7).
For any particular frequency setting, f;, of the wave analyzer,

PR +fo
[Ey(£y)]1% = Gy(fy + @)do
-fo

where ¢ 1is the frequency dependent variable of the output Spectra.

Gy(fy + @) = |yylenj(f, + @)]|2K22GR(fl + Q)
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¥ R WL +fo
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It is a characteristic of the wave analyzer employed that |Yw[2“j(f1 4 @)]l

is the same for all frequency settings, therefore

[tyl2ni(£, + 0) 1] = [Yy(2njo) |
Also within the small range -fo < f < fg (approximately 10 cps wide)
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Substitution of these relationships into (24) yields
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which is the equation desired.
RESULTS AND DISCUSSION

The principal results obtained in this investigation consist of
(a) an appraisal of the effect of geometric parameters on the unsteady
normal-force characteristics of airfoil sections over the Mach number range
of Q.75 t0:0.9 fomt L coefficients 'off0 to 0.6, (b) comparison of wind-
tunnel results with flight measurements, (c) evaluation of the effect of
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Reynolds number on the unsteady force measurements, (d) measurements of
quantities describing unsteady normal force as a stationary random func-
tion of time, and (e) a suggested method for applying unsteady force data
to the problem of airplane buffeting. Each of these topics is discussed
Inseurn,

Effect of Airfoil Geometric Parameters

The effect of airfoil geometry was examined by comparing the unsteady
normal-force characteristics of 23 profiles (see table T} having a varia-
tion in maximum thickness from 4- to 12-percent chord, in camber from O
to 0.6 degdign 11£E coefficient, in position of minimum pressure from 30-
to 60-percent chord, and in leading-edge radius from O- to 1.5-percent
chord. Lift coefficient versus angle of attack, unsteady normal-force
coefficient as a function of 1lift coefficient, and contour plots of con-
stant magnitudes of unsteady normal-force coefficient on the 1ift-
coefficient and Mach number plane are shown in figures 11 to 34 for each
of these profiles. The (a) and (b) parts of each figure contain the basic
data from which part (c) is derived. The dashed lines appearing on some
of the contour plots indicate portions of the curves obtained by extra-
polating the AcCnymg vs. ¢; curves, such extrapolations being resorted
to only when supported beyond reasonable doubt by the trend of ad jacent
data. No symbols appear on parts (a) and (b) of figures 16, 17, and 19
to 22 because these figures were derived from cross plots of measurements
at constant angle of attack (instead of constant Mach number). Results
shown in figures 19 to 22 were obtained from the curvilinear cell instal-
lation (fig. 3); as shown in Appendix A they are not directly comparable
with those measured with the straight-line-cell installation.

Inspection of the ACnypg V8. €3 curves for these airfoil sections

(part (b) of figs. 11 to 34) discloses that certain features are often
present. At low Mach numbers the very sharp rise of Acﬂrms from ini-
tially small values with little, or in some cases no, increase in 1lift
coefficient is most noticeable, Reference to part (a) reveals that these
sharp increases occur in the vicinity of maximum 1ift. For the higher
Mach numbers, above 0.8 approximately, sizable amounts of unsteady normal
force are present even at low 1lift coefficients.

From an examination of the contours of part (c) of the figures it is
clear that, although the contour values are in geometric progression, the
curves generally become more closely spaced as the region of unsteady
normal force is progressively entered. The corresponding maximum unsteady
normal-force gradient therefore rises sharply.

Data from the contour plots of these figures were cross-plotted to
show the variation of unsteady normal force with thickness in fiovire 35,
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with camber in figure 36, with position of minimum pressure in figure 37,
and with leading-edge radius in figure 38. As will be noted from these
figures, the data pertain primarily to 1lift coefficients between 0 and
0.6, and Mach numbers from 0.75 to 0.89. This lift-coefficient range is
selected because of the limitations imposed by low Reynolds number, dis-
cussed further on.

Of these four parameters, thickness is shown to have the greatest
influence. For the symmetrical NACA 65-series sections (fig. 35(a)), a
reduction of thickness from 12 to 8 percent is accompanied at all 1ift
coefficients by a marked decrease in unsteady normal force. With further
reductions of thickness below 8 percent, however, this trend disappears
and, for some combinations of 1ift coefficient and Mach number (eagsy
cy = 0.4, M =0.85 and cy = 0.6, M = 0.775), even reverses itself, the

unsteady normal force becoming larger as the thickness decreases. This
reversal, however, is not universally present, as indicated by inspection

of the comparative plots of Acnrms VS. ¢; presented in figure 39 for the

NACA 65-series sections. Notice particularly that for Mach numbers 0. 785,
0.809, and 0.832, above 0.6 1ift coefficient, the li- and 6-percent-thick
sections show distinctly smaller values of unsteady normal-force coeffi-
cient than do those of 8-, 10-, and 12-percent thickness. These observa-
tions are generally substantiated by the results of references 3 andy 5,
although the pressure pulsations discussed in the former reference give
little indication of increased unsteady normal-force coefficients with
decreased thickness below 8 percent.

The results for the NACA 2-series airfoil sections for 1ift coeffi-
cients of 0.6 and below (fig. 35(b)) are by no means so clear cut, reduc-
tions of thickness below 8 percent sometimes being accompanied by increased
unsteady normal force (CZ = 0.2, M = 0.890 and c; = 0.4, M = 0.890), and
sometimes, notably for Gy = 0.6, by a decrease. The trends however,
except at ¢y = 0.6, are not pronounced, and the conclusion that little
is gained by reducing thickness below 8 percent appears valid for this
family of profiles also,

There are few unqualified statements which can be made concerning the
effects of camber, summarized in figure 36. The most interesting result
is the decrease in unsteady normal force of the 12-percent-thick, NACA
65-series section accompanying an increase of camber from 0.4 to 0.6 design
1ift coefficient, which takes place at Mach numbers even as high as 0.875.
Amounts of camber less than 0.k, however, in general have but little effect
on unsteady normal-force magnitudes, not only for these sections but for
the corresponding L-percent-thick sections (fig. 36(b)) as well.

The trends of unsteady normal force with chordwise location of the
position of minimum pressure for the 10-percent-thick, symmetrical, NACA
6-series airfoil sections (fig. 37) are considered relatively unimportant.
At the higher 1ift coefficients (0.4 and 0.6), however, it is possible to




NACA RM A55C02 25

conclude that the most rearward position of minimum pressure investigated,
60-percent chord, is slightly unfavorable.

Results appraising the effect of leading-edge radius are summarized
in figure 38. 1Inspection of this figure shows that, in general, although
there is a slight trend in the direction of increased unsteady normal-
force coefficient with increasing leading-edge radius, the tendency is
not sufficiently pronounced to be conclusive. The weight of the evidence
does indicate, however, that an abnormally large leading-edge radius is
not favorable. This conclusion is supported by comparison of the results,
previously presented in figure 35(a), for the NACA 65-series airfoil sec-
tions with those for the more bulbous nosed 2-series sections, fig-
ure 35(b). At comparable values of 1lift coefficient, Mach number, and
thickness, the latter sections display a generally greater value of
Acnrms than do the former.

