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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS


RESEARCH MEMORANDUM 

A SPECIAL METHOD FOR FINDING BODY DISTORTIONS THAT 

REDUCE THE WAVE DRAG OF WING AND BODY 

COMBINATIONS AT SUPERSONIC SPEEDS 

By Harvard Lomax and Max. A. Heaslet 

SUMMARY 

For a given wing and supersonic Mach number, the problem of shaping 
an adjoining fuselage so that the combination will have a low wave drag 
is considered. Only fuselages that can be simulated by singularities 
(multipoles) distributed along the body axis are studied. However, the 
optimum variations of such singularities are completely specified in 
terms of the given wing geometry. An application is made to an elliptic 
wing having a biconvex section, a thickness-chord ratio equal to 0.07 at 
the root, and an aspect ratio equal to 3. A comparison of the theoretical 
results with a wind-tunnel experiment is also presented. 

INTRODUCTION 

The most simplifying assumptions that still permit the construction 
of a mathematical model general enough to contain quantitative informa-
tion about steady three-dimensional supersonic flow are those basic to 
the development of linearized theory. Of these, the two principal assump-
tions are that the viscosity effects are negligible and the perturbation 
velocities are almost everywhere small enough to be neglected relative 
to the flight or free-stream velocity. Under such restrictions the flow 
field can be described in terms of a perturbation velocity potential 
obeying the equation

2x -	 - 	 0	 (1)
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where P 
2 M

2 - 1 and the reference coordinate system1 is shown in 
sketch (a). Further, the wave drag 
of any object in a flow field governed 

, by equation (1) can be evaluated (see, 
e.g., ref. 1) by means of the equation 

f

27f	 -i

D = of dx 	 delurn	 (2) 
 

-	 0 

where x,r, and e are cylindrical 
coordinates also defined in sketch (a). 

z

/	
General solutions to equation (1). 

A 
are numerous and classical. In apply-
ing these solutions to the interpreta-
tion of physical phenomena the usual 

p	 approach is to fit them to the given 

/	
boundary conditions, that is, to make 

	

I	 ,	 the flow field simulated by them con-
form to the shape of the disturbing 

Sketch (a)	 object as well as to a uniform free 
stream at infinity. Hence, from this point of view, the choice of a type 
of general solution to be used in analyzing a particular problem with the 
least mathematical effort depends on the geometric form of the object 
under consideration. For example, general solutions based on Green's 
theorem are well adapted to the study of forces on single planar wings 
in a steady supersonic flow. On the other hand, the general solution 
given by Lamb (ref. 2) - which is composed of an infinite set of multi-
pole distributions disposed along a line - is well adapted to the study 
of the flow around fuselage-like objects. 

In this report use is made of certain general solutions to equa-
tion (1) but with a deviation from the usual approach mentioned above. 
One considers, in fact, two different kinds of solutions which represent 
separately, in a given vicinity, different classes of real objects and, 
by means of equation (2), finds optimum combinations of these solutions 
from the viewpoint of low wave drag. The analysis involved in solving 
this problem has, in general, a distinct mathematical advantage over the 
problem of calculating the drag of a given object; namely, that the 
immediate problem of finding a shape with a relatively low wave drag is 
divorced from any detailed reference to the shape itself. It is true, 
of course, that the stream surface representing this shape must eventually 
be found and., in fact, a limitation on the applicability of the method 
is given by the requirement that this shape be real. However, the problem 

11t should be stressed that the x axis is parallel to the free-
stream direction (wind axes) so a body of revolution can be symmetrical 
about this axis only at zero angle of attack.
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of finding the shape of the object when CP is known is a matter of direct 
calculation. 2 One should also be careful to notice that the optimum solu-
tions obtained by this procedure are not necessarily true optimums but 
purely relative to the choice of solutions used in the analysis. 

LIST OF IMPORTANT SYMBOLS 

A	 wing aspect ratio 

A(x)	 (_13)fl times the nth derivative of the nth multipole dis-
tribution. an (x) (See eq. 16.) 

a	 semiroot chord of elliptic wing 

an(x)	 strength of nth-order multipole distribution multiplying 
cos nO 

Bn(x)	 (43)fl times the nth derivative of the .nth multipole dis-
tribution b(x) 

semispan of elliptic wing 

b(x)	 strength of nth-order multipole distribution multiplying 
sin nO 

CD	 drag coefficient, Dg 

Cp	 pressure coefficient, local pressure minus static pressure 
divided by q 

D	 wave drag 

Dn	 wave drag associated with nth-order multipole distribution 
(See eq. 79.) 

L01,L0	 maximum fore-and-aft extent of wing equivalent multipole 
distribution 

L'(e),L(o) maximum fore-and-aft extent of wing equivalent multipole 
distribution for angle 0 

M	 free-stream Mach number 

2From a mathematical point of view the essence of the method outlined 
above is that the analysis involves the solution to direct problems, that 
is, problems of integration. Calculating the drag of a given body, on the 
other hand, involves the solution to inverse problems, that is, problems 
involving the inversion of integral equations.
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q	 free-stream dynamic pressure, 2 

PR 

L0 

Fe	 see equation (46) 

R	 radius of body 

S	 area of wing plan form 

S(x,e)	 normal projection of wing cross-sectional area measured in 
oblique planes 

t	 maximum thickness of wing root chord 

U0	 speed of free stream 

V	 volume 

x,y,z	 Cartesian coordinate system, x parallel to free-stream 
direction 

x,r,e	 cylindrical coordinate system, x parallel to free-stream 
direction 

a(x)	 strength of nth-order optimum cancellation multipoles 
(See eq. (36).) 

JM2l 

slope of wing upper surface measured parallel to free-stream 
direction 

tan- ' (3 cos e) 

Po	 free-stream density 

perturbation velocity potential 

DEFINITION OF THE PROBLEM 

The problem of designing an airplane to have a minimum wave drag 
must be stated quite precisely. If the aerodynamicist is approached with 
the question, "Given an aerodynamic shape, can its wave drag be lowered?" 
he can always reply that any volume of material having a wave drag can 
always be reshaped within a space of finite dimensions so that it will have 
less wave drag at a given Mach number. Such an answer is interesting but,
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at present, not very useful to the airplane designer. There is first, 
of course, the basic criterion that the total drag should be minimized 
at a given lift and minimizing a component part of this total without 
holding the other parts fixed does not necessarily yield the lowest pos-
sible drag for a given set of restraints. For example, the configuration 
illustrated in sketch (b) has no wave drag when traveling at zero angle 
of attack; but it has a relatively 
high friction drag, because of the	 Cylindrical shroud 
large amount of wetted area, and its 	 7 
drag due to lift could also be rel-
atively high. Completely aside from  
all such performance considerations,  
however, are many other important con- 
siderations that are unfortunately more (	 - ) 
or less vaguely defined from an aero-
dynamic point of view. For example,	 Body of 
an airplane must contain a certain 	 revolution 
amount of usable volume, the shaping  
of individual parts is limited by 
structural requirements, and the 
arrangement of these parts must not 	 Mac/i waves 
seriously harm the airplane stability 
and control. The interrelation of 	 Sketch (b) 
all such separate demands presents an 
extremely complex design problem making it difficult to deviate too far 
from the reliable shapes set by experience. 

As a result of the above-mentioned difficulties, the aerodynaruicist 
who is concerned with discovering a practical airplane shape having low 
wave drag finds the real definition of his problem somewhat obscure. In 
a sense his first problem is, literally, to pose a problem; that is, to 
impose a minimum number of arbitrary but pertinent restraints within the 
framework of which the wave drag is to be minimized. Even when this has 
been done, he still is concerned with the question of uniqueness, since 
optimum shapes are not necessarily unique even when several restraints 
are imposed. Consider, for example, the problem of finding the Busemann 
biplane which will have minimum wave drag at a given Mach number for a 
fixed section strength, volume, and 
wetted area. If the design Mach 	 --- - Mach waves at M. : 1.4/ 
number is lJt.l, one such design (on 
the basis of linearized theory) is	 ,' N 
shown in sketch (c) where the chord- 	 U0	 \ 
gap ratio, h/c, is equal to 1/2. The 	 h 
resulting variation of the wave drag 	 \ ,' 
is shown in the upper part of sketch  
(d). However, when the gap is closed 	 c 
to the point where h/c equals 1/4, 
the variation of wave drag, shown in 	 Sketch (c)
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the lower part of sketch (d), is 
the same within the interval 
1.28 <M < 1.66 and everywhere 
else is lower. It is likely that 
one would have first discovered 
the former solution, yet to the 
accuracy of the theory used, the 
latter is obviously preferable. 

6

.8

h/c: 
1, 

4qA2c 

.4

With the above observations 
always in mind, attention will be 
directed in this-report to the 
analysis of simplified confi gura-

1.2 14	 16	 18 2.0 tions composed of two distinct 
M types of volume: planar types, 

that is, wing-like volumes, thin 
in one dimension and bounded by 
surfaces that never deviate far 
from a reference plane; and rec- 

!.4!, hIC 25	 tilinear types, that is, fuselage- 
like volumes longer in one dimen- 
sion than in the other two and 
disposed more or less symmetrically 
about a straight line 

12 14 16	 18 20	 In particular the following 

U	 problem is posed: 

Sketch (d) 

Given a thin nonlifting wing, what is the shape of 
an adjoining fuselage, the stream surface of which 
is simulated by a line of multipoles in the same 
plane as the wing, that will minimize the wave drag 
of the combination at a given Mach number? 

BASIC CONCEPTS


A Line of Sources 

The velocity potential induced at the point x,r,e by a group of 
sources distributed along the x axis, starting at -L 0 , is well known 
to be given by

Tir f
x-13r

	

	 a0()d 

(x -	 - 2r2	
(3) 

-L 

CL 
/ 

4 

0 

4qA

CL 
/

4
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where a0() is the source strength per unit of length. In order to 
calculate wave drag one needs only the value of cp as r approaches 
infinity. This asymptotic value is simple enough to find provided it 
is observed that, as r is increased, x should also be increased so 
the potential can be studied in the vicinity of the Mach waves radiating 
from the disturbing object. Hence, set 

x = x0 + Or
	 (ii.) 

so for a given r, x0 measures the streamwise distance of the point 
x,r,e from the Mach wave emanating from the origin and,. in particular, 
the foremost wave is located at x 0 = -L0 . ( See sketch (e).) 

If equation ( ii.) is placed into 
equation (3) and r is assumed to 
be large, the potential induced by 
a source is 

CP)

xo 
1	 r	 a0()d 

-  

and the induced velocites are 

X0 

x ) r	 = -	 f 4_X7_7_xo - 
-L0	

(6a)

/ P(x,i8) /  /£ ..............- x#L:fir  

I.  

7	 / 
/ 

/	 x I

L0_ 	 ,6'r + x0-' 

Sketch (e) 

CPr)roo = -13cp	
(6b) 

Multipoles 

Lamb, in reference 2, page 527, has presented a general solution to 
equation (1) consisting of an infinite set of basic singular solutions. 
These basic singularities, referred to as multipoles, can be distributed 
along a line and weighted so as to reproduce certain body shapes enclosing 
the line. The expression for the perturbation velocity potential . for a 
distribution of nth-order (n = 0,1,2, ...) muitipoles starting at -L0 
and continuing along the x axis can be written in terms of a cylindrical 
coordinate system (sketch (a)) as
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x-3r 

cp(x,r,e) = - L.. (.]	
)[	

[an(t)cos no + bn()sin ne]d 

-L0	
-	 2r2 

(1)

2 
The operator 	 is defined as 

_	 i 

6 ;) 

and the definition of (	 follows by induction. If the notation3 

X 
A(y)dy =
	

(1)(3)	 - 1)	 A(y)dy
(2n  

a	 -
(-1)	 2n	

if	 (2fl+1)/2 

	

a	 (X 

(-1)

is introduced, where the symbol	 is read "finite part of the integral," 
equation (7) becomes

x-3r 

cpn(x,r,e.) = -	 (2n+1)/2	
(8) 

r 211 (2n)!	 [an()cos no + b()sin nê]d 

2	 lr(n)! f	 [(x - )2 - 32r2] 

and the general expressions for the induced velocities become - writing 
only the term involving the cosine ., since the result for the sine is 
identical -

x+13r	 (x - )an()cos n8 do 
=	 r"132"(2n + 2)? f (9a) 

2fl+2 
2	 rc(n + l)!q.	 [(x - ) 2 - 32r2](2fl+3)/2 

n=o 

00 

P 2flr11•1(2n)!	 x13r [n(x - )2 (n+ 1)132r2]a()cos no 

CPr	 Y =	
2'(n)!	 2 2 2 (2n+3)/2 

n=o	 [(x-	 ]
(9b) 

3For a detailed discussion of the finite-part concept as used in this 
report see reference 3.
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x-13r an()sin ne d 

r	

n 

	

= 1	 n+i - 1	
nr 1132n(2n)? 

L0	 [(x -	 - 13 2r21 (2fl+1)/2 

	

L	 2	 lr(n)

n=o

(9c) 

Another very useful way of developing these multipole solutions 
evolves from an application of operational techniques. To begin with, 
rewrite equation (1) in terms of a polar coordinate system, thus 

2 02C) -
	

-	 - 1 2 = 0	 (10) 
13. 

-6x 
2 ;7 r	 ? 

Next, define the Laplace transform of p(x,r,e) by 

(s,r,e) =f (x,r,&)e 5dx	 (ii) 

0 

and apply this transform to equation (10). There results (for a proof 
see Appendix A)

2P1P1P0	 (12) 
13 sq)	

r2	 rr	 r22 

Now, if a general solution to equation (12) is expressed in the form 

c(s,r,e) = f(r)cos ne 

then f(r) must satisfy the equation 

d 2 f 1df(n13252 
r2	

)f=o 

Solutions to this are given by 

f(r) = n(s)1n(Ors) + n(s)Kn(l3rs) 

where 'n Sand Kn are modified Bessel functions as defined in reference Ii-, 

page 77. Hence, if Cp is to vanish as r goes to infinity, a general
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solution to equation (10) can be written in the form 

=	 [(S)COS no +

 

-1 -(s)sin n6IK(rs)	 (13)
21r Y 

The above result will be transformed back to the physical plane in 
two ways. First, apply the identity (ref. 4 ,, P. 79) 

n 

K(z) = (-i)	 ) K(z) 

and re-express equation (13) as (only the coefficient of the cos no 
term is written since the treatment of the sine term is identical) 

n 

	

(s,r,6) = - l
	 An(s) (1)n	

no n5n rn(1 d K0(rs) 

	

27c	 P0 

The inverse Laplace transform of K0 (3rs) - see reference 5 - is 

	

0	 •,	 x<r 

L1 [K0(rs)] =

	

1	 ,	 x>r 

Jx2 - 132r2 

So, since 

,r x dx 1 f 
x 1 

dX2 . . . f 
n

- i

	 x

	

-	

n-i 
dxAn(xn) = (n 1
	 (x x 1)	 An(x i) dx1

-l)!  

-L0	 -L0	 -L0	 -L0	 (14) 

an application of the convolution integral and other standard operational 
techniques yield

I	 x-Pr
A0 ( ) d 

(x,r,e) = -	 tL	 J(x - )2 - 2r2 +

	

n-i	 1 (-l) 
n x-r I fl( - 1)' 

_f ( - Xi)	 An(xj) dxi] 

n (1 d'\  
r	

(x)2 - 2r2	
(15)
i
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From comparison of equations (8), and (15), the relation between the 
strengths an(x) and An(x) for the two different forms of the solution 
is found to be 

ao(x) = A(x)

fx (-I3)'1a(x)=
	 n-i

Cu 
	 (x - x1) 	 A(x1)dx1, 

- i)! 
-L0

(l6a) 

n >0 

or

(-)'a(x) = An(x)
	

(16b) 

(n) 
where an (x) symbolizes the operation	 a(x) and where use is madedxn
of the conditions 

a. (n) (L) 	 an 1_1) (_Lo ) = .	 . = a(-L) = 0	 (i) 

Another way to transform equation (13) back to the physical plane 
is to do so directly. In this way one finds (from ref. 5) 

0	 x <r 

L[K(rs)] =cosh[n COSh_1()] ,

	 x >r 

I.	 Jx - 2r2 

from which equation (13) reduces immediately to 

Co 

-	 -	 cos	
x-Or An()cosh[n cosh'1 

- - 1	 _____________________ 

J(	 2 •22 
fl0	 -L0	 X	 - I r	 (18) 

The perturbation velocities in the field represented by this potential 
are readily calculated. Thus
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_ 
x-r Ant()cosh[ncOsh 

1/tx -
)j 

2c/
(19a) = - 1cos nof

	 X 	 2 2 
0	 x-) -r 

-ii'x_- 
x-r A()cosh[n cosh	 r 

e(x,,0)	 sin nef	 (19b) 

0	 J(x -
	 - 2r2 

and by taking the derivative of equation (13) with respect to r, one 

finds

=	 {so(s)Ki(rs) + 1sn(s) fl 1(rS) + Kn+i(rS)]} 
'Pr

which transforms to 

1	 x-13r 
CPr	 TI—C 'T = (x-)A0t()d +
	 cos n 

rJ
2 22 

x-) -r 

x-r An'(){coSh[(n1) cosh	 +coSh[(n+1) cosh)]} 
\\ rj 

-L0	
(x_)2_2r2	

r

(19c) 

If the relation between the functions an(x) and An(x) is given by 
equation (16), the velocities represented by equations (9) and ( 19) are, 

of course, identical. 

In order to obtain limiting values induced by multipoles distributed 
along the x axis starting at -L 02 one returns to either equation (8) 

or (18) and calculates the leading term in a l/r expansion. As in the 
derivation of equation (5), it is necessary to observe that as r is 
increased, x should also be increased so cp is given in the vicinity 
of the foremost Mach cone created by the multipole distributions. Hence, 
using equation ( Ii-), one finds for equation (18)
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= -	

x0 An()cosh[n cosh_1(1 + 
x0 - 

)]dE 

2L nef 

°	 J20r(xo - )(i + 
X	

) 

- 

23r 

which has the leading term as r goes to infinity 

x  
_____	 A()d 

	

nef	 (20) 00
= -	 1	

-  

	

2t..J	 -L0 

Similarly, the perturbation velocities reduce to 

Xo 
An()d 

	

- - 1 X cos ne 

f	
______	 (21a) 

r -	 -2i/	
0	

Jxo - 

r)ro	 (2lb) 

CO

An()d 

e) sin

\_________ (2lc) ne
fxo
	

- r -> -L0 

In calculating the wave drag using equation (2) only the velocity 
components cPx)r	 and (pr)r CO 

are necessary. Hence, from comparison 


of equations (21a) and (21b) with (6a) and (6b), it follows that at a 
given e a series of multipoles" induce the same momentum flux on an 
infinite cylindrical control surface ,as a line of sources having a 
strength variation ao(x) equal to 	 cos nOA'(). If one identifies a 
line of sources with a body of revolution, then it is apparent that, at 
a given e, a dragwise equivalence has been established between a line 
of multipoles and a body of revolution.
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Hayes' Theorem and Its Application 

In the previous section a relation was found between multipole and 
source strerigths which produce, at a fixed 0, equivalent momentum trans-
port across a cylinder of infinite radius. By using a theorem due to 
Hayes (ref. 6) one can derive the strength relationship between any dis-
tribution of singularities throughout space and a line of sources which 
gives the same equivalence. 

The essence of Hayes' theorem is that, for a fixed e, the velocities 
induced on a cylinder of infinite radius by singular solutions to equa-
tion (1) (e.g., sources and doublets) are invariant to displacements of 
the singularities along certain oblique planes. In order to be specific, 
the equation of these oblique planes is next derived. 

Consider the point x,r,0 in a flow field having a supersonic free 
stream moving parliel to the x axis. Sketch (r) shows the Mach fore-
cone (by definition the Mach forecone is the boundary of the region within 
which a disturbance in a supersonic stream can affect the flow at the 

Sketch (f)
The equation of the forecone cone apex) from x,r,0 in x 1 ,y1,z1 space. 

is	

x1 = x -r cos 6 - y1) 2 + ( r sin 0 - (22)
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One wishes to let r become very large and find the shape of the fore-
cone as it passes through regions close to the origin of the x1,y1,z1 

coordinate system, regions in which the objects creating the wave drag 
are located. From equation (14), and the expansion of equation (22) for 
large r, it follows that

+ 
x 1 = x0 + r - r[l -	 yicos e + z isin e) +	

r2 j 

= x0 + 3(y 1cos 0 + z1sin e) -	 (yjsin e - z1cos 0)2 + 

and when r goes to infinity 

x l = x0 + f3y 1cos e + 3z 1sin 0	 (23) 

which is the equation of the oblique plane mentioned above. It should 
be noted that the envelope formed from these planes by fixing x 0 and 
varying e between 0 and 2it coincides with the Mach forecone and after-
cone from the point x0,010. 

Hayes' result can now be state d4 

To the lowest order-in l/r, as r tends to infinity, 
the magnitude of the perturbation velocity potential 
and its gradients at a fixed azimuth angle is invar-
iant to a finite translation of sources (or any other 
singular solution to the wave equation) on planes 
parallel to that given by equation (23). 

Consider the application of Hayes' theorem to planar distributions 
of sources lying in the z 1 0 plane. As is well known, such a distri-
bution simulates a wing symmetrically disposed about the horizontal 
(z 1 = o) plane. In fact, if 	 (x1,y) is the local slope of the wing 
upper surface, the local source strength per unit area (according to thin 
airfoil theory) required to simulate the wing is -Uo7u/ic and the veloc-
ity potential of the disturbed flow field is given by 

q(x,y,z) = _P;ff 2
 X(xi,yi)dxIdyl

(21l) 

J 	 2	 22 
T	 x-x1) -	 ( y-y11 -	 z 

4For proofs, see Hayes' original derivation (ref. 6) or, if more 
convenient, reference 1.
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where T is the area of integration 
(see sketch (g)) bounded by the wing 
edge and the trace in the z 1 = 0 
plane of the Mach forecone from the 
point x,y,z. Next introduce, the new 
coordinates	 and T] such that 
lies along the x 1 axis and 91 lies 
along the intersection of the z 1 = 0 
plane and the plane given by equa-
tion (23) (see sketch (h)). Set 

tan t=13 cos e	 (25) 

and

= x 1 - y 1tan i 

III 	 I

) (26) 

xl = l + rb.sin Lt 

Yi = •rliCoS I.i 

Then, in terms of the	 system, 
equation (2 1 ) becomes 

U0 + Iuisin L,111cos  
cp(x,y,z) = - -r 	

p.)cos i d1d711 

T	 J(x -	 - isin t)
2

 - 13
2 
(y - ruicos I.L)

2
 - 132 z

2

(27) 

As before, the asymptotic value of cp as r = ly2+ z2	 is to be cal-
culated. Accordingly, one can apply Hayes' theorem and sum up all the



= -3CPx	 (29b)
—J A 

T-.. 
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sources along a line	 = constant (e.g., between a.and b in sketch (i)) 

and place them as a single source on the axis. The strength of this 
large equivalent source is given by 

uoswV (l, e) = 2U0 cos
wine 

where the integration is taken 
across the complete wing along 
the line	 = constant and 

st(1,e) = A_ s(1,e).

+ lisin i,i) 1cos $dr 1	 (28) 

Wing plan form

yl 

The. term Sw( x ,e) has a clear 
geometrical interpretation (see 
sketch (j)), being simply the normal 
projection of the wing area inter-
cepted by the oblique plane  

= x + 3y 1cos 0. 

The above defines the strength 
variation of a line of sources (and, 
therefore, a body of revolution) 
which induces, for large r and: a 
fixed 0 1 a potential field identical 
to that induced by a given wing. 
Hence, the results given in equa-
tion (6) yield

'-Line of wing sources 
XI, 

Sketch (i) 

Si'x,u) : Normal projection

of wing area along AA 

Equivalent 
single source 

u0	 rx01,1 
r	 = -	

0) Jx
0 - 1 

(29a)

'I 

A

- 

x,:x —fiy, Cos 8f 
A similar result exists for a 

planar doublet distribution (see 	 Sketch (j) 

ref. 1 or 6) but, in this report, only problems in which the wings have 
5The true oblique plane is given by equation (23) but the wing 

is so close to the 1 1 = 0 plane that the variation with z1 can be 
neglected.
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no loading (local lift) will be considered. Lifting effects can be 
treated in a similar fashion, of course, if the wing doublet strengths 
are known.