In summary it is seen that maximum thickness, of the four geometric
parameters investigated, has the greatest effect upon unsteady normal-
force characteristics at high subsonic Mach numbers and lift coefficients
up to 0.6. The influence even of this parameter, however, is noticeably
diminished for thicknesses below 8 percent for the profiles investigated,
being pronounced only at lift coefficients above 0.6 and for just the
small Mach number range extending from 0.76 to 0.86. For the 12-percent-
thick NACA 65-series, camber above 0.4 design lift coefficient also
affects unsteady normal force to a significant degree, showing beneficial
results up to as high as 0.875 Mach number. Trends with leading-edge
radius for radii below l.2-percent chord, with camber for L-percent-thick
NACA 65-series profiles, and with position of minimum pressure for the
NACA 6-series, lO-percent-thick, symmetrical profiles are relatively
unimportant. Abnormally large leading-edge radii appear to be disadvan-
tageous at high subsonic Mach numbers.

Comparison With Airplane Buffeting

The buffet boundaries reported in reference 14 for four straight-

wing airplanes, aspect ratios 4.17, 5.17, 6.00, and 6.39, are compared in
figure 40 with the unsteady normal-force coefficient contours measured for
the corresponding airfoil sections at the wing-fuselage juncture. Buffet
boundaries are used instead of contours because the boundaries mark the
beginning of structural vibration and, by the same token, the first appear-
ance of the aerodynamic force causing buffeting. There should therefore

be some correspondence between the boundary and the 0.005 unsteady normal-
force coefficient contour since this quantity, which is the smallest that
could be reliably measured, also marks the first appearance of the dis-
turbing force in the wind tunnel. This comparison, of course, fails to
recognize differences due to Reynolds number. From inspection of this fig-
ure it is concluded that, while discrepancies exist (chiefly in the region
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of high lift coefficients and moderate Mach numbers, as would be expected), ]
the agreement is good enough to infer that the wind-tunnel measurements
of unsteady normal force on the profile are directly related to the buf-
feting found in flight.

It is interesting to note the extremely sharp gradient of unsteady
normal force across the contours displayed by the NACA 23018 airfoil
section (fig. 40(a)), which, as will be seen later, also exists for the
23013 section. No other profile investigated shows such an abrupt rise
of intensity, and the fact that the airplane equipped with this profile
is known to have particularly violent buffeting characteristics may be
taken as further evidence supporting the wind-tunnel results.

Effect of Reynolds Number

To gain some insight concerning the effect of Reynolds number on
unsteady normal force, 12-inch-chord models of the NACA 23013 and of the
65-213, a = 0.5 airfoil sections were tested up to the tunnel choking Mach
number (0.7 approximately). The results are compared with 6-inch-chord
airfoil data, figures 41 and 42, both the 6-inch- and 12-inch-chord data
being obtained with the strain-gage instrumentation. Shown also in
figure L2 is the same buffet boundary plotted in figure L4O(b) for the air-
plane having the NACA 65-213, a = 0.5 wing section. Although these data
are scanty, they do indicate that increasing the Reynolds number from
approximately 2 million to approximately 4 million significantly alters
the unsteady normal-force characteristics. Comparisons, moreover, of 6-
inch-chord data with flight data, and of 6-inch-chord data with 12-inch-
chord data, show discrepancies that are in the same direction and of .
comparable magnitude, a result which further indicates that the Reynolds
numbers of 1 to 2 million are undesirably low.

It will be observed that increased Reynolds numbers generally result
in shifting the unsteady normal-force coefficient contours in the direc-
tion of increased 1lift coefficient (figs. 41 and 42). A possible explana-
tion for this shift is the higher 1ift coefficients realized at higher
Reynolds numbers at the same angle of attack. To investigate this possi-
bility comparative plots of unsteady normal-force coefficient versus angle
of attack were examined. It was found that practically all of the differ-
ences for the NACA 23013 airfoil section could thus be explained, but that
practically none for the 65-213, a = 0.5 section could be. Apparently,
therefore, while the differences for this latter airfoil are connected in
some way with the higher 1ift coefficients obtained at higher Reynolds
numbers, the relationship is not direct and the available data are not
sufficient to isolate the ultimate cause. -

Some additional information concerning this matter is to be found
from comparison of the spectral densities of figure 43. The upper half
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of this figure presents the data, both ordinate and abcissa, in absolute
units; in the lower half the ordinate is normalized with respect to

(Acn')2 (i.e., the area under the curve) and the abcissa, with respect

to reduced frequency, or Strouhal number. The agreement of the normalized
plots is certainly good enough to provide hope that extrapolation to
larger scales may be accomplished on the basis of Strouhal number; how-
ever, it cannot be emphasized too strongly that the supporting evidence
for doing so is very meager.

Tests were also made to see if the effective Reynolds number could be
increased artificially with a turbulent boundary layer, obtained in the
usual way by roughening the leading edge of the airfoil surface. No change
in unsteady normal-force characteristics was observed. Assurance that
the entire boundary layer up to the point of separation was turbulent was
provided by liquid film tests, coupled with schlieren observations of the
shock-wave pattern. The same technique disclosed that without roughness
the flow remained laminar to the point of separation.

Statistical Aspects of the Data

A principal result of this investigation is the conclusion that the
unsteady normal force on a two-dimensional airfoil is a stationary random
function of time, and can be defined by measurement of the chief variables
pertaining to this type of function.

Stationary character of the unsteady normal force.- A stationary ran-
dom function of time is, by definition, one for which all the probability
densities are invariant with time. Although the evidence available is
insufficient to demonstrate conclusively that the densities are invariant,
it is enough to allay reasonable doubts.

Equations (5) and (6) express the mean value and the mean-square
value of a random function in terms of the first probability density. It
is an experimentally observed fact that both of these quantities are time-
invariant. Accordingly, although it is still mathematically possible for
the first probability density, wl(y), to be a function of time, the contin-
gency is remote. More direct evidence is furnished by the probability-
density measurements described below.

A similar line of reasoning may be applied to the second probability
density, which in equation (3b) is used to define the autocorrelation
function and, indirectly, via equation (9), the spectral density. The
repeatability of this latter function under test conditions is well illus-
trated in figure 44, in which two spectra observed at widely different
times are compared. The agreement is very good, and leaves little doubt
that the spectral density and, hence, the autocorrelation function are
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both time-invariant. It therefore seems quite probable that the second
probability density is time-invariant.

No evidence was obtained concerning the nature of the third and higher
probability densities. These quantities, however, do not enter into any
aspect of this investigation and their characteristics are not of direct
1nteresni.

Form of the first probability density.- The first probability density
was directly measured for a typical case by constructing a histogram of
the unsteady normal-force coefficient from a high-speed film record of an
oscilloscope trace. The result, based on 10,013 points abstracted from a
1.70-second film record, is shown in figure 45, fitted to a normal proba-
bility curve. The apparent good agreement is substantiated by the more
objective measures commonly employed, that is, skewness (3rd moment), and
kurtosis (hth moment) which are itemized in the upper left-hand corner of
the figure. The agreement is extraordinary and, if this one case is
representative, demonstrates conclusively that the first probability den-
sity is normally distributed. The spectral density corresponding to this
histogram appears in figure 47(c).