Cancellation Multipoles and Drag Minimization 

Since the flow field is governed by a linear partial differential 
equation the velocities induced by different solutions to it are additive. 
Therefore, the drag of an object simulated by various inultipoles dis-
tributed along the x 1 axis and a sheet of sources in the z 1 = 0 plane 
is given by 

D = -Po
	

fcodxf.lim  1 	 + (mr)] [)m+ (x)wIdO  
0	 - 

where the subscripts m and w refer to the inultipoles and wing sources, 
respectively. But equations (21) and (29) identify, for a fixed 0, 
these velocities with those induced by equivalent line sources. Hence, 
for any given 0, one can immediately apply Krmn's drag formula (ref. 7) 
and then for the total drag, integrate U from 0 to 21r. This leads to 

L(e)	 L(e) 

D
Pb	

de dx1 r	 dx2 = -	 f 

{Uott(xi3O)+(_)n[a+1)(xn)cos nO + b(x1)sin ne]} 

{Uosw,,(X210)+(_[ai1)(x2)cos nO + b ' (x2)sin ne]}lnlxi- x2 I 

However, since both the wing and multipoles are in the same plane (inter-
preted physically, the wing is centrally mounted on the fuselage) and 
the wing is simulated by sources only (has no twist or camber), one can 

show the optimum value of each b+1)(Xl) is identically zero.6 

eBy symmetry
S'(x,e) = 5."(x,23t - 0) 

Hence

J sin nOSw"(x,U)dU = 0 

0	 (n+1) 
and any positive or negative variation of bn	 (x1) can only increase 
the dlag.
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Hence, one can write 

	

21t	 rL(0)	 L(e)
(-3) a	 (x1)cos nO D= -	 I dO I	 dx, r	 2[U0S"(xl,e)+	

n (n+i)	

] 

	

L'(e)	 -L'(e) 

(-n) a	 (X2) cosnO]ln!x i -	 S	 (30)
n (n+i) 
IUoSw"(x2 )+

0 

Next expand the term Sw"(x,O) in.a Fourier series. One finds 

	

n	 n (n+1) 
u0s (x,e)	 a.n	 (x)cos no	 (31) 

0 

where

U0
211 

	

MO(x) =_f S '( x ,O) dO	 (32) 
0

21t 
(n)	 U0 

a	 (x) =	 nf S'(x,O)cos no dO	 (33) 
0 

Place these expressions in equation (30), integrate with respect to e - 
using the orthogonal property of the trigonometric series - and one finds 

D=2Do+Dn	 (34) 

where

Dn	
2fl L0	

__ 11+1) 	 (n+3.)
q - 	 f dx, 

fLo

 
dx2 [cLn	 (x1) + an	 (xi)] 

-L0 

' (n+1) ( n+
	 Iln (X2) +a	 (x2) 	 fx j - x21	 (35)
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Since one can show  

L0  

-f 
dX l

rLo
 

-L0	 -L0

dx2f'(x i)f'(x2)lnIx i - x21 >: 0 

the minimum value Of D as expressed by equation (34) is given when 
each D is itself a minimum. In other words, each Dii can be mini-
mized separately. Further, it follows that the value of the minimum 
itself is zero and occurs when

f	 ,e)de, n =0 
-  

0 

_

	

27C

>0 

=	
U0 J	 Sw"( x ,6) c0s nO de,	

(36) 
-	 n 

Equation (36) is the mathematical definition of the optimum cancel-
lation multipoles; namely, those inultipoles which are just equal in mag-
nitude and opposite in sign to the wing equivalent multipoles - equivalent 
in the sense that they induce an identical momentum flux across a cylinder 
of infinite radius. 

Obviously, if all the optimum cancellation multipoles were used, the 
wave drag of the combination would be zero. This result must, however, 
be properly interpreted with regard to the simulated shape. In order that 
the multipole lines can represent the distortion of a real fuselage, one 
must assume a cylindrical body exists upstream from the Mach cone 
x + L0 = or (the effects of the nose are being neglected). This body 
forms the initial boundary of the stream tube which represents the physical 
fuselage in the vicinity of the wing and multipole lines. Clearly, the 
area enclosed by this initial boundary can be small enough for the sub-
sequent stream surface to cross itself and represent, therefore, a physi-
cally unreal body. Hence, the fact that the wave drag of the wing and 
multipole combination can be reduced tozero is quite valid, but in the 

7Set f(x) = EA11 sin nic, x = -Locos . Integration gives 

22 

which can never be negative.
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over-all picture not only have the inevitable nose and tail drags been 
neglected but also the shape simulated by the combination can be unreal-
istic.

Some Properties of the Cancellation Multipoles 

Let us consider next some of the restrictions necessarily imposed 
on cancellation-multipole distributions and some of the particular prop-
erties of those given by equation (36). In the first place, if a(x) 
is any multipole distribution that generates a potential field given by 
equation (8) or ( 15), it follows from equation (ii) that the value of 

an( x ) and its first n derivatives should be everywhere continuous. 
Further, if an(x) is a constant behind some point, say L 0 (i.e., for 
cc >x> L0), the induced flow field would simulate expanding streamlines 
in the case n = 0 or some form of vorticity in the case n > 0; the for-
mer case is to be avoided since any simulated body is assumed to have a 
finite area at x = , and the latter case is to be avoided if there are 
no resultant forces normal to the free stream. 

One can show that all the above 
properties are satisfied by an(), 
the optimum cancellation-uiultipole 
distribution as defined by equa-
tion (36). First, notice that 4n+i)() must be zero everywhere 
outside the wing-enclosing Mach 
forecone and aftercone, that is for 
-	 < -Lo ? and L 0 < <oo (see 
sketch (k)). (Any multipoles in 
these regions cannot combine with 
the wing equivalent multipoles and 
must, therefore, increase the drag.) 
Hence, one can set 

(n)	 (n-i) 
an (-L0 ) = an	 (L0') 

= . .

/'\\ toö'/9 
 '0	 \J Wing 

1/	 \ plan form 

/ , ,.

I\ 
I

\

constant L 0 

L	 'I' \ , 
Sketch (k)

(n) 
Then the condition of continuity is automatically satisfied for an () 
in the entire interval	 <X < co if 3w'(,0) is derived from a wing 
having finite wave drag (in particular, from a wing having no blunt edges 
along which the normal component of the free 7sream Mach number is unity 
or greater). It follows immediately that aftm1 (), m < n, is continuous 

since the latter is found by integrating (further smoothing)
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The proof that a(Lo) as given by equation (36) is zero requires 

more consideration. One can show, ( hwever, that ctiin)(Lo) = 0 where 

0 in < n. First, the equality an (L0) = 0 follows from the fact that 

the wing closes and S. '(L01 e) itself is zero. Next consider the defini- 

tion of	
(m)()	

Thus 

(m)	 -U0 
an () =	

f 211 
S'(,6)cos no dO 

(-13) 0 

- -2U0 21( 	 h1(e,) 

-	 f cos i cos no dOf	 7'u( + sin	 cos 

(-13) It
0	 h0(O,) 

where use has been made of equation (28) for the definition of Sw'(,O) 
and h0 and h 1 are defined in sketch W. Since 

(in)	 1	 I	 n-m-. (n) 

	

a	
() = r(n - in)	

( -	 )	 an (,)d1	 (37) 
, 

one has

211 

a1(1m)() -	
--213o	

cos cos nO dO 
- (_13)Xitr(m - n) J 

0 

f d1f
h 1(e, 1)	 n-rn-i 

di1( -	 )	 + Tj sin	 cos )cos 

-L0 '	 h0(e,1) 

Change the	 coordinates back to the x,y system by means of equa-
tion (26) and this becomes 

-2U0	
r 

21t 
cos no dOff(- x+ 13y cos e) 

n-rn-1 
u( x ,Y) dy 

an () = (-13)%r(n-m)
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The area S, shown in sketch (k), becomes independent of 0 when 	 = Lc 
(being then just the area of the wing itself), therefore 

	

WGLn (L0) =
	

-2U0 n) ff?^U(x,y)dx dy 

f211 

(Lo -x+y Cos O) n-rn-1 

0 

since, for m <n

r 211

 
cosmO cos no dO = 0 

L
0 

Hence, for the a() defined by equation (36) 

(n)	 (n-i)	 (n-2) 
o,	 (L0) = a	 (L0) =	 - (L0) =	 • •	 an(LO) = 0	 (38) 

AIRPLANE SHAPE 

In the previous section a connection was established between multi-
pole distributions and their resulting wave drag. Further, this connec-
tion was direct and relatively simple if the strengths and positions of 
the distributions were given. Unfortunately the connection between the 
multipoles and the shape of the simulated surface is generally not so 
simple. Such a relation does certainly exist, however, and if the 
strengths of the multipoles are known, the relationship is again direct. 
That is, a given distribution of multipoles yields directly, by the for-
mulas given in the previous section, the induced velocities everywhere 
in the flow field; these, in turn, fix the stream surfaces along any one 
of which (since, of course, the theory neglects viscosity) a physical 
surface can be imagined. 

In general, if

F(x,y,z) = 0
(39) 

F(x,r,0) = 0
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are the equations of a stream surface in Cartesian and polar coordinates, 
respectively, then the equations 

Fc	 6FC

	

(ho)

6F 	 6FP1 
(U0 +cpx)	 Pr	 P0	

j 
T2 

must hold. 

For example, in studies of thin wings lying in a plane, the partic-
ular form of equation (39)

z - h(x,y) = 0 

is assumed and equation (40) becomes 

-(uo + (px) - - cpy - + cpz = 0 

or, neglecting second-order effedts, 

- 1 - - - 
x U  

which is the familiar boundary condition used in thin-airfoil theory. 
On the other hand, if the equation of the body shape is written in the 
form

r - R(x,e) = 0 

then equation (40) becomes, for linearized theory, 

	

U0	 cp	 e 
R	 (Ia) -= 

If the flow field is radially symmetrical or if the body surface is
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quasi-cylindrical, equation (Ii) reduces to 

	

R	 1 
U— (Pr	 (Ii2) 

	

6x	 0 

which is the familiar boundary condition used in the study of quasi-
cylindrical bodies or bodies of revolution. 

In general, a nonlinear partial differential equation of the first 
order such as equation ( li-l) can be reduced to two simultaneous, ordinary, 
nonlinear differential equations of the first degree (see, e.g., ref. 8). 
Thus equation (41) becomes

- 1 cp6(x,R,e) 1

(1) 

dRdx(Pr(x,R,O)	 I U0 

and if cpO and cpr are known functions of x, B, and e, these can be solved 
numerically. 

If the strengths if all rectilinear multipoles and source sheets 
are given, equation (19) or (24) can be used to find (Pr and cpe at arbi-
rary field points. Hence, the first step in finding the body shapes 
reduces to that of integrating such equations. However, these integra-
tions are difficult and tedious even when entirely numerical procedures 
are employed and the results still have to be interpreted in terms of 
the body shape according to equations (43). Therefore, from a practical 
viewpoint, it is necessary to study certain approximate methods for 
obtaining the velocity field. 

Let attention be concentrated on the disturbances created by a line 
of multipoles. In particular, consider the fields induced by simple 
polynomial distributions satisfying, in each case, the end conditions given 
by equation (17). For particular variations set 

ao() = c(l - 2) 

a2(x) = c2(l - 52)3
	 ('a'.) 

= c4(l - 2)5	 J



is more or le 
tive length o 
is given, the

26
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where c0 , c21 and c 4 are constants determining the amplitudes and 
= x/L. Figure 1(a) shows the variations of these coefficients with 

, and figures 1(b) through 1(f) show how velocities induced by these 
distributions vary with 0 (x0 = x - 13r) and F ( = pr/Lo). The results 
have been compared with those for large 7 given by equation (21) and 
with those for small F given by slender-body theory. Values for the 
latter theory are determined from equations (9) or (19) by expanding the 
expressions in powers of r and neglecting all but the first terms. 
Thus it can be shown

a ( x) 

2itr 

= (_2)nfl!(X)COS no 

kor n+1 

(-2)n!a(x) sin no 

ne)=r o	 41rr n+1

,	 n=O

(115a) 

,	 n>O 

n>O	 (l7b) 

The significance of figure 1 with regard to practical applications 
ss obvious. The first step in its use is to find the effec-
f the cancellation-multipole distributions. Since the wing 
streamwise variation of the cancellation multipoles can be 

calculated. Actually this 

£Le	 variation will extend 
between the apexes of the 

U 	
enclosing Mach forecone 
and aftercone, a distance 
of L0 + L3' ( see sketch 
(k)). However, depending 
on the wing plan form and 
section, the effective 
lengths of the distribu-
tion (the interval of 
principal variation) can 
be considerably less as 
illustrated in sketch (2)). 
Designate this effective 
length as 2Le and the 
distance to the vicinity 

+ L I____________________ of the body surface as 
re, and one can define 

Sketch (1) 
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the parameter Fe thus

Pre
(1i6) 

Le 

Using figure 1 and the parameter i, one can now estimate the error 
incurred by the use of various approximate methods for calculating the 
body shape. A convenient way to carry out these estimations is to study 
the magnitude of the first crest of the waves shown in figures 1(b) 
through 1(f), and the distance this crest lies from the foremost Mach 
cone. Graphs showing the variations of these quantities with F are 
given in figures 2, 3, and 1• 

By means of the above concepts, let us study briefly four different 
approximate methods that can be used to calculate a body shape. 

Slender-Body Theory 

Slender-body theory is represented in figure 3 by the straight lines 
having the slopes, on the log-log scale, equal to -(n-fl) where n is 
the order of the multipole. Since this theory amounts to an expansion 
of the equations for the velocities in powers of F, it obviously repre-
sents a good approximation when Fe is sufficiently small. Notice that 
for a given percentage error the limiting value of Fe for which the 
method applies increases as the order of the multipoles increases. For 
example, when 1 e = 0.21 cpor as given by slender-body theory is 19 per-
cent less than that given by exact linearized theory for the case shown, 
whereas CP2r is only 3 percent less. Correspondingly, the positions 
of the wave crests follow the path predicted by slender-body theory to 
larger values of 7 as the order of the multipoles increases. The lat-
ter trend is illustrated by figure ii. 

If for a particular problem Te is small enough for slender-body 
theory to be considered a good approximation, the equation for the body 
shape, r = R(x,e), corresponding to the combined wing and optimum cancel-
lation multipoles defined in equation (36) is determined by the expres-
sion (using equations (5), (36), and (14) together with equation (42)) 

n 
00 

R,O)	 () sin n6 2	 X 
dO	 P0 (x,
	 -i  

= 
U2 

j + L 0	 f d 

0	
-Lo 

4 
2.,n+

? 
wing	 0

dx1(x - xi) XlCos niVSw"(x,) 

(11.7a)
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dR	 _ -	
_]wing+ dx [ UO

t !T! 

n

cos n	 1t	 X 
(.)

2 

Y 2 f df '-i	 lR 
o

dx 1(x - x 1)'  cos nrSw"(x,) 

(117b) 

Approximate methods for finding (Pe/UoR2)wjng and ((pr/Uo)wing, the veloc-
ities induced by the wing, can 

Source distribution given by	 often be used also, but these 

go :	 I	 apply to individual cases and 
cannot be discussed here. 

Theory for Large Ye 

The asymptotic values for 
magnitude and position of the 
first wave crest obtained by 
placing equations (44) into 
equations (21) are also shown 
in figures .2, 3, and 4. For 
n < 4 it is clear that this 
theory can be used when 7e IS 

greater than about 2. 

.15	 .2	 .3	 .4	 .5 
CT	

Control-Surface Theory 

Amplitude of first crest 

8 

X  
.6 

The approximations inherent 
in ordinary control-surface the-
ory can also be estimated by 
inspecting figures 3 and 4, where 
by control-surface theory one 
means that the exact linearized 
theory is used to evaluate induced 
velocities along a given surface 
and these values are assumed con-
stant for all f in the vicinity 
of the surface. As shown in 
sketch (m), this amounts to assum-
ing Tr and cPe are given by a 
straight horizontal line in fig-
ure 3 and by straight lines with 
a unit negative slope in figure 4. 
Obviously, the error in the body 
shape calculated by this theory

4
.1	 .2
	 .5	 4 

F 
Position of first crest 

Sketch (in)
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increases as the amplitudes of the disturbing multipoles increase and as 
the radius of the control surface diminishes. 

One of the simplest applications of control-surface theory arises 
in the study of quasi-cylindrical bodies. In such cases the expression 
for the body surface can be derived immediately from equation (42). Thus, 
if the amplitudes of the cancellation multipoles are small enough and 

H 0 , the radius of the control surface, is.large enough for control-
surface theory to be considered a good approximation, the body shape, 
r = R(x,O), corresponding to the combined wing and optimum cancellation 
multipoles is determined by (using equations (19c), (16b), and (36) 

together with equation (42)) 

dR	 r cpr( x ,Rc, e )	 \	 ne	 x3Rc 

= L	 üo' Ling + L	 2Rc I 
0 -L' 0

(x) cosh (n cosh- I x 1) d^ 

j(x)22Rc2 

I
SwTt(,) cos n
	

(t3) 

where 0n = 1 for n = 0 and 0ri = 2 for fl > 0. 

A study of optimum fuselage shapes using control-surface theory 
has been carried out by Nielsen (ref. 9) for a constant-chord sweptback 
wing having a biconvex section and a sonic leading edge. The set of 
interfering singularities used in reference 9 are equivalent (the singu-
larities are limited to the x axis) to the multipoles used herein. 
The fuselage shapes calculated by Nielsen are thus the same - within 
the accuracy of control-surface theory - as those given by equation (48). 

Modified Control-Surface Theory 

A method of modifying control-surface theory to increase its 
accuracy is illustrated in sketch (n). Induced velocities computed by 
this method are based on those calculated along a given control surface 

but extended away from this surface varying in magnitude as (F)71'1 where 
the value of y- is fixed by the slope of the curves in figure 3 at



3.0 

2.5 

2.0 
2ir, 
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.15	 .2 .3	 .4	 .5 
Rc 

Amplitude of first crest
.8
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= e, e being defined by equation (46) (see sketch (n)). With this 
modification equation (48) becomes 

,yn 
= [cPr(x,Rc,e)1	

c) 

GCOS no 

ax L	 u0 iwjflg 
0	

14it2Rc 

x Rc (x)C0sh(fl cosh1 
X )d 2 

I Rc f	 Mcos n dr (9) 

	

-Lot J(x -
	

-	 o 

Source distribution given by 

c0U0(i-.2)A	
which can be solved using 

00 r numerical techniques. 

A further refinement of 
equation (49) can be obtained 
if the position of the induced 
velocities is also varied 
according to the slope (again 
at T = e) of the curves in 
figure II. Defining this slope 
as 5n, see sketch (n), and 
x5 as 

= X - 3(i +	 )(R - R) 

one can see this refinement 
simply amounts to replacing the 
value of x in the right-hand 
term of equation (49) with x. 

ILLUSTRATIVE EXAMPLE - 

ELLIPTIC WING xo

	
4, 

.6
In order that one may be 

able to assess the practical 
significance of the preceding 
sections, the concepts presented 
therein will now be applied to 
the solution of a particular 
problem. For the basic wing 
plan form in this particular 
example an ellipse will be

ri
.21Rc	 .3	 4 

r 
Position of first crest 

Sketch (n)



shown in sketch (o). The stream-

Wing plan form 
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chosen. There are two good reasons for this choice; first, the ellipse 
is effectively unswept and places a severe test on the role of body 
interference in reducing the wave drag at a supersonic speed, and, second, 
for a given volume, the optimum section (i.e., the one yielding minimum 
wave drag) for these wings when considered separately has been discovered 
(see ref. 10) so the reduction in wave drag brought about by the body will 
reduce the minimum value possible for such wings when flying alone. The 
drag reductions for the first few cancellation-inultipole distributions 
will be calculated and compared with the total drag of the wing alone, the 
wing mounted on an infinite cylinder, and the wing mounted on a basic 
body of revolution. Finally the details of calculating a body shape 
simulated by the wing source sheet, a source line representing a basic 
body of revolution, and the first two optimum cancellation multipole dis-
tributions will be carried out. 

The Elliptic Wing 

Consider the elliptic lens specified by the equation 

t	 X2 Y2 
Z	

2)
(50) 

where the thickness, span, and chord are 
wise slope of the upper surface is seen 
to be

= ?\u(x) = -	 (51) 
xI u	 a2

,y  

and the total wing plan-form area S and 
volume V are, respectively, 

S = itab

(52) 
V = 1L tab 

Wave drag. - The wave drag of the 
elliptic wing represented by equation (50) 
can be calculated by means of equation (30) 
in which, since one wishes now to find the 
wave drag of the wing alone, the ar's are 
set equal to zero. The value of S4t(x,e)

2o 

Root section 

Sketch (0) 

_ 
IS -
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follows by placing equation (51) into equation (28) and integrating. Thus 

h1	
(	 2sin 

h1 

u0s'( x ,e) = 2U0cos f (-)( + sin )d	 a2 

2tU0cos	

+	 2 ) 

	

ho	 h0 Wing cons$I,	 p/an form 
 where, by referring the equation of 

the plan form to the	 coordi-

nates (see eq. (26)) and solving 
for the points where the straight 
line	 = constant intercepts the 

 
4 )	 wing edges, one finds - see sketch (p) 

h 

h,	 hol 

-b2 sini.i ± abJa2cos2p.ib 2S in  2 i- 2 cos2 

X	 = 
Sketch ()	 a2cos2i.i+b2sin2i 

Hence,

li-xtab 
S'(x,e) = -

	

	 /a2 + b2f3 2 cos2e - x2	 (53)

(a2 + b22cos2e)2 

From the relation

L2(e) = a2 + b2 3 2cos2G	 (54) 

the wave drag can be expressed in the form (integrating once by parts) 

2it	 L(e)	 L(e) 2 
[Itab 1 2 rL2(e)2 l21 2J)2 D_ 1	 ___ _____ - -

	 f def	 dif	 d2L(e)j [JL2 (e)	 2j	 12 - 0	 -L(e)	 -L(0) 

Further integration yields 

= t2a2b2f (a
2 + b22cos2e)2
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Finally, the wave drag can be expressed in coefficient form, based on 
the total wing area itab, as

t 

(2) 

1I  
CD =	 a

1+2(e) 

r	 / \2.13'2 
I	 ía 
Ii + I- 
L	 \bI3

(55) 

Equation (55) represents the lowest value of wave drag possible for a 
wing having an elliptic plan form and fixed volume. This equation was 
first derived by Jones in reference 10. 

The velocities induced by the wing source sheet in the vicinity of 
the fuselage. - Later, when one wishes to calculate a stream surface in 
the presence of the source sheet that simulates the wing given by equa-
tion (so), it is necessary to know the velocities induced by these 
sources at the body surface. 	 Hence, the value of	 CPr	 induced by the 
source sheet was calculated at the four points indicated in sketch (q). 
As it turns out, these values are Values	 of	 . /(i so close (see the sketch for a 
numerical comparison) to those Point	 Exact Aclreret 
obtained by assuming the source number	 linearized, wave - 
sheet to be two-dimensional with theory 
a chordwise intensity identical 
to that along the root section / 	.044 .050 
of the elliptical sheet (i.-e.,, 2	 -.053 -.050 
using the Ackeret wave generated Region to be 3	 -.10 2 -.100 
by the root section) that the	 occupied 4	 -.104 -.100 
effect of the wing can be assumed by body Z 
to be given everywhere in the 	 stream/me - vicinity of the body by the lat- 
ter veloOity field if (as will 
be the case in subsequent .iuIM, i 
application) the surface of the 
body passes through the region 
shaded in the sketch.	 That is.,  
the effect of the wing in the 	 / / A 
equations for the fuselage shape 
(such as eqs.	 (47), (48), or 
(19)) is assumed to be Sketch (q)
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- for 0 0 

+ for it < 0 < 2ic
(56) 

- for 0 < 0 < T 

+ for it < 0 < 2t 

The Optimum Cancellation Multipole 

One can now find, the strengths of the multipoles along the x axis 
which induce around a cylinder of infinite radius a momentum field iden-
tical to that created there by the elliptic wing. The negatives of these 
variations are, according to equation (36), the optimum cancellation 
multipoles. Hence, combining equations (53) and (36) 

2tabU0x p2 [ 2 + b2 3 2cos20 - x2 
al^ = fl	 ( _ ) nJ	 (a2 + b22cos2e)2 cos 

no dO	 (57) 

where Un = 1 for n =. O and an = 2 for n > 0. Particular variations of 

are shown in figure 5. These results are for n = 0, 2, and I, 

since	 (x) for any odd n is zero by symmetry, and apply when the 
wing plan form and free-stream Mach number are related by 

a_ 

b13 - 3it 

which contains the particular case for which the Mach number is F2 and 
the aspectatio is 3 . It is apparent that there are at least n + 1 

fn) 
roots to an (x) for -L0 <x <L0 . This follows immediately from 

equation (38) and is true in general. As a result the curves for the 
higher values of n become increasingly wavy and, correspondingly, 
increasingly difficult to evaluate numerically. 

Figure 6 presents the values of a(x) for the same elliptic-wing 
Mach number relation given by equation (58). Notice that each of these 
curves has only one root (they necessarily have at least one) in the 
interval -L0 <x <L0 and is increasingly smooth with increasing n. 
The latter follows from equation (37) and the fact that the first n 
derivatives of these curves must, in general, be continuous. For example, 
at x = ±L0 the first four derivatives of a4 (x) must vanish.

(58)
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Wave drag. - One can now calculate how much the wing-alone drag is 
reduced when combined with each successive optimum cancel lation-multipole 
distribution. If '5n denotes the drag saved by the nth-order cancel-
lation multipoles, then by equation (35) 

2fl L0	 L0	 (n+1)	 (n+i) 

q

-

	

	 r dx l J	 dx2cL	 (x1)rL	 (x2)lnIxi - x2 1	 (59) 
1ItUO2J 

	

-L0	 -L0 

where L0 is the maximum value of L(0) as given by equation (51+) 

L0 = a +b 13 
22	 22	

(60) 

The total drag saved by means of the first m multipole distributions, 
would, by equation (34), be

= 2	 +n
	

(61) 

Using equations (53) and (36) to define the 4n+ 1)(X) in equation (59), 
reversing the order of integration, and integrating once by parts, one 
finds

- IC/2	 ,ç/2	 L(e1)	 L(e2) 

=	
cos ne ].de lf cos n02de2 f	 d1f	 d2 

q	 T2 
0	 °	 -L(e1)	 -L(e2) 

	

(1+tab) 2	 L2 (e 1)2 12 2Jj2 (0 ) - 

	

2	 2 
4 

L (e1)L 4 (e2 )JL2 (e 1)_ ] 2	 tl - 

- 61+(tab)2	 12 
- 713  

0

cos ne idO i f cos ne2dO2 

-

it
	

L2 (e 1) <L2(02) 

-1t/4L4(e1),	 L2 (0 1) ^L2(62)
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4

rqj	 f 
Sketch (r)

It is apparent from sketch (r) that this 
can be written 

Dn = 16( tab)	
I r	 t/ 2 

I r	 cos ne1de1
	 2 

q	 It	 L4(e1) 

co:ne2de2	 cos ne1de1 

el 

,i'	
d62] 

or 

bn 32(tab)2 f It/ 2 

q	 It

0

It! 2 
cos flO j ae1	

r	 cos nO2dG2 
(a2 + b2132cos2ei)2I

(62) 

The total drag saved by using all the cancellation niultipoles is, by 
definition,

2 IC/2 
D - 16(tab)	 dO	

2	 - e 1 -	 sin 2ne1cos 2ne I	
1	

It 

o	 (a2 + b2132cos2e1) 	 n=3.
q 	 It 

and since

x =	 sin 2nx cos 2nx 

this is equal to the drag of the wing alone, as it, of course, should be. 