An indication of the extent to which the results of figure 45 are
representative is provided by comparing the ratio of the mean of the abso-
lute value of section unsteady normal-force coefficient (i.e., the mean
value of the fully rectified unsteady normal-force signal) to the root-
mean-square value. For a normally distributed probability density this
ratio is ~x/2 = 1.253. A summary of 887 simultaneous comparisons for
nine airfoils is presented in the histogram of figure 46, which typifies
histograms for each of the airfoils individually. The mean values were
experimentally obtained with an average reading meter, and the mean-
square values with a thermocouple meter, as previously described. As the
figure shows, the ratios are heavily concentrated in the neighborhood of
the 1.253 value, the small displacement of the median from 1.253 being
within the accuracy of calibration. This result strongly suggests that
the unsteady normal force of the 10,013-point distribution is typical,
and that the first probability densities of the unsteady normal force of
the airfoil sections are, in general, normally distributed.

The implication of this result has many ramifications, not the least
of which is the conclusion pointed out in the discussion of the theory of
stationary random functions of time, that, if the spectral density (or the
autocorrelation function) is known, the function is completely defined;
that is to say, all of the probability densities are determinable. The
spectral density therefore furnishes virtually complete information con-
cerning the unsteady normal-force characteristics of an airfoil section.
This result also is the reason for reporting values of Acnrms calculated

from the mean-value readings with the 1.253 ratio, as previously described.
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The data of figure 45 were also examined to see if the first proba-
bility density were stationary. This was done by subdividing the original
record into ten parts, and comparing the defining parameters of the corres-
ponding histograms with each other and with those of the original. No
significant deviations or trends were found, a result which shows directly
that the first probability density of this portion of the data is station-
ary.

Spectral densities of unsteady normal-force coefficient.- Several
spectral densities of the unsteady normal-force coefficient, calculated
from the strain-gage spectrum as previously described, are shown in fig-
ure 47 at the Mach number and 1lift coefficient loci noted on the accompany-
ing contour plots,® which are based on strain-gage data. Included with
each curve is the unsteady normal-force coefficient measured by integrating
the area under the curve. When available, the corresponding value measured
with the resonance compensating amplifier and thermocouple meter is shown
for comparison. The resonant frequencies of the airfoil, fp, and of the
wind tunnel, fp, are also shown.

Inspection of the 16 spectral densities contained in the figure indi-
cates that the majority of the curves have the common characteristics of
peaking in the low-frequency range, below 200 cycles per second, and drop-
ping to a low value above this range. The exceptions to this generaliza-
tion (NACA 23013 airfoil at M = 0.707 and 0.760, and the 65-213, a = 0.5,
airfoil at M = 0.705) display spectrums having many random peaks of roughly
equal amplitude, rather than a single, prominent spike. None of the 16
spectra can be adequately represented by the "white noise™ spectrum some-
times assumed for calculations.

It is to be observed that the three spectral densities having multi-
ple peaks differ from the others in that they correspond both to high Mach
numbers and large unsteady normal-force coefficients. For this reason it
may tentatively be suggested that spectrums at high Mach numbers and high
unsteady normal-force coefficients are of a different nature from those at
low Mach numbers or at small unsteady normal-force coefficients. Under
the last named circumstances, unsteady normal force as a function of time
approaches a harmonic variation much more closely than it does for the
former.

The precipitous drop sometimes observed in the vicinity of the tun-
nel resonant frequency (NACA 65-110 airfoil at M = 0.655, ag = 8.27°,
and at M = 0.704; 23013 airfoil at M = 0.563, and 0.608, etc.) is con-
sidered to be a combination of aerodynamic characteristics and & tunnel

. ¢ 1)
3The disagreement between the value of [ J[}bSqJ(f)de tabulated

on the spectral-density curve of figure 47(a) for 0.603 Mach number and
the corresponding value indicated by the contour plot results from measur-
ing the spectral density at an angle of attack above that of maximum 1lift.
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resonance phenomenon discussed in Appendix B, the conjecture being that
in the absence of tunnel resonance (or in the event of its occurring at a
higher frequency) the decrease would be more gradual, resembling that for
the NACA 65-213, a = 0.5 profile at 0.555 Mach number, for example.

A cursory inspection is sufficient to demonstrate that the airfoil
resonant frequency, f,, is irrelevant to the results.

Tabulated below is a comparison (cf. eq. (13)) of the unsteady normal-
force coefficients obtained by integration of the area under the spectral
density curves with those measured with the thermocouple meter in conjunc-
tion with the resonance compensating amplifier:

Thermo~ Integration of
NACA Chord; | ‘o, couple spectral density,
profile 183 dgg i metery / " &
((ea 1% | | J Caen (F)OF

23013 6 6 0.767 0.0355 0.0369
23013 6 6 107 .0355 .0379
23013 6 10 35 .0416 L0422
23013 6 H0 655 0400 20433
23013 12 IG5 N a .0280 .0307
23013 12 BT | 556 L0450 .OLT6
65-213, a = 0.5 6 8 +T05 LORLT .0310
65-213; Ba= 085 12 10 a7 .0368 .0351
65-110 6 6 «655 .0160 s0158
65-110 6 8871 655 .0495 .0505
0006-6L4 6 g} 556 .0k65 0454

Similar comparisons for six additional observations are also shown in
figure u47.

Inspection of these data shows that, for unsteady normal-force coeffi-
cients greater than 0.02, discrepancies between corresponding values in
the last two columns are generally of the order of 5 percent. This agree-
ment, obtained for 17 observations at greatly different times, and over a
wide range of geometric and aerodynamic variables, provides very persua-
sive evidence of the accuracy not only of the root-mean-square unsteady
normal-force measurements made with the resonance compensating amplifier,
but of the spectral densities as well.

It would be an omission to end the discussion of the spectral densi-
ties without pointing out some important limitations to these data. First,
because of the rapidity with which the wind tunnel overheated above 0.75
Mach number, it was impractical to obtain spectral densities above this
speed. Second, as has already been mentioned, the Reynolds number avail-
able at the lower Mach numbers is too small to provide representative
maximum 1lift data. Third, 6 of the 16 spectral densities pertain to the
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NACA 23013 profile, and there is reason to suspect that the characteris-
tics of this section are not representative. The steep gradient across
the contours typifying this profile has already been mentioned. In addi-
tion, figure 47(b) shows a tendency for large amounts of unsteady normal
force to exist close to zero frequency and above 200 cycles per second.
The entire picture concerning spectral densities therefore is suggestive
rather than definitive, and much work remains to be done before well
founded conclusions can be drawn.

Application to Aircraft Buffeting

A principal objective in the investigation of unsteady normal-force
phenomena is to derive the means and obtain the data which will enable the
designer to predict from wind-tunnel data for airfoil sections the buffet-
ing of an airplane.’ To do this it i1s necessary:

1. To select the significant quantities which describe
both the aircraft buffeting and the unsteady aerodynamic forces
causing buffeting.