The reduction in wave drag as the wing is combined with the first 
three optimum cancellation multipoles is presented in figure 7. In 
studying figure 7, one sees, as the Mach number approaches one (i.e., 
13 0), more and more of the original wing wave drag is destroyed - by a 
line of simple sources alone. Further, the value of e which can be 
written - see equations (46), (51), and figures 5 and 6 -
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(63) = 
e J2	 _ 

tends (for a fixed average distance to the body surface re) to zero as 
the Mach number approaches one; and this, in turn, means that as 0 goes 
to zero the effect of the multipole strengths on the body shape can be 
calculated using slender-body theory. 

When various orders of multipoles are distributed along a line, one 
can show the cross-sectional area normal to the free stream of the sim-
ulated body as given by slender-body theory is a function of the source 
distribution only (see Appendix B). Coupled with the discussion in the 
preceding paragraph, this can be used to demonstrate that, for Mach 
numbers close to one, the "supersonic area rule" proposed in reference 11 
and discussed in reference 12 gives a good approximation for the wave 
drag of an elliptic wing and body combination which is symmetrical with 
respect to the plane of the wing. 

The induced velocity field. - A method for calculating the velocity 
field induced by the multipoles when a 1 (x) is given numerically is pre-
sented in Appendix C. By means of this method, velocities induced by 
the ao and a2 multipole distributions shown in figure 6 have been 
calculated for 5 equal to 0.148 and the results are shown in figure 8. 
Since the distributions in figure 6 were for the particular case 
a/b3 = 4/371, it is evident from equation (63) that the values in figure 8 
apply to the case re/b equal to 0.161; that is, when the body radius 
is about 16 percent of the wing semispan. 

For comparative purposes, the values given by slender-body theory 
are also shown in figure 8. The degree of agreement between the two 
curves is consistent with the results shown in figures 3 and 4. 

Interpretation of Drag Reductions 

Comparison with wing mounted on a -----mach waves from wing 
circular cylinder. - With regard to fig-	 roof section 
ure 7 one should be careful to notice 
that the drag of the wing alone has been 
used for the reference drag. The drag  
reductions shown, therefore, represent ( 	 / 
gains brought about by interfering with  
the velocity field induced by a planar \ 
source sheet, or, in terms of a combina-
tion with an upstream cylindrical stream 
surface, gains made by modifying a body, 
shown in sketch (s), which bulges behind

Sketch (s)
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the wing leading-edge Mach wave in accordance with the velocities induced 
thereby the source sheet. Obviously, from this viewpoint, a considerable 
reduction in drag can be brought about merely by eliminating the bulge, 
thereby making the body a circular cylinder throughout. Mathematically, 
such a procedure amounts to using a certain set 8 of cancellation multi-
poles along the x axis behind the point -L 0, arid, if the drag of this 
resulting combination were used as a reference, the gains shown in fig-
ure 7 would be diminished.. 

An approximate way to estimate the drag of a wing mounted on a cir-
cular cylinder is illustrated in sketch (t) and consists merely of sub-
tracting from the wing source sheet those sources blanketed by the body. 

Sketch (t) 

Using the subscripts 1, 2, and 3 to designate the wave drags of the indi-
vidual wings as indicated in the sketch, Jones (in an unpublished com-
munication) has shown that if wing 1 is an elliptic wing with a biconvex 
section and wing 2 lies entirely within the plan form of wing 1, then 

D3 = D1 (l +	 ) 
2V2\

+D2	 (6Ii) 

where V2 and V 1 are the volumes of wings 1 and 2, respectively. 

8The exact evaluation of multipole distributions necessary to simu-
late a circular cylinder for the entire body length has been studied in 
reference 13. 
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For a supersonic Mach number, D2 is closely approximated by the 
wave drag of a rectangular wing having the same section and aspect ratio. 
If A2 , 4R and 12 are, respectively, the aspect ratio, plan-form area, 
and thickness ratio of the rectangular king, its drag can be expressed in 
the form

P D2	 1i-RaN2	 (65) 
qT2 

where

16	 12 sin- PA2 1,_2A22 
A2 3	 13A2 -	 6 -


N2 =
16 
3

1 1.1 

	

+(l_-2)cosh- 
TAj'	 3A2<1 

	

,	 3A2>1

(66) 

Further, if A 1 is the aspect ratio of the elliptic wing, one can show.- 
see sketch (t) and equation (52) - 

A2	
( 	

A1	 (6) 

The drag of the elliptic wing follows from equation (55) and can be 
written

= 1 abN1	 (68) 
qT2 

where

	

	 2 
1 + 2(h)

(69) 2312 
[l+ (

TO 
J 

Finally, therefore, equation (64) can be put in the form
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t[13(R'lN2	
(70) 

D1 L	 3ltbA R bN1 e 

and the ratio N21N1 is a function of the parameters H/b and PA, only. 
By means of equation' (70), the dashed curves shown in sketch (u) - 

,6'A 
Sketch (u) 

representing approximately the wave drag of a wing mounted centrally on 
a circular cylinder - were calculated. Though considerable drag reduc-
tion is indicated by adding just those multipoles necessary to make the 
body cylindrical, it is apparent the total wave drag can be reduced fur-
ther, for the range of parameters shown, by using only the first two 
optimum cancellation-multipole distributions, a 0(x) and ct2(x), given by 
equation (36). 

Comparison with wing mounted on a basic body of revolution.- 
Sketch7 .i) shows the effect on the wave drag of adding the optimum can-
cellation inultipoles either to the wing alone or to the combination of 
an infinite circular cylinder and a centrally mounted wing. Estimates 
of their effect when added to a wing mounted on a basic body, of revolu-
tion can also be carried out. In order to present these estimates, how-
ever, the results of the following two theorems due to B. T. Jones are 
needed.
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1. Designate the closed body of revolution which, by a slender-
body theory, has a minimum drag for a fixed volume and length as a Sears-
Haack body. Then the total wave drag of a Sears-Haack body and any other 
body of revolution or any centrally mounted thin wing-which lie entirely 
within the Sears-Haack body's enclosing Mach forecone and aftercone is 
given by the equation

D=D511(l+)+D2	 (71) 

where: 

Dgg	 wave drag of Sears-Haack body alone 

D2	 wave drag of other body or (exposed) wing alone 

VSH	 volume of Sears-Haack body 

V2	 volume of other body or (exposed) wing 

2. Designate the closed body which, by slender-body theory, has a 
minimum drag for a fixed base diameter and length as a K.rman ogive. 
Then the total wave drag of a Ka'rman ogive and any other slender body of 
revolution or any centrally mounted thin wing which lie entirely within 
the ogive's enclosing Mach forecone and aftercone is given by the equation 

D = Djç + D2
	

(72) 

where: 

DK	 wave drag of Krmn ogive alone 

D2	 wave drag of other body or (exposed) wing alone 

In order that the theoretical results could be tested by wind-tunnel 
experiments, a basic body of revolution having a finite base area was 
chosen. Such a body can be simulated by a combination of the source dis-
tributions which produce,9 separately, 

The source distributions simulate the Sears-Haack body and the 
Karman ogive only when slender-body theory is used to calculate the body 
shapes. If linearized theory is used instead, the body shape will, of 
course, be somewhat different. However, the subsequent results and con-
clusions are by no means limited by the assumptions pertaining to slender-
body theory. The latter theory is used only to obtain an estimate of 
the body volumes or to study cases for which it gives results that are 
not significantly different from those given by linearized theory.



Sketch (v)

1 2
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the Sears-Haack body and the Karman ogive. Thus, if 21 is to be the 
body length, the line of sources 	 _______ 

Iu0 
=_	 VKLFVS) 2. -x 

ao( x)	 2 (	 x\j2	 2

(73) 
simulates (by slender-body theory) 
a body of revolution (see sketch (v)) 
having a total volume V equal to 
VSH + VK, a cross-sectional area given 
by 

S(x) = i[xJ2.2+ i2$ .	
8v (2)3/2	

<X <2.
+sin _)I+ 
Jj 3,t2.4	

(,) 
and a base area S(i) equal to VK/1. 

The wave drag of a wing mounted on this basic, unmodified body will 
now be calculated. Just as was the case in studying the wing attached to 
an infinite cylinder, the assumption is made that the wave drag of this 
combination is the same as the wave drag on the configuration simulated 
by superimposing the singularity distributions which create separately 
the exposed wing panels and the body of revolution. With this assumption, 
the wave drag can be written explicity in terms of the wing and body 
geometry by applying equations (71) and (72). Hence, 

D=Dç+DsH(	
2V3\ 

1 + -) 
VSH + D3J
	 (75) 

where D3 is the drag of the exposed wing panels alone, given by equa-
tion (TO) and shown for various values of R/b in sketch (u), and V3 

is their volume (see sketch (t)) 

V3 =tab(-)
	

(76) 

Since Djç and DSB, the wave drags of a K.rmn ogive and a Sears-Haack 
body flying alone, are well known to be 

VK2 
D =-

(.) 
SR = -- —i-- 

the wave drag coefficient of the unmodified combination, based on the 
complete wing area icab, can be expressed as 

D	 - Vjç+8V511 16tv (It 8 R"\ + t2N1 [( - 3.	 R 
= CD 

qItab	 It214ab	 It214 2	 L	 311 b/ +
(78) 
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where N1 and N2 are defined in terms of Mach number and wing-body 
geometry in equations (66) and (69). An example of the variation of 
with Mach number for the particular combination shown in sketch (x) 
(RIb was set equal to 0.181) is given by the dashed line in sketch 

.024 

.020 

.0/6 

Co 

.0/2 

.008


.004


0

1.00	 110	 120 
M 

1.30	 1.40	 1.50 

Sketch (w) 

It is now possible to find how much the drag of this unmodified com-
bination can be reduced by means of the optimum cancellation-multipole 
distributions used to derive the results shown in figure 7. Again apply-
ing equations (71) and (72), one can show

CD 

(w). 

-Unmodified combination

- - - - 

Modified combinollon\ 
Some total volume  
Less total volume -
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D=Di +DS11(l++D4	 (79) 

—   	 - - where	 V 4	 is the total volume and	 D4 

--to* 
.47334 j the total wave drag pertaining to the 

wing (now the complete wing including 
21 the portion blanketed by the body) and 

the multipoles.	 However, within the 
Maximum thickness of wing along accuracy of the approximation - being, 

center line,	 0.234 in fact, exact within slender-body 

Total volume of body	 44.60 theory, see Appendix B - the volume 
added by the wing is subtracted from 

31.72 the basic body by the optimum cancel- 

I6, .	 /2.88 lation - source distribution so that 
if	 N4	 is the V4	 is zero.	 Further, 

Sketch (x) value of	 D/Dw	 read from figure 7 for 
a specific value of	 3A1	 and a specific number of multipole types, one 
can readily show

t2bq 
= 13a N1N4
	 (80) 

where N 1 is defined in equation (69). Hence, the drag of the unmodified 
combination can be reduced to either 

D	
1 {VK2 

+ 8[v	 bIt 8 R"12i	
2 

qItab = CD = It2ab14	
+ ta	 -	

+	 N1N	 (81) 
ita93 

if the same total volume is maintained (maintained, as is obvious from 
an inspection of the equation, by increasing the value of the Sears-
Haack portion of the basic body an amount equal to the volume of the 
exposed wing) or to

2 
CD	 2 1 (VK +8Vsu	 ira 

+ 
2 N1N4


it abl 

if the volume of the fuselage is reduced by an amount equal to the wing 
volume. 

The results expressed by equations (80) and (81), when applied to 
the first two optimum cancellation-multipole distributions, are shown 
for the geometrical parameters presented in sketch (x) by the solid 
curves in sketch (w). The value of R/b used for the solid curves was 
0.161 instead of the 0.181 value used to calculate the dashed curve. 
The smaller value was used since the modified body is drawn in along the 
sides by the cancellation multipoles (see fig. 9), decreasing the average 
body radius in the wing region from about 1.00 to about 0.89. One must 
be careful to notice that the solid curves represent minimum (relative 
to the special method being discussed) values which can be obtained by 

(82) 
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a specific design at a specific Mach number and do not represent the 
variation of wave drag with Mach number for any given combination. 

The Body Shape - First Calculation 

The final step in studying the effect of the optimum cancellation 
multipoles, defined in equation (36), is to find the distorted body shape 
which they produce in combination with the wing and a basic body. The 
decision was made to calculate a body shape which would be optimum at a 
Mach number equal to r2. The details of the wing and body geometry are 
given in sketch (4 and the basic body parameters VK and VS were inter-
preted in terms of source strength by equation (73). 

It was apparent from the results of figure 8 that, for the values of 
re and b given by sketch (x), the velocity field induced by the first 
two optimum multipole distributions can be calculated with good accuracy 
using slender-body theory. Combining the values of Pr and e so cal-
culated with those induced by the wing, given by equation (76), and those 
induced by the basic body, using also slender-body theory to interpret 
equation (73), one can find the body shape by solving the two simultaneous 
nonlinear differential equations presented as equations (1I3). These were 
solved numerically by the method outlined in Appendix D and the results 
were, unfortunately, unrealistic. Sketch (y) shows an example of a 
streamline close to the 0 = 0 plane 
and the crossing of such streamlines 	 Y Wing 
obviously invalidates the solution.	 source 

F6
	 sheep 

Body Shape - Second. Calculation	 p =	
'-4 

8881 
The failure observed in the 

first calculation has a simple enough Mii/tipoles 
interpretation. For the chosen wing 	 Streamline, 8-0 
the basic body was too small in diam- 
eter at the wing-body juncture to 	 Sketch y 

permit the use of the first two cancellation . multipoles in their entirety. 

Several avenues of approach are yet available. One could, for 
example, maintain the same wing and basic body but reduce the Mach number, 
one could start with a larger basic body, or one could lower the thickness 
ratio or aspect ratio of the wing, thus diminishing the strength of the 
cancellation inultipoles. All of these, however, are modifications of the 
basic conditions or basic restraints and as soon as such restrictions are 
abandoned it must be remarked that no matter how low the' wave drag of a 
set of nonlifting, volume-enclosing surfaces has been made, another 
arrangement of the same volume within a finite space will give a lower
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Sketch (z)

then

1/4 i 
20 +l _+401 (x)cos 20 + F
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*

1 + 2F (x) Cos 
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value, unless, of course, the wave drag of the first arrangement Is 
already zero. Therefore, instead of modifying any of the initial 
restraints, consider the following alternative: 

How much can the drag be reduced by using only a portion 
of the first two cancellation multipoles so that a real 
body would still be simulated? 

In order to answer the above question, examine briefly the first 
calculation. Notice, from figure 8, that the cause of the body collapse 
is attributable to the large values of Pr and pe induced by the second-
order cancellation multipoles, M(x). Hence, let a, 0 (x) be maintained at 
its full value and reductions permitted only In the magnitude of ct2(x). 
To carry out such a procedure efficiently, one must be able to determine 
the effect of a given variation of a,2(x) on the body shape. Fortunately, 

Graham, In reference i ii-, has developed a method by means of which the 
relation between a,2(x) and body shape can be quickly estimated. Graham 

has shown ., if

1. a rectilinear distribution of 
second-order multipoles of 
strength a2(x) is placed 
along the x axis (see 
sketch (z)) in a supersonic 
stream (M = 

2. slender-body theory is used 
to evaluate CPr and q)0, 

is the radius of a 
ilarly cylindrical tube 
-L0 >x >-oz, 

=2( 2) 2 
c f 

Lo 

3 . R=Rc 
circ 
for 

* 
1i.	 F (x) 

is the continuation of the stream tube for x > -L0. 

Since the initial strengths of the cancellation multipoles are 
negative, F(x) is negative and the critical value of P occurs along 
the plane 0 = 0 or v. The variation of R/Rc with Fax is given
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in sketch (aa) from which one can see that the maximum value of !F*I 
must be less than 0.5 if the simulated stream tube behind the plane 
x = -L0 is to be real. 

The problem can now be continued, using Graham's result as a guide, 
by assuming the critical body radius in the more complicated source and 
multipole arrangement is principally determined by F*(0) - the parameter 
governing the body indentation at the center of the cutout and at the 
wing-body juncture. In the first 

is rie-LAS	 JSS¼S..SL	 -'---'-.--.-.'- 10 
between different orders of multipoles, 
it is necessary to consider only the 
drag produced by the second-order - 
multipole.	 Appendix E presents a 
method for finding the optimum dis-
tribution of the second-order can-
cellation multipoles for a given 
wing and a fixed value of	 F*(0). 
The resulting wave drag is given in 
equation (Eli).	 At a Mach number 
equal to 4-2 and for the basic wing 
and body nar2meters nresented in 
sketch (x), Fw*(0) (defined by eq. E8) 0	 .25	 .50 
equals -2. 90 and the reduction in 
D2/qS, the amount of drag caused by

#710X 

the wing second-order multipoles Sketch (aa) 
alone - see equation (62) and fig-
ure 7 - is shown in sketch (ab) for 
a range of	 F*(0).	 Variations on 
the strength of various combinations No cancellation multi-
of second-order multipoles are shown poles 
in sketch (ac) on page 48. 	 It is .004 
important to notice that for a given -Z percentage reduction in the maximum  02 strength of the multipoles the result- 
ing percentage reduction in 	 1J2	 is

002 
much larger. 

The strengths of a2 (x) shown 
in sketch (ac) must now be combined 
with the zero-order multipoles and 
wing source sheet, and the combined 
velocity field used to calculate the 
shape of the new body. Using again 
slender-body theory to evaluate the 
velocity field induced by the multi-
poles and the numerical methods given 
in Appendix D to compute the stream-
lines, one finds, by restricting the

.2	 .4	 .6	 .8 
F*(0) 

Sketch (ab) 
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1-

a1 (x)1 variation of second-order 
rnultipoles for wing alone. (If 
there were no restraints on 
F14, this would be reduced 

f to zero.) 

cl(x) #	 ,(x)	 for 
F4IW : 45 

.2 F0)	 .70

-

Sketch (ac) 

distribution and strength of the second-order cancellation multipoles to 
their optimum values corresponding to the restraint 10 F*(0) = -0.6, 
that a real as well as reasonable body shape results. The details of 

10Sketch(aa) gives 0.5 as the maximum permissible value of _F*(x). 
However, that value is based on a distribution of a, 2 (x) alone, and in 
our more general case the added velocity field caused by the presence 
of the other singularities permits the larger value. 
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this shape are presented in figure 9 and. their general interpretation 
is discussed in the next section. Finally, using the value F (0) = -0.6, 

the drag curves shown in sketch (w) were reinterpreted, and the results - 
which represent an estimate of the amount the wave drag of an elliptic 
wing mounted on a basic body of revolution can be reduced by realistic body 
distortions - are shown in sketch (ad) 

Sketch (ad) 
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Discussion of Results 

It is possible to gain some insight into the reasons for the various 
body distortions shown in figure 9 by inspecting, in another light, the 

body shape first calculated.	 Consider first the elliptic wing at the top 

of sketch (ae). The air over the forward part of this wing, when it is 

alone in a supersonic stream, is compressed (mathematically, the sign of 

(px	 is negative), the compression being greatest near the leading edge. 
On the other hand, the air over the after portion 

1110 of the wing is undergoing an expansion, the magni-
tude of which is greatest near the trailing edge. 
Consider now, in combination with this wing, a body 
which is to have a shape providing favorable inter-
ference.	 It is apparent that the body should cast 
expansion waves over the forward portion of the wing, 
destroying the compression there, and absorb the 

- - expansion waves coming from the wing after portion. 
Or in another light, the positive pressure on the 
forward region of the wing (one can use the equation 
Cp = (p-po)/q = -2p (/UQ	 for the pressure coeffi-
cient) should be reduced as far as possible by a 
wave shed from the body and having large negative 

Center lines pressures where it comes in contact with the wing 
1 forward region.

Since waves in a supersonic flow field are 
fundamentally associated with the slope of the 
disturbing surface, the aforementioned favorable 
interference fields would be created by a body 
having, longitudinally along its surface, slopes 
such as those shown in the lower part of sketch (ae). 
This is exactly what the solution obtained from the 
calculation of the first body shape tried to estab-
lish since the fuselage near the plane of the wing 
(the portion most strongly affecting and being 
affected by the pressures on the wing) and ahead 
of the wing chordwise center line was distorted 
in a manner that caused an expansion across the 
wing entire forward portion. The difficulty arose 
because the fuselage was not wide enough to provide 
the longitudinal extent of favorable slopes neces-
sary to create the positive pressure called for by 
the wing forward compression region, and the body 
streamline near the wing root, following a path 
such as that shown by the line in sketch (ae), 
crossed the body center line before it reached the 
wing chordwise center. 

Sketch (ae) 
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Consider now the second body calculated in the previous section. 
In this case an additional restraint was imposed which, effectively, 
fixed the maximum body indentation. Subject to such a condition, an 
optimum interference field was discovered. If the resulting fuselage 
shape is inspected near the plane of the wing, surface slopes are found 
similar to those shown in sketch (a!). The following discussion is 
intended to show that, from a physical viewpoint, this arrangement is 
reasonable. 

Most of the wing pressure drag occurs on the wing inboard portions. 
Hence, for a fixed maximum fuselage indentation, it is beneficial, from 
an' over-all point of view, to create initially a compression wave, which 
increases the pressure drag on the forward por-
tion of the wing tip but provides a succeeding R UO 
extent of fuselage having slopes that generate C 
a strong expansion wave over the forward por-

-	 Body tion of the wing inboard section.	 Similarly, 
the final portion of the body is forced to have ;:	 streamline 
a region of unfavorable interferences where the - 
expansion waves from the wing tips combine with 
body expansion waves to increase the local drag 
(i.e., increase the local suction pressure) in - 
order that the over-all interference effects  

are as beneficial, under the given restraints, 
as possible.	 This arrangement (i.e., unfavor-
able interference near the wing tip and favor-  

able interference near the wing root) is given . 
further support by the attenuation property \•:. 
inherent in three-dimensional waves.	 Thus the Multipoles 
pressures induced by the body on the wing tips 
are not as strong, for a given generating sur- Region of 
face slope, as those induced on the inner por-
tion of the wing, simply because the tips are  compression 
farther from the disturbing surface. expansion 

Although these considerations are somewhat Sketch (a!) 
oversimplified (the shape of the upper part of the body has been com-
pletely ignored in estimating the effect of the waves), the longitudinal 
variation of surface slopes near the plane of the wing and the resulting 
body streamlines there are, from a physical point of view, reasonable.

In order to support the above conclusions, the source and multipole 
distributions simulating the final modified body shown in figure 9 were 
used to calculate (see Appendix c) u/U0 in the plane of the wing near 
the root section. The values of u/u0 induced by the wing sources along 
these sections were assumed to be the same as those induced by a two-
dimensional biconvex section having the same local chord; that is, tip 
effects were neglected. These values for body and wing were added and 
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the resulting pressure distributions, shown in sketch (ag) (c = -2u/uo), 
were obtained. The results are similar to the estimates presented in 
sketch (af). The large drag saving near the root section is illustrated 

.15 

U 

U. 

-.15--
0 

'PAP0L%7 _W WO M.Ad 

I.uill 

in sketch (ag) by the graph showing the low values of section drag coef-
ficient along the inner portion of the wing. 

Another important characteristic of wing-body combinations designed 
to have low wave drag is also illustrated in sketch (ag). As shown 
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in the graph of u/Uo, over the surface of a two-dimensional biconvex 
section the air is everywhere accelerating in the streamwise direction. 
In studies concerning the effects of viscosity on the fluid flow and, 
in particular, studies concerning the boundary layer, this positive fluid 
acceleration is referred to as a favorable pressure gradient. If the flow 
is laminar in the vicinity of the leading edge of a smooth wing and the 
pressure gradient is everywhere favorable, the flow tends to remain lam-
inar and unseparated over most .of the wing chord. Notice that the modi-
fied wing-body combination has a line of zero pressure gradient extending 
along a Mach line downstream from a point near the body and wing leading-
edge juncture. Immediately behind this line the pressure gradient is 
unfavorable which gives rise to the possibility of flow separation or, 
at least, transition from laminar to turbulent flow there. 

Comparison With Experiment 

The modified wing-body combination shown in figure 9 was tested in 
the Ames 2- by 2-foot transonic wind tunnel. The Reynolds number of the 
test, based on the mean aerodynamic chord, was approximately 1.5x106. 
This combination had an exposed wing volume of 3.44 cubic inches and a 
body volume equal to 44.60 cubic inches, for a total volume of 18.04 
cubic inches. As a control, an unmodified combination composed of the 
same elliptic wing mounted on a body of revolution (the area distribution 
of which was determined from equation (74) with 1 = 10.5, V jç = 12.88, 
and V	 29.02 cubic inches) was tested. The exposed wing area in the 
unmodified combination was 3.32 cubic inches and the body volume was 
11-1.90 cubic inches, for a total volume of 115.22 cubic inches. Thus, the 
unmodified combination had the same body length as the modified one but 
less volume. 

The wave drag at M = 1.41 of the combination shown in figure 9 has 
already been calculated and presented in sketch (ad) by the curve pertain-
ing to real body shapes. By use, in equation (78), of the values of VK 
and VSH mentioned above and a value of 0.176 for R/b, the wave drag 
for the unmodified body was calculated throughout a supersonic Mach num-
ber range. The theoretical results obtained for body configurations are 
shown by the dashed curves in sketch ah). 