2, To measure these quantities for the unsteady forces in
the wind tunnel.

3. To establish the relationship between these quantities
for the wind-tunnel aerodynamic forces and the aircraft buffeting.

The theory of stationary random functions of time points out the
significant quantities to be used. Measurements at low Reynolds numbers
made of these quantities for a selected group of profiles have been des-
cribed and discussed in preceding portions of this report. There remains
the problem of establishing the relationship between unsteady normal forces
and buffeting.

The solution of this problem requires the development of a means for
accounting for both the filtering effect of the aircraft structure and the
spanwise variation of the unsteady 1lift. Both of these difficulties were
encountered in the development of the strain-gage technique; the procedure
in fact represents a practical solution, under wind-tunnel conditions, of
the inverse problem - given the buffeting of a two-dimensional airfoil, to
determine the corresponding aerodynamic forces. For this reason, the
methods applied to the wind-tunnel case, or similar methods also derived
from the theory of stationary random processes, seem to offer considerable
promise in the analysis of aircraft buffeting. This same suggestion is
made in reference 15, where a theory based essentially on what corresponds
to equations (15) and (19) of the present report is developed in some
detail.
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The conclusion that the wind-tunnel models could be treated as linear,
mechanical filters simplified the airfoil calculations considerably. A
similar conclusion for the structure of aircraft is suggested by the
following reasoning. Inertial and spring forces in aircraft structure are
usually linear; investigations of structural damping force ordinarily show
that, although it is nonlinear, it is small compared to the critical damp-
ing force and may be adequately represented by linear equations. The
characteristics of the aerodynamic damping are more in doubt, but the
reasoning used in reference 15 to conclude that it is linearly proportional
to velocity is appealing.

The question of whether the structure is linear may also be approached
from another point of view. A proposition exists in filter theory to the
effect that, if the probability densities of both the input and output
signals are normally distributed, the filter is linear. It has been con-
cluded in this report that the unsteady normal force on an airfoil profile
is normally distributed; hence it is possible for the force input to an
aircraft structure also to be normally distributed. If the first proba-
bility density of the output force (buffeting) is normally distributed, as
appears to be the case in some observed instances, it is more than likely
that an aircraft structure may be dealt with as though it were a linear
filter.

Even in the event that aircraft structure cannot be generally repre-
sented as a linear filter, however, the suggested procedure still offers
promise. Methods are outlined in reference 7 for dealing with nonlinear
filters; possibly they can be adapted to the flight problem in much the
same fashion as those pertaining to a linear filter have been adapted to
the wind-tunnel calculations.

CONCLUSIONS

The principal conclusions obtained from this experimental investiga-
tion of the unsteady normal force characteristics of 27 representative
NACA profiles at Mach numbers up to 0.9, and Reynolds numbers of 1 to 2
million, may be briefly summarized:

1. Unsteady normal force occurred for some range of 1lift coefficient
and Mach number for all airfoil sections investigated.

2. The magnitude of unsteady normal force is a function of Reynolds
number. While the Reynolds number range of the tests appears in general
to be too low to provide quantitative results directly applicable to full-
scale aircraft, the data are considered adequate for evaluation of trends.

3. Of the four geometric parameters investigated, maximum thickness,
camber, position of minimum pressure, and leading-edge radius, the first
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has the greatest effect upon unsteady normal force, decreased thickness
providing noticeable reductions in magnitude. There is a maximum
thickness-chord ratio, however, below which in general little reduction
takes place, this thickness peing 8 percent for the symmetrical NACA 65-
series sections of the investigation.

L. Camber up to 0.4t design 1ift coefficient had little effect on
the magnitude of unsteady normal force. An increase to 0.6 design 1lift
coefficient applied to the 12-percent-thick NACA 65-series sections
reduced the unsteady normal force somewhat, even at Mach numbers as high
as 0.88.

5. Variations of unsteady normal force with position of minimum
pressure from 30 to 60 percent of the chord, and with leading-edge radius
below 0.15 chord were unimportant.

6. Abnormally large leading-edge radii increased to some extent the
magnitude of unsteady normal force at high subsonic Mach numbers.

. Unsteady normal force was a stationary random function of time,
for which the first and higher probability densities were normally dis-
tributed. The spectral density is therefore sufficient to define the
function.

8. At low Mach numbers and high 1lift coefficients the principal fre-
quency components of unsteady normal force were largely confined to values
below 200 cycles per second for the 6-inch-chord airfoils examined. Above
0.7 Mach number for high unsteady normal forces there appears to be a
wider spread in the range of frequencies represented. None of the spectral
densities was adequately represented by a "white noise" distribution.

9. Comparisons of unsteady normal-force section data with buffet
boundaries measured for four straight-wing aircraft indicate there is a
direct relationship, and provide evidence that unsteady normal force on
the wing is one source of buffeting.

10. The methods derived to account for the influence of airfoil struc-
ture and spanwise variation of loading, which make use of linear-filter
theory, frequency response functions, and the theory of stationary random
time processes, may be useful in analyzing aircraft buffeting.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Mar. 2, 1955
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APPENDIX A -
PRESSURE-CELL RESULTS COMPARED WITH STRAIN GAGE

To appraise the results obtained with the pressure cells, simulta-
neous measurements of the root-mean-square unsteady normal forces were
made for four profiles with the pressure cells and with the strain-gage
equipment, using a common group of indicating instruments. The results
are compared in figures 48 to 51. The forces in both cases were measured
with the thermocouple meter to eliminate all discrepancies due to differ-
ences in wave form (i.e., differences in the first probability densities).
The data have been adjusted in the manner described in Appendix C.

An examination first of the contour plots shows that, while discrep-
ancies exist, the agreement on the whole is remarkably good. However,
comparison of the root-mean-square unsteady normal-force coefficient
versus lift-coefficient curves (part (b) of the figures) discloses vari-
ances somewhat larger than are apparent in the contour plots, the biggest
differences usually occurring in the low Mach number and high-1ift-
coefficient region. The masking of this effect by the contour curves is
due largely to the very sharp increases of unsteady normal force with
small changes in 1lift coefficient.

These differences are attributed largely to errors in the pressure-
cell results. The cells were not only somewhat removed from the airfoil
surface, but also were submerged in the tunnel-wall boundary layer. In
addition they were oriented to measure pressure in the spanwise direction
instead of perpendicular to the model surface. For streamline steady-
state flow closely approximating potential conditions, of course, orienta-
tion would have no influence on the results. Unsteady normal force,
however, is generally accompanied by large regions of separated flow over L
the rear portion of the airfoil; and the turbulence in such a flow field
is quite probably nonisotropic (ref. 16). Consequently, it would be
expected, as already noted, that the largest discrepancies would occur
at moderate Mach numbers and high angles of attack, where regions of
separated flow are greatest.