The wind-tunnel results for the total drag on both configurations 
are shown in figure 10 for o.6 <M <1. 11. Notice that three groups of 
data are shown. The lower one represents the unmodified body alone, the 
middle one represents the modified and. unmodified combinations with no 
fixed transition, and the upper one represents both combinations with 
transition fixed along the leading edge. The models tested with natural 
transition did not show the predicted drag reduction. As was pointed out 
in the discussion of sketch (ag), however, the adverse pressure gradients 
on the modified model could be inducing transition in the vicinity of
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the 11.5° line behind the juncture of the wing leading edge with the fuse-
lage. This, in turn, would cause the wing of the modified model to have 
a larger area covered with a turbulent boundary layer and, hence, cause 
the drag of the model to increase. In order to separate the potential 
and viscous effects, the transition-fixed tests were made. If the exper-
imental wave drag is taken to be the difference between the drag at a 
supersonic Mach number and the drag at M = 0.6, the resulting values of 
experimental wave drag are as shown in sketch (ah). 

Sketch (all) 
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Sketch (ah) shows that the experimental reduction in wave drag 
brought about by the modification agrees with that predicted by theory. 
Both theory and experiment show a reduction of about 0.0015 in the drag 
coefficient at the design Mach number (1. 141), and the experiment further 
shows an average reduction of 0.0020 over the Mach number range 
1.2 <N < 1.4. A further study of figure 10 shows that the difference 
between the experimental and theoretical wave drags shown in sketch (ah) 
for the wing-body combinations is nearly the same as the difference 
between experiment and theory for the body alone. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Feb. 16, 1955
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APPENDIX A 

DERIVATION OF THE OPERATIONAL FORM OF THE WAVE EQUATION 

For convenience, take the normalized form of the wave equation in 
Cartesian coordinates, thus

x2	
(Al) 

and define the Laplace transform of cp(x,y,z) by 

(s,y)z) =f 
Co

 

e_SXcp(x , y,z)dx	 (A2) 

0 

Now if x = f(y,z) is the equation of the foremost Mach cone or Mach cone 
envelope and f(y,z) >0, it is apparent

f 

	

= A_f (x,y,z)edx =f e	 (ix - - e 
y2	 y2

f	 f 

since ( p)f is, but 
(Z )
	 is not necessarily zero. From equa- 

tion (A3) we see	
x=f 

Ie	 dx =	 +	 e('	 (Alt.) 

	

y2	 y 
0

eY'\	 (A5) I e 5X 24 dx 
J	 z 
0 

Further, integrating by parts gives 

f e	 d=	 -e_sf() ( A6)
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Hence,

e- J
S)O

 
\x2

2i:p 
y&

6
dx

z)
-	

2 
y2  

0

(A7) 
\\ X 6y 6y 6 Z z)

x =f 

The last term on the right is the directional derivative of the per-
turbation potential along the surface x = f(y,z). This is, of course, 
along the so-called conormal. Since cp is a constant on the forward 
envelope, its gradient along the envelope is zero and 

f62Cp

CO	 2	 6 2V 

^e14 - dx=	
-	 -	 = 0•	 (A8)

 5y2 6 



We
	

NACA RM A77B16 

APPENDIX B


ON THE VOLUME OF BODIES CALCULATED USING SLENDER-BODY THEORY 

The following proof shows that in a rectilinear distribution of 
singularities, only the sources contribute to the total cross-sectional 
area of the simulated body and, hence, to its volume. 

According to slender-body theory, the velocities induced in the 
field by distributions of multipoles along the x axis can be written 

n=O , 2r	
(Bla) 

CPn = 	 n 
(-2) n!an(x)cos no	

n >0 n+2	 ' 

1(_2)nfl!(X)Slfl no 

	

=	 n+].	 (Bib)
kgr 

Further we have derived - see equation ( I.i) - neglecting only second-
order effects, the equation representing the boundary condition for the 
body, thus

	

R (	 eR 
=	 r -	

r=R(x,O) 

Combine equations (Bl) and (B2) 

00 

2itU0R	 = a0(x) ^(_2) nn!an(x/c05 nO - sin nO 
\. R'	 Rn+l	 ) 

1 

multiply by do, and integrate

(B2)
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21t 2 

2U0	 de = 2a(x) ^ (_2)nn!f (

	

no - sin no 

R	
) (x)

	

	 de n+ 1 

or

CO
21t d ___

27CUO	 S(x)
___ 

= 2tao(x)+(-2)"(n-l)!an(x)f 	
(sin no) dQ 

1	 0 

Since the integrand in equation (B3) is a periodic function in e, we 
have

- a(x) 

x_	 O 

which shows the simulated-body normal cross-sectional area to be dependent 
only on the source strength. Further, the total volume is given by 

V 

V =f S(x)dx =f(2 V - x)S'(x)dx + (jl + 

and when s(i') = s(-I) = 0, there results

(B1.) 

V = -

	

xa0(x)dx	 (B5)



and so forth. Consider next 
the variation of An() shown 
in sketch (ai) and represented 
by the equation 

NACA EM A55B16 

APPENDIX C 

ON THE CALCULATION OF VELOCITIES INDUCED BY ARBITRARY 

SOURCE DISTRIBUTIONS 

The potential and velocity fields represented by equations (18) and 
(19) are difficult to evaluate analytically even if A() is a simple 
function. However, the calculations can be reduced to a relatively simple 

process. First, let equation (18) be expressed in terms of the dimension-
less variables	 and f where

= /L	 (Cl) 

= Or/Lo 

Then	 - - x-r 

= -

	

(C2a)
 -I- f	 -) - 271_	

10E	 r 2 -2 

x _r

	

cos 20 r	 A2()[2( - •.)2 -	 (c2b) 
cp2 (x,r,e) = -
	 2t J	 -2,f(5 -	 - 

	

-1	 r 

-

-/ -.95 -9 -.85 -8 775 -.7 

Sketch (ai) 

(190n -360m) +(39On 60m)+(200n 1 00m) 2 ,	 -1 < E <-0.9 

Li	 -
(C3) 

As seen in the sketch, An vanishes at 	 = -1, is a parabola between -1 

and -0.9 (assuming the values m at = -0.95 and n at = -0.9), and
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the straight line, An() = n, for 	 greater than -0.9. The velocities 

induced by a multipole distribution given by equation (C3) can be cal-
culated in a straightforward manner in the two regions -1+	 < -0.9 + f 
and -0.9+f<5. For example, if 

-( +o.9)( + l.0)2-P+2ln 
+.o+J+ 1.0)2 -2 

-1+<<-0.9+i 

Irpmof (2) = _(+0.9)J(+1.0)2 _2 (+l.o)J(+0.9)2_2 + 

21n 
x+i.o+J(x+i.o)-i

(c1i) 

<<-0.9+ 
itMof (x) 

100	 =(+o.97)	 +1.o)22(+l.o5) J( +0.9) 2 	 2 - 

21n x+1.0+J(x+1.0)r

	

	 - - 
.9 -0.9+ r<x 

09J(+09)2 2
(c7) 

then	 can be written

= mMo(c) + nNo,(c) 	 (c6) 

Now, if one is given a distribution of sources that is composed of, 
or is adequately approximated by, a series of 20 equally spaced parabolic 
arcs, equation (CO can be used for each individual arc and the results 
superimposed for the complete solution. To this effect, define m 1 and 
nj in terms of A0 (x) by



( 

-5 

Sketch (aj) 

the equation for the radial velocity becomes 
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Mi = A	 - 1) - A'1 1 -

(c7) 

(Tio /I C(L"1-0
-1) 

so they represent the magnitudes shown in sketch (aj). Then, if [] 
denotes the greatest interger contained in x (e.g., [6.34] equals 0, 

(Pop=	 [1M0( - I -1) + niNo;( - i 91	 (c8) 

Values of	 and N0 are tabulated in table I for f equal to 

0.074, 0.148, 0.222, and 0.296. The asymptotic magnitudes of these func-
tions are given by slender-body theory. Hence, one can easily show for 
large x

M0 z 0

(C9) 

=1 
r	 2itr 

Notice that both functions have essentially reached their asymptotic 
values for large x by the time 	 = -1 + + 0.5. By applying simple 

tabulative procedures to equation (c8) - for example ., listing mj and n1
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in reverse order and accumulating multiplications of adjacent terms - 
the value of cp	 for any A0 () representable by equation (C7) is 
readily calculated. 

The velocities induced by higher order multipoles can be calculated 
in a similar fashion. Because of the asymptotic behavior of the M's and 
N's, however, one is led into the numerically inefficient process of 
obtaining small numbers from differences of large numbers. For the veloc-
ities (Pr and cpa, the following is a method for circumventing this dif-
ficulty. 

It follows from equations (9) or (19), that for small i, cp- and 
can be expressed in terms of the multipole strengths an(i) - as defined 
by equation (7) - by the equations 

rn+J_nr_ = Co+.C 1r + . . . + CrV + .
cos nO)	
v

 

r(	 e \)
 

sin nO) = D+ D 1r + . . . + DvrV + 

where for v < n, n 1

(ClOa) 

(C lob) 

V 
n+—

[l 
2vnv (n -

v)<n -	 (v) 
a	 (x), 

Cv 

= 1.
V) 

0 

V 

1(l) 2 2nv 	 -	
(v) 

0DV	 41r	 r (l + v)

a	 (x), 

0

• even	 (Clla) 

• odd 

V even
(cllb) 

vodd 

Consider now the velocities cpq and CP2.induced by the multipole 

strength defined by equation (C3); thus
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cP2r	 = m42-0) + n1T2-(x)	 (C12a) 
cos 20	 r	 r 

P2e 
_______ = lnM2e( 5i ) +	 26 (5')	 (c12b) 
r. sin 2 

where values of the M's and N's are listed in tables II and III. Their 
asymptotic values, as given by equations (do) and (dl), are 

19 + 20 

r	 i5Oic?3 

150x2 + 275x + 126 
N2 

=	 150itf3

( 

	

l9+20	
d13)



N2 

= l50 

1502 + 275 +'126 - 
N2e =
	 1501a3	

21r 

and these are also given in the tables. 

As the tables show, equations (d13) are sufficiently accurate 
approximations to M and N for practical calculating purposes when 
j > -1 + + 0.5 . Hence, referring to sketch (ak) one can see that the 

Effect of multipo/es in	 • 1';, ;i 
This interval on velocities	 F 

/ at (g7) given by equc-	
"Line of Pion (C/SI. 

/	 ,' rnu/tipo/es7 

-,

Sketch (ak) 

velocities at the point 	 induced by the multipoles in the interval 
-1 <	 -	 - 0.5 can be calculated using equations (d13). In terms
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-	 (2)- 
of the distribution for A 2() - which is equal to a2 (a), see equa-
tion (16) - this means the multipole distribution shown in the upper 
part of sketch (al) can be calculated by means of the asymptotic formulas 
and the result added to that obtained for the distribution shown in the 
lower part of sketch (a2) by use of equations (C12b) and tables II and 
III in a manner identical to the one represented by equations (CO, (ct), 
and (c8).	 - 

Sketch (al) 

The value of q 26 (x,r) induced by a multipole distribution such as 

that shown in the upper part of sketch (az) is, on the basis of equa-
tions (do) and (Cli), 

P20	 --	 2	 -	 - -	 A2() 
-	 = H(x,r) =	 / ( - )A()d -	 - r sin 2e	 irr j	 2itr


-i 

- 2(i + i) (1) 
so	

= -a.- a2 (2 -	 -	 +	 .	 a2 ( :R -	 - i) + 

2.-	
-	 )[ ( r +	 ) 2 -	

( ci) 1	 Tr3	 2gf



A2( -	 - j)


2rtf
(crTb) 
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2 (2) where 13 a2 (x) 
by the equation

= A2(x) and x1 is shown in sketch (aZ) and defined 

-	 - - 110(x-- r-)]
X = 	 + x - r - __________ 

10. (cis) 

the symbol [iO(i - i)] meaning, as before, the highest integer value 
contained in iO(i - 1). A similar result can be derived for (p 2f and 
one has finally for -1 <[l0( - F) + ii] < 5 

(22e(4	

[M Mi2e( - i - i) + niN20( -	
1)] 

10 sin 2e
1

(C16a) 

[1o(-)+11] 
__ -
	 [mJM2j:(i- cos 2 - :1.

____	 (_ i-1"\1 
10	

+ nN2x - 10

(cl6b) 

and for [lo( - ) + ill >6 

[10(-i)+11] 
2,9 (x)	

[miM20( -
	

+ fl1	 x	 + -_1	

N2e(-	

- 
i sin 20

[io(f)+1}5	
(C17a) 

[1o(-f)+11]

	

N2r(	

I - l\)] 
 IMi_( - i -	

+ fl' 
i	 -	

- - 10 / + H(,) -

cos 20 -

[io(-f)+ii] -5 

The streamwise gradients of induced velocities can also be defined 
in terms of M's and N's as were the velocities qj and cpe. Thus
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po = mM0 +

+ cos 2 

Values of M0 , N0 , M2 , and N2 for F equal to 0.148, 0.222, and 
0.296 are given in tables IV and V.
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APPENDIX D 

NUMERICAL METHOD USED TO CALCULATE BODY SHAPE 

The method Used to calculate the body shape was a standard step-
by-step solution to the two simultaneous total differential equations 
(eq. (13) in the text)

d0. 1 
dx UoR e(x,M	 (Dl) 

dR	 1	 (x,R,e)	 J 
dx U0 = 

The essentials of the process are recognized from the following computing-
sheet heading set up for initial values of 0 and R equal to 300 and 

0.148, respectively, where R = x/L0 and R = 13R/LO 

x 0.05 + 
fl

x o . os + 
n

(1 
\\UQ	 eJ

(dO 
\\d,J1 \\U0	 1/J 

n Y G for 

and ® ®2

for 

and ( 
e - 

o -0.852 0.52I 0.148 -	 - - - - - - - - 

1 -.802 --- -- 

2 -.752 - - - -- - - 

xO.O5+ 
n-i

19 1

0 XO -05+
n-i

i .