Further information suggesting that most of the error is attributable
to the pressure cells appears in figure 52, which compares the unsteady
normal-force coefficients measured both by the straight-line and by the
curvilinear pressure-cell installations (fig. 3), for the NACA 65-010 air-
foil section. The data,! which are typical of those obtained for several
other profiles, indicate that the unsteady normal forces measured are

1The curvilinear pressure-cell data were obtained from tests at
constant a, and have been cross-plotted in figure 52 at constant M.
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dependent upon cell location. Inasmuch as no detailed investigation was
made to determine the best location, the arrangements chosen being a
compromise between mechanical convenience and the desire to locate the
cells as close to the model surface as possible, there is little reason
to expect either combination to provide optimum results.

Not all the differences, however, can be charged to pressure-cell
errors. Because the strain gage responds to area loading, the forces
measured can, in accordance with the calculations described below and
summarized in figure 53, be independent of span only if the instantaneous
magnitude of the fluctuating load at each spanwise station is at every
instant identical to that at all other spanwise stations. This condition
requires that the correlation coefficient between all chordwise loadings
be unity. In all other cases the forces will be less. No correlation
measurements between spanwise stations were made, but the correlation
coefficient between the instantaneous pressures at two spanwise points
in the region of separated flow was determined in one instance and found
to be low. It is therefore quite unlikely that the correlation coeffi-
cient between spanwise stations is one. Judging from the results of the
calculations summarized in figure 53, however, and schlieren observations
during the tests of the shock-wave motion and the coincidence of shock-
wave location with the point of separation, it is felt that the correla-
tion was sufficient to obtain upwards of 80 percent of the chordwise
normal force per unit span from uncorrected strain-gage measurements.

Further comparisons of pressure-cell and strain-gage results are
provided by the spectral-density curves of figure 54 obtained in the low
Mach number and high 1ift coefficient region where the differences between
results from the two sets of instrumentation are large. In each of these
figures it is clear that the significant differences are not confined to
a narrow range of frequencies, but are distributed over the entire spec-
trum. There is proportionately as much variance in the higher frequencies
as in the low, although the absolute differences are of course larger in
the latter region.

On the basis of all these considerations it is concluded that, while
differences exist and neither method of measurement is free of defects,
the agreement is sufficiently good to provide assurance that the unsteady
normal force occurring in the wind tunnel was measured with reasonable
accuracy.

The calculations relating the total unsteady load measured by the
strain gage to the unsteady normal load per unit span, were carried out
by (a) replacing the instantaneous load across the span with an equiva-
lent load at midspan giving the same deflection, (b) computing the mean-
square value of this equivalent load as a function of A/b, and (c) deter-
mining the limiting value of (b) for A/b—>w and dividing by this
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quantity to determine the proportion of normal force indicated by the
strain gage for any scale of correlation %/b.

By application of the principle of virtual displacements to a simply
supported beam loaded at any point a distance x from the end:

g (x,8) = L g(x,t)ax

d(x)
o1
where ©; 1is the displacement at midspan resulting from the load

g(x,t)dx at point x. Also, from the equation for deflection of such a
beam loaded in the manner described

2 3
3(x) _ 3xb ;Mx ; OSXS%
therefore
2 3
3xb< - bx
d-Nj_(X;t) = 3 g(x)t)d-x
b
and /
b/2 2 3
hE = L
m () = 2[ 3D DM o(x,t)dx
Jg 13

The mean-square value of Ni(t) is obtained in the following fashion,
which is the same as that used in reference 17:
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i T
= 1
Ni = lim = [m;(t)] at
2 'P—;?w U “Z:
b/2 2 3 2
N3 (t)] [f 3Xbb3h g(x t)de
(0]
b/2 b/2
=—l% f/f (3xbZ - 4x®) (3yb® - ky®)e(x,t)e(y,t)dy dx
b . g
e D e R L
e =_6Til_§mf L dt\/(: v[ (3xb2 - bx®) (3yb2 - by3)g(x,t)g(y,t)dy dx
b/2 pb/2 i
=bh—6£ l (3xb2 - Ux®) (3y12 - bi)ay dx lin %/;g(x,t)g(y,t)dt
T
lim %f g(x,)e(y,t)at = g(x)e() =+ [e(x) 12y [a(y) IZ x(x,y)
T—>w o

where r(x,y) is the correlation coefficient between g(x) and g(y).

No data are available for determining r(x,y); but, for want of a
better assumption, a function sometimes used to approximate the correla-
tion coefficient between the pressures at two points in a turbulent flow
field (ref. 17) may be assumed:

r(x,y) =< v - XI>
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Also, .

[g(x)1% = [g(y)]® = &2 -

Substitution of these values in the expression for Niz yields

|-
_ b/2 pb/2 - 5 g
(s (/)17 = é%f f (307 - bx) (3907 - uys)e?(l- b;f' ¢ M wu
(0] O
YooK
e i s g
[vi(A/B)]” = b = (Bxb= ~ ilix™ ) dx (3yb2 - by®)( 1 - 5% )¢ dy +
T o X
g2 b/2 2 _ i
& ;3_/ (3x02 - L#xe’)clx&/ﬁ (3yb2-4y3)< - % e N ay
(o} O

The second of these two integrals may be shown to be equal to the first
by substituting

U=y -
V=0
for which
a(X;Y) - -1
o(u,v)
Hence, finally
y-x
. e =5 pb/e b/2 Y - b
[ (/o) 12 = 8%/ (3562 - uxs)ax[ -1 - L) N gy :
0 s b
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The evaluation of this integral, although tedious, is straight-
forward. Only the result is stated here:

3 4 ' TR 8
[N (/D)1 _ [ 17 /22, 6 (2 33 (22 o <2x>
lb—z_g_g_— {:-3—5 ? +5 '.b— = T 5 +36 —.b— 514- ? +
- = Y 3 Y AN
2 15 u =A ) _g(eAr
R HOREIC) 2®) -« (2) o(2) -
T 8
. @) o2 @] w

For large values of X/b this equation may be more compactly
expressed as a power series in terms of its reciprocal,

[v; (Mp)1° i niw[ P D (e i L
b2g2 "2 /(o)) (n+3)!  (n+l)! T (n+5)! (n+6)!
n=o

108 , _108 J (=1
(n+7) 1  (n48) 1 (2n/p)"

_ 25 _0.1595 0.0k458 ° 0.009560 , 0.001670 _ 0.0002k69
6 226 (22/p)%  (27\/b)3 (27\/b)4 (22 /b)>

The ratio of mean-square unsteady normal force indicated by the

strain gage for a scale of correlation, A, to that for infinite scale of
correlation is therefore

[N (M0)1° 6L
e 2 0

where f(A/b) is the right-hand side of equation (Al).




L0 NACA RM A55C02

Numerical results are plotted against semilogarithmic coordinates
in figure 53. It is apparent that the strain-gage results are dependent
upon the scale of correlation for values of Ao 1less than 1; and,
since the results were not corrected to account for the scale of corre-
lation, they understate the true unsteady normal force per unit span.
This error is, of course, directly opposite to that introduced by the
pressure cells, which overestimate the force per unit span.
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APPENDIX B

WIND-TUNNEL EFFECTS

Tunnel Resonance

The experimental and theoretical work reported in references 18, 19,
and 20 indicates that the oscillating lift measured for an airfoil mounted
in a wind tunnel is affected by the presence of the tunnel walls. This
interference is greatest when the frequency of oscillation coincides with
the acoustic frequency corresponding to a wave length twice the tunnel
height, or any odd divisor of this length, and is evidenced by a large
loss in measured 1lift at that frequency. Lift forces at frequencies
other than resonance (or odd multiples thereof) are also affected, the
amount of distortion depending primarily upon free-stream Mach number and
airfoil-chord to tunnel-height ratio. The pulsating lift upon which the
theory of these references is based was obtained by assuming the existence
of oscillating pressure doublets. The results therefore, should be appli-
cable to this investigation as well as to the measurement of the 1lift of
an oscillating airfoil, for which they are primarily intended.

The resonant frequency at which unsteady normal force should vanish
(with no damping present) is noted on the 16 spectral-density plots of
figure 47. In every case loss of unsteady normal force at the indicated
frequency is apparent. There is no evidence of loss at odd multiples of
the resonant frequency, but the measured forces are too small to conclude
whether the effect is present or not. The magnitude of the loss of
unsteady normal force at the fundamental resonant frequency is generally
somewhat less than would have been expected. For some spectral densities,
however, resonance appears to occur within the frequency range of the
large peak (e.g., fig. 47(a), M = 0.655 (on = 8.27°), M = 0.70k;

Pig. '45(p), M = 0.563, 0.608, 0.655, 0.T0T, 0.760; and fig. 4¥¥(e),
M = 0.705) and provides a plausible explanation for the precipitious loss
of unsteady normal force with increased frequency which is so noticeable.

Some additional information concerning this phenomenon is presented
in figure 55, which is a plot of the spectral density of the output of
the cells installed in the floor and ceiling of the tunnel obtained for
the same airfoil and test conditions as the spectral density of fig-
ure 47(a) for Mach number 0.556. The fundamental resonant frequencies
indicated by both sets of data are identical. In addition, the 3rd, 5th,
7th, and 9th harmonics were detected by the pressure cells, although
nothing is shown by the airfoil spectral density.

For the test point just discussed, the amount of unsteady normal
force in the immediate vicinity of fp 1s small. A larger proportion
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of unsteady normal force at fp would result in increased pressures at
the floor and ceiling cells. The output of these cells can therefore be
used to detect the coincidence of tunnel resonant frequency with pre-
dominant normal-force frequency. This condition was actually encountered
in a few isolated instances, but only for airfoils not included in this
report.

In summary, there is ample evidence that the resonant condition
investigated in references 18 to 20 was present during the tests and that
it affected the data in measurable degree. The effects for the most part,
however, are unimportant, appearing small even in the vicinity of reso-
nance. As an estimate, the area under the spectral-density curves

(T5e.; (Acn')z) is distorted by not more than 10 percent, corresponding
to 5 percent of the root-mean-square unsteady normal-force coefficient.

Airfoil Resonance

Although the spectral densities indicate that airfoil resonance was
of little consequence in unsteady normal-force measurements, it is inter-
esting to note that the pressure pulsations created by the model vibra-
tion, while weak, were nevertheless picked up by the floor and ceiling
cells during measurements of the spectral density of figure 55. (The
small discrepancy between the airfoil frequency noted here and in fig-
ure 47(d) is attributed to difference of wind-tunnel conditions existing
during the two observations.) The conditions which would result should
the model frequency coincide with either the tunnel resonant frequency
or with one of the predominant unsteady normal-force frequencies furnish
an interesting topic for speculation. Such a combination of events,
however, was never encountered during this investigation.
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APPENDIX C

UNSTEADY NORMAL-FORCE CORRECTIONS

The unsteady normal-force coefficients measured by the strain gage
were corrected by use of the following equation:

Iy w Ryt

where v, the noise factor, is the unsteady normal-force coefficient
measured at zero 1lift coefficient and approximately 0.5 Mach number
(values at lower Mach numbers were substantially the same). This equa-
tion was derived by assuming that the correlation coefficient, rg,
between the noise factor and the corrected unsteady normal-force coef-
ficient was zero:

Lcn' (t)

Len(t) + v(t)

ety = fren)t & +2 % Bulbcs)

Solving for (Acn)2

Lol (AT - = = v

vBen) = 752 J(cen)?

g N iA T - =

While it probably is not true that the unsteady normal force and noise
factor are totally uncorrelated, it is certain that the correlation is of
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a very low order; and in the absence of more precise knowledge this
assumption is considered reasonable. It is further to be observed that,

since ~NvZ was always less than 0.004, the corrections would be small
even in the extreme case of rg = 1.

The pressure-cell data were corrected on the assumption that the
VAcp

o2 J(acy)?

correlation coefficient rp = was unity, leading to the

equation

ACn = Acn' P -1/_2

rms rms

The values of N2 were determined in the same manner as for the strain-

gage data; in the case of the pressure cells, however, they were somewhat
larger, ranging from 0.006 to 0.009.

The use of rp = 1 is not intended to imply that the correlation
between signal and noise is higher for pressure-cell than for strain-gage
data. The value was chosen for the strictly pragmatic reason that it
minimizes the discrepancies between the two sets of data, particularly
at high angles of attack, and applies the larger corrections to the
pressure-cell data, which are considered the less reliable.
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TABLE I.- LIST OF PROFILES TESTED GROUPED ACCORDING TO PURPOSE

Variation of geometric parameters

Position of Leading-
Thickness Camber minimum pressure edge radius

1NACA 65-004 1NAcA 65-012 NACA 63-010 NACA 0010-0.27-40/1,051
NACA 65-006 NACA 65-212 NACA 64-010 NACA 0010-0.70-40/1.051
NACA 65-008 NACA 65-412 1NACA 65-010 NACA 0010-1.10-40/1.051
INACA 65-010 NACA 65-612 NACA 66-010 NACA 0010-1.50-40/1.051
1NACA 65-012

NACA 2-00k4 INaCA 65-00k 10-percent- 0

NACA 2-006 NACA 65-204 thick circular} 0.2¢
NACA 2-008 NACA 65-L40O4 arc 0O
Comparison with flight Reynolds number

NACA 23018 INACA 23013 6~ and 12-inch chord
1NACA 65-213, a = 0.5 INACA 65-213, a = 0.5, 6- and

INACA 65-110 12-inch chord

Statistical aspects of the
data, instrumentation

NACA 0006-6L4

1NACA 65-110

NACA 23013

INACA 65-213, a = 0.5

1Duplicate listing
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Flgure 1.- Determination of the first probability density from a station-

ary random function of time.



Strain gage pickup @ Ceiling pressure cell

rrrrrrrrrrrrrrrrr

Model (6 inch chord) @ Direction of airflow ;0 .,



NACA RM A55C02

A-17738

(a) Curvilinear cell installation.

DIk

A-19058.1

(b) Straight-line cell installation.

Figure 3.- Photograph of the pressure-cell installations in side wall
of 1- by 3-1/2-foot wind tunnel.
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Figure 9.- Typical spectral densities of section unsteady normal-force
coefficient, uncompensated, analytically compensated, and measured
with the resonance compensating amplifier; NACA 23013 airfoil sec-
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Figure 11.- Lift coefficient and unsteady normal-force characteristics

of the NACA 65-004 profile.
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Figure 14.- Lift coefficient and unsteady normal-force characteristics
of the NACA 65-010 profile.
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Figure 20.- Lift coefficient and unsteady normal-force characteristics
of the NACA 65-212 profile.




NACA RM A55C02 69

1o (o] (] (o] A v > < 4 v [N Y] a
1

0 M A // ] Ea L
i VAYEARAENAE YA
g / R
¥ 711 AR AD AR A % Y
£4 i /
g0 A L A R P AT )l
3 T A
7 ] . B R A R TR

y T 117

=4S O = s S B WS
Section angle of attack, a,, deg

(@) Variation of section [ift coefficient with section angle of attack for various Mach numbers.
Mach number, M
F<a 0508 «v708 78I5
AL 0556 »735 840
4 > i 6606 <763 <870
& 656 a4 787 a 900
<
WL
' N
| | 12
ArnEERTE = |
w sl NI V2 3 10 E:’\ \ \\/Acnrms: 04
" | v — | A \\ \
& 4l | |02
3 e 1+ " @ % 58 \
5 1 )
k5 - g ol
£ 10 —— / > £8 A
e} i @ \
. - ] \
o 08 ] ¥ &4
o >
3 i - \A
E 06 B 2 S
8 8 2 \ 1\
3 04 — o b IS
5 al Ll Hoe
e E 4 IRy,
=102 o L]V
s 2 005 | o
A o 2 S 6 i 8 9 10

(OIS Lol DR BIOR [2
Section lift coefficient, c,
(b) Variation of section unsteady normal-force coefficient (c) Section unsteady normal-force coefficient contours.

with section lift coefficient for various Mach numbers.

|
N

Mach number, M

Figure 21.- Lift coefficient and unsteady normal-force characteristics
of the NACA 65-412 profile.



70 NACA RM A55C02

L2 o} Do\ <>R a v_\D <4 4 4 N Q a

o //b A N/
i.s /T
L] 7l 1 A=
£ 6 / fi Va / ;
ol Y N T : //
& / Vi La
A riay A4, . s ]

Y 7 /

/ /

T 0,4 Bn
Section angle of attack, a,, deg
(@) Variation of section lift coefficient with section angle of attack for various Mach numbers.

Mach number, M
7 0509 710 7gl5
é 0559 > 732 & 839
- 7, ? 0609 <760 ~ 864
2660 4787 a890
A
1 2
———'-/P
[\
B 12 TR
\‘\‘r__,_‘-———/ 4 N = rms
—A - N/
10
~ e 1 Al \ M
g a
S R Pale]
< N 1 /] : &8
€ = o
S 2= o ey ks N | |/005
% .10 > o6 y
(=] (= /
; N [ / §
S 2@ 1y ¥ = 4
= = = N 005
€ 06 —— i1 b S ol
2 /. 2 2
= R 3 i
2 0
-pe |t /
QO F
g \ o -2 /"’ \./
W (DI TG E HET a0 12 oW 6 7 Ny ta D

Section lift coefficient, c, Mach number, M
(b) Variation of section unsteady normal-force coefficient  (c) Section unsteady normal-force coefficient contours.

with section lift coefficient for various Mach numbers.

Figure 22.- Lift coefficient and unsteady normal-force characteristics
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Figure 23.- Lift coefficient and unsteady normal-force characteristics
of the NACA 65-204 profile.
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Section lift coefficient, c, Mach number, M

(b) Variation of section unsteady normal-force coefficient  (c) Section unsteady normal-force coefficient confours.
with section lift coefficient for various Mach numbers.

Figure 25.- Lift coefficient and unsteady normal-force characteristics
of the NACA 63-010 profile.
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Section lift coefficient, c, Mach number, M
(b) Variation of section unsteady normal-force coefficient  (c) Section unsteady normal-force coefficient confours.

with section lift coefficient for various Mach numbers.

Figure 26,.- Lift coefficient and unsteady normal-force characteristics
of the NACA 64-010 profile.
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(b) Variation of section unsteady normal-force coefficient (c) Section unsteady normal-force coefficient contours.

with section lift coefficient for various Mach numbers.

of the NACA 66-010 profile.

Figure 27.- Lift coefficient and unsteady normal-force characteristics
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with section lift coefficient for various Mach numbers.

Figure 28.- Lift coefficient and unsteady normal-force characteristics
of the NACA 0010-0.27-40/1.051 profile.
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(@) Variation of section lift coefficient with section angle of attack for various Mach numbers.
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Section lift coefficient, c, Mach number, M
(b) Variation of section unsteady normal-force coefficient (c) Section unsteady normal-force coefficient contours.

with section lift coefficient for various Mach numbers.

Figure 29.- Lift coefficient and unsteady normal-force characteristics
of the NACA OOlO-O.”O-hO/l.OSl profile.
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(a) Variation of section lift coefficient with section angle of attack for various Mach numbers.
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Section lift coefficient, c, Mach number, M

(b) Variation of section unsteady normal-force coefficient (c) Section unsteady normal-force coefficient contours.
with section lift coefficient for various Mach numbers.

Figure 30.- Lift coefficient and unsteady normal-force characteristics
of the NACA 0010-1.10-40/1.051 profile.
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(@) Variation of section lift coefficient with section angle of attack for various Mach numbers.
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Section lift coefficient, c, Mach number, M

(b) Variation of section unsteady normal-force coefficient  (c) Section unsteady normal-force coefficient contours.
with section lift coefficient for various Mach numbers.

Figure 31l.- Lift coefficient and unsteady normal-force characteristics
of the NACA 0010-1.50-40/1.051 profile.
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(@) Variation of section lift coefficient with section angle of attack for various Mach numbers.
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Section lift coefficient, ¢, Mach number, M

(b) Variation of section unsteady normal-force coefficient (c) Section unsteady normal-force coefficient confours,
with section lift coefficient for various Mach numbers.

Figure 32.- Lift coefficient and unsteady normal-force characteristics
of the 10-percent circular-arc profile with zero leading-edge radius.
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¥ Figure 33.- Lift coefficient and unsteady normal-force characteristics
of the 10-percent circular-arc profile with 0.27 leading-edge radius.
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Figure 34.- Lift coefficient and unsteady normal-force characteristics

of the 10-percent circular-arc profile with 0.70 leading-edge radius.
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(a) NACA 65-series symmetrical profiles.

04 04
= C,=.2
M= 875
p M= 875 )/ o Y
] ] _ 850
8501 8501 1825 )/y
8251 ﬁ e
Ve 6 8 0 2 g 6 8 0 2
04 I 04
c =4 M= 875 c=6
850 M= 850 g
02 \/\ ] 02 - A aaketmrr
: |7 17 : 825+ ——]
1825 8001 /§_829 e /% 800"
RN —
\ et
. — 500 A el s
4 6 8 0 2 4 6 8 [0 2

Figure 35.- Variation of unsteady normal-force coefficient with maximum thickness-chord ratio.
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Section unsteady normal-force coefficient, Acq, ¢

Thickness, percent chord

(b) NACA 2-series symmetrical profiles.

Figure 35.- Concluded.
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Design lift coefficient, c,,

(a) NACA 65-series, 12-percent-thick profiles.

Figure 36.- Variation of unsteady normal-force coefficient with design lift coefficient.
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(b) NACA 65-series, 4-percent-thick profiles.

Figure 36.- Concluded.
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Section unsteady normal-force coefficient, Ac,,

Figure 37.- Variation of unsteady normal-force coefficient with position of minimum pressure;
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(a) NACA 0010-series profiles.

Figure 38.- Variation of unsteady normal-force coefficient with leading-edge radius.
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Figure 38.- Concluded.

200GGY WY VOVN

63

014



Maximum thickness, percent chord
4 1
6 4
— s e —— /r"
- L T Al
1 W /1 Mach L | 2 Mach
2ot . ! | number, M S number, M
- e I [ e o= 11
— A 73 887
P b >
7 Jh /.
A/ Y] 5 e
sl |z
o } | 106 =TT 859
i EATT:
£ /1)) P e et
8 :(:/__ ”a A_I_’g_ e - —
| = 655 ===z et | 832
5 el ]
Ke) / \ 2l 2
= N A I,
§ ‘ O ‘/’, // ‘-;? /
Z A= TP W
g o8 e 604 == /'é{ 809
5 A
£ 06 A
= };fi /L\ AV ,i/ "/
24 ’; g | = 3 A /
g 04 ! 555 785
: ; A
=
s A1 VAN
B = 506 e 758
WEESY O a2 AT 0 Gy R =AY BTag | 2

Section lift coefficient, c,

Figure 39.- Effect of maximum thickness on the variation of section unsteady normal-force coeffi-

cient with section 1ift coefficient; NACA 65-series profiles.

200GGY WY VOVN



20064V WY VOVN

2] 1.2 1.2
: RN L
& F-80A Buffet boundar :
i y o
1 \ ; = N
s PN AB 00 S N TN == = N5
SN = TN A EENENRE
) \ @ \ \\—.02 o \\
o 6 6 3 a\UN
3 N\ &= N ol £ BV A\
: \ 8 ‘ 2 o .
BTN £ \ : N
= F8F-I Buffet = \ = \
S boundary S \ \ S \
S 2 S 2 \ § | |Buffet boundary '
d 005 - 3 005—\'\ \ 02 S5 R \i
0 : \ 0 : Fdi e
N o2 ol 9 ol
% o
5T B PP D e o g T g (0D T R e el o ean
Mach number, M Mach number, M Mach number, M
(@) NACA 23018 (b) NACA 65-213, a=05 () NACA 65-110

Figure 40.- Comparison of unsteady normal-force contours with flight-determined buffet boundaries.

16



92 NACA RM A55C02

2 o o o a v > a a v N < i
10 ﬂbo
S .
+~ 8 f "Po 5
93 ’ F( 1% rTa
< VT ot
T 18l B2 LT A
;_; 4 Tl AR ] F
; // I/ / A{ /‘7
P 7 A ;
5 -
(<5} /A Y /) A
. JEUE T
o o o - \'/ <f/ J/ '}/ &/K - o
2 |

-4 (0] 4 8 12
Section angle of attock, a,, deg
(@) Variation of section lift coefficient with section angle of attack for various Mach numbers.

——6-inch chord
——-—l2—:nch Chg:d Mach number, M
° 507 v 707-711 7 82
o 556 > 733 5 840
3 © 608-607 < 760 N 871
— A 655-662 4 785
= v
BE 7 3
A 12 l
| 17 j
|8 j -
{5 10
T o1 f I 4
o 1
3 I\
= 3 i y &8 N LA = 04 ]
.QE) .2 ‘E’. \\ ™
Ko c ;
£ o R L S il
8 AR % AN -
2 L A S 005 K 02
= 08 s
4 £ ¢ ol
© FE R e :
£ 06— % s k]
: D e X
3 o = > 2]
8 04 EP \
g 02 = ’_—_—0—‘8 é o 4 005 |
5 ; o
g - = -2
B G oihe el 6 48 110 12 B0 6 bl oand ARG S0
Section lift coefficient, c, Mach number, M
(b) Variation of section unsteady normal-force coefficient () Section unsteady normal-force coefficient contours.

with section lift coefficient for various Mach numbers.

Figure L41.- Comparison of the lift and unsteady normsal-force character-
igtics of 6-inch- and 12-inch-chord NACA 23013 profile.
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Figure 42.- Comparison of the 1ift and unsteady normal-force character-
istics of 6-inch- and 12-inch-chord NACA 65-213, a = 0.5 profile.
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Figure 47.- Concluded.
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with section lift coefficient for various Mach numbers.

Figure 48.- Comparison of unsteady normal-force characteristics measured
with the pressure cells and with the strain gage; NACA 0006-64 profile.
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(b) Variation of section unsteady normal-force coefficient (c) Section unsteady normal-force coefficient contours.

with section lift coefficient for various Mach numbers.

Figure 49.- Comparison of unsteady normal-force characteristics measured
with the pressure cells and with the strain gage; NACA 65-110 profile.



NACA RM A55C02

12 o o o a v 3 < a v N <
10 1T
1::':' : F # [l
£ - 41
£ JIO P ABuErEaBzan
PP mrim i T
3 oA A A A A A T

®G 0 4 8 12
Section angle of attack, a,, deg
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Figure 50.- Comparison of unsteady normal-force characteristics measured

with the pressure cells and with the strain gage; NACA 23013 profile.
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(@) Variation of section lift coefficient with section angle of attack for various Mach numbers.
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with section fift coefficient for various Mach numbers.

Figure 51.- Comparison of unsteady normal-force characteristics measured
with the pressure cells and with the strain gage; NACA 65-213, “a = 0.5
profile.
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Figure 52.- Comparison of unsteady normal-force coefficients measured
B with the straight-line and with the curvilinear pressure-cell
installations; NACA 65-010 profile.
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Figure 53.- Estimated

effect of the spanwise scale of correlation upon the unsteady normal-force

measurements of the strain gage.
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(a) NACA 0006-64 profile, M = 0.556, ‘ege= 0.7,

Figure 5k.- Spectral densities of unsteady normal-force coefficient measured with the pressure -
cells and with the strain gage. (=
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(b) NACA 65-110 profile, M = 0.655, c; = 0.88.

Figure 5k4.- Continued.

O Strain gage

O Pressure cell

Q0T

200GGY WY VOVN




Spectral density, Gy . (f), &5

2.5x1075
O Strain gage
% O Pressure cell
208 =
15 fr

0 100 200 300 400 500

Frequency , f, cps

(c) NACA 23013 profile, M = 0.655, c; = 0.73.

Figure 54.- Concluded.
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Figure 55.- Spectral density of the pressure coefficient measured with floor and ceiling pressure

cells; NACA 0006-64 profile, M = 0.556, cq = O.Th.

Ot

200GGY WY VOVN