(U-L o	 eJ 

for 

®and®

(i" 
\dx,12

( 
\U0	 r/ 

for 

@ and®

(L\dx/av 

/7N
	 +©

(Ed

+ 

®2 2 2
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APPENDIX E 

OPTIMUM VARIATION OF a2( x) FOR A FIXED VALUE OF I a,2(x) 

Given

q	 rL0rLor (s)	 (3)	 1[ (3)	 (3) 
D2 = - 

1 tUO2 J	 I L8	
(x1) + a2 (xi)j La2 (x2) + a2 (x2) 

-Lo -L0 

in	
- 2 I dx1dx 
L

(3) 
where the variation of a2 (x) is fixed, pose the restraint 

0
*	 4 

constant 
1 j

a,2 (x) 	 = F (0)	 Rc  

-L0 

and ask for the function a2(x) which minimizes D2 for a given value 
of the constant. 

If f(x) = f(-x), then 

ff r(xi)f(x2)lnIxi - x21dx1dx2 = 2ff f ( x 1) f ( x2) ln 1 x 12 - x22Iidx2 

3. 

and since a2(-L0) =	 '(L) = a
2)

2 	 (-Lo) = 0 

0
1	 (3) 

c(x)dx = -	 xa2 f  
Lo	 -Lo 

Therefore, the standard variational problem

(El) 

(E2)
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6[D^ +

r°	 = 0	 (E3) 
J	 U0 
-L0 

reduces to 

{21tUO2ff[ 

(3)	 (3)	 1 r( 3 )	 (s) 
a2 (X I) + a	 (x i)] [a2 (x2) + a2 (x2)] 

-L0 -L0

0 
____	 ? r 

1n21dxldx2 -
	

x1 a (3) (x l)dxl 	 0


Lo 

and this becomes

0

-L0

- ]
____ ___

dxi*f 

1	 o r (3)	 (3) 
[a2	 (x2) + a2	 (x2)] 

t	 -L 
U L	 °

in I !xi2x22k ?x13 =0 
I	 L 

Integrating three times by parts, using the relations 

= &t(L) = 42)(_Lo) = 0 

5ct2(0) = 
42)(Q) 

= 0,	 by symmetry 

and

I	 2	 21 

I 
x i - x2 

urn	 fO[a3)x2) 
+

I L2	
dx2 

I	 0
xi o

o (3)	 (3) 

= urn 2x j. r a2 (x2) + a2 (x2) dx
2 = 0


	

X3.->O J 	 X1X2 
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yields 

f°

	 (x)1	 ( fo[  (3)	 (3)	 1 lxi2-X22 5[a2	
jdxi	 a2 ( X2)+ (12 (x2)jln; L02 1dX2 + 0011 =


-Lo 

where
(Elk) 

By the fundamental lemma of the calculus of variations

 [	
()(x2)] 

lXi - / a2 (x2) ±c2	 lnl	 2 
I

Idx2 +U0? 0x 1 = 0,	 0 > X 1 > Xj 
u

Lo	

I -L0 

One can also show


L

1a2 
3) 

3ff 	 (x) + a 3) (x2 )]ln	 X2dx2 - UoAox i3} = 0,	 L0 > x 1 > 

Hence, 

o (3)	 I 2	 21	 o (s)	 2	 21 r	 (x2)	 lxi -x2	 2 •'	 3 f' a2 (x2 )	 lxi -x2 

	

ml	 dx2=70^72x1-Aox1 J U0 	 L02 0	
in1 L02
	

dx2 J	 I  
-L0	 -L0

(E5) 

Integrating by parts and changing the notation so that 

(2) 
a2 (x2) 

-	 U L0	 0

(2) 

111	 g(2) = 
a2 (x2) 

0 U0 

one has

£1 f(2)dii: =	 + 72111 -
	 3/2f 9(12)d2	

(E6)
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Equation (E6) is the familiar singular integral equation known, in 
aerodynamic applications, as the airfoil equation. Its inversion is 
discussed, for example, in reference 3 . If one solves equation (E6) and 
applies the conditions

(2).() = (2)() = 
0 

then

10LQ3  

	

70=- 153t '	 ?2	 15jT 

and

+ 
a2(x) 0L04xI	 2 F

i-	

2	 4 L0 J2_ x2 1Lo 

U0 	 U0	 6o2 [io(
	 -	

) 
+3(i) 

L0+ JL- 2 J 
41

(E7) 

Now set
0

a2(x)

	

dx = Fw*(0)	 R	 (E8) f 
-L0 

so that Fw*(0) is a known constant. Then 

ct2(x)dx 2A0L06 
F*(0)	 R4 _w*(0) R04+ 2252
	 (E9) 

-L0 

Using the above expressions, one can show 

M2( x )	 a2(x) 
+ 

U0	 Uo

*	
w	 o *(0)]{r (ix:—)2 i

7(xo^

 

(TO)

4 Lo_JLo2_x2
(o)+F

I
IF	 li +3	 in	 _0,i  	 Lo+JL02_x2 J 

(Elo)
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The wave drag can be calculated by combining equations (ED) and (El). 

3'\ a2	 x 1	 2 (xi)I 
L0	 [(3) ()
	

(3) 

= - 2- f ( + y2 2_ %oXi)	
•U0	 + 2i	 u0 

Integrate three times by parts and there results, finally 

675	
22 

= _ qL0 
t (\r) 

[F* (0) + Fw*(0)]	 (Ell) 

El
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TABLE I.- VALUES OF M 09 AND NO?. 

mois Ne.. 009 

Exact Exact
tmr

Exact " Exact

0.074 9	 0.1148 

-0.926 0 - - - 0 - -	 - -0.852 0 - - - 0 - - - 
-.876 3.16 - - - .56 802 2.00 - - - .142 - - - 
-.826 -2.96 - - - ls .86

-
-752 -2.26 - - - 3.2)4 - - - 

-.776 -.25 - -	 - 2.52 - - - -.702 -.22 -	 - - 1.50 -	 -	 - 
-.726 -.08 - -	 - 2.314 - - - -.652 -.10 -	 - - 1.30 -	 - - 
-.676 -.04 - -	 - 2.26 - - - -.802 -.06 -	 - - 1.20 -	 -	 -. 
-.626 -.02 -	 - - 2.22 - - - -.552 -.04 -	 - - 1.18 - - - 
-.576 -.02 - - - 2.20 - - - -.502 -.02 - - - 1.14 - - - 
-.526 -.02 0 2.20 2.15 -.452 -.02 0 1.14 1.08 
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-.428 -.02 -	 - - .80 02 4 
-.378 -.02 0 .78 0.72 -.304 -.02 
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LLU -.278 0 0 .76 .72 -.20)4 0 

TABLE III. - VALUES OF M89 AND N29.
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Exact txtic Exact
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-.77 18.38 - - 12.97 -	 - -.70213.35 -	 -	 - 3.25 - - - 
-.726 23.58 - - 26.12 -	 - -.65213.93 -	 -	 - 5.68 - - - 
-.6 28.70 - - 53.10 -	 - -.602 I 4.58 -	 -	 - 8.55 - - 
-.626 33.92 - - 63.97 -	 - -.552 15.22 - - - 11.91 -	 - 
­576 39.15 - - 88.80 -	 - -.502 I 5.89 - - - 15.74 - - - 
-.526 44.47 44)41 117.48 117.51 -.1452 I 6.89 6.52 20.07 20.09 
-.476 59.63 89.64 150.15 150.17 .1402 17.16 7.17 214.89 24.90 
-.5 5 )4.85 5 )4.88 186.77 186.78 _.?j7.83 7.83 30.18 30.20 

9 = 0.222 9 = 0.296 
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-.728 . 93 - - - ­ 09 -	 - - -.654 .58 
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-.478 1.85 - - - 4.82 -	 - - 5014 .91 -	 -	 - 2.63 -	 -	 - 
-.428 2.04 - - - 6.18 - - - .3514 .98 -	 -	 - 3.29 - - - 
-.378 2.23 2.22 7.69 7.72 -.304 1.06 1.06 5.03 4.07 
-.328 2)42 241 9.33 9.35 -.254 1.15 1.15 8.82 4.85 
-.2781 2.61 1	 2.61 1	 11.111 11.14 -.204 1.23 1.22 5.67 5.69

TABLE II. - VALUES OF M2 9 AND N78. 

I	 829 029 M29 929 
ti E	 t xc Ec	 t E	 Aaymp 
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r = 0.074 9	 0.1474 
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-.876 9.77 3.86 - - - 2.31 -	 -	 - 
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-.676 28.72 - - - 45 . 32 -	 -	 - -.602 4.53 - - - 9.77 - - - 
-.626 33 . 95 - -	 - 

---- .802 

66.17 -	 - - -.552 5.19 - -	 - 13.08 -	 -	 - 
-.576 39.15 - - - 90.98 -	 -	 - -.502 5.85 - - - 16.90 - -	 - 
-.526 44.38 44.41 119.70 119.66 -.452 6.51 6.52 21.20 21.17 
-.476 49.62 49.64 152.35 152.32 •.1402 7.17 7.17 26.01 25.98 
-.426 54.87 514.88 188.91 188.89 -.352 7.83 7.83 31.30 31.28 

=0.222 r=0.296 
-0.778 0 -	 -	 - 0 - - - -0.704 0 -. -	 - 0 - -	 - 
-.7282.49 - - = .26 -=- -.654 1.90--- .25--- 
-.678 -.60 - - - 3.20 - - - -.604 -.92 - - - 2.62 - - - 
-.628 1.11 - - - 2.66 - -	 - -.54 .51 - - - 1.86 - - - 
-.578 1.38 - -	 = 3.46 - - - -.508 .67 - -	 - 2.22 - - - 
-.528 1.61 - - - 4.47 - - - -.454 .78 - -	 - 2.72 - -	 - 
-.48 1.81 -	 - - 5.65 -	 -	 - -.1.04 .87 - -	 - 3.29 -	 - - 
-.428 2.01 -	 - - 6.99 - - - -.354 .96 -	 -	 - 3.93 -	 - - 
-.378 2.21 2.22 8.47 8.44 -.304 1.05 1.06 4.64 4.60 

•	 -.328 2.140 2.141 10.10 10.07 -.254 1.13 1.14 5.42 5.39 
-.2781 2.60 2.61 11.881 11.86 -.204 1.22 1.22 1	 6.26 1 6.23 

TABLE IV. = VALUE OF M00 AND Nc,. 

I	 M8 N il	 M, 

P = 0.748 9 = 0.22' 9 = 0. 296 
-0.852 0 0 -0.778 0 0. -0.704 0 0 
-.802 =1.663 -.442 -.728 -1.379 -.360 -.654 -1.204 -.312 
-.752 2.529 -3.024 -.678 2.051 =2.485 -.604 1.769 -2.159 
-702 .369 =1.019 -.628 .297 -.859 .255 -.756 
-.652 .191 -.723 -.578 .155 -.620 -.504 .133 -.552 
-.602 .121 -.572 -.528 .099 -.498 .085 _.144( 
-.552 .085 -.477 -.478 .070 -.520 -.404 .061 ­ 380 
- .502 .063 -.410 -.428 .053 -.365 -.354 .046 -.332 
-.452 .049 -.361 -.378 .042 -.324 -.304 .036 -.296 
-.402 .040 -.323 -.328 .034 -.292 ..2514 .030 -.268 
-.352 .033 -.292 ­ 278 .028 -.266 -.204 .025 -.245 
-.302 .027 -.267 -.228 .024 -.243 -.14 .021 -.226 
- .252 .023 -.245 -.178 .020 -.226 -.1o4 .018 -.210 
- .202 .020 -.227 -.128 .018 -. 23.0 _o54 .016 -.196 
- .152 .018 -.212 -.078 .015 -.197 - .004 .014 -.184 
-.102 .015 -.199 -.028 .014 -.185 . 046 .012 -.174 
-.052 .014 -.187 .022 .012 - .174 .096 .011 -.164 
- .002 .012 -.176 .072 .011 -.165 .146 .010 -.156 

.048 .011 -.167 .122 .010 -.157 .196 .009 -.148 

.098 .010 -.158 .172 .009 -.149 .246 .008 -.141 

.148 .009 -.151 .222 .008 -.3.42 .296 .007 -.135 

.198 .008 -.144 .272 .007 -.136 .3116 .007 -.130 

.248 .037 -.138 .322 .007 -.131 .396 .006 -.124 

.298 .007 -.132 .372 .006 -.125 .446 .006 -.120 

.348 .006 -.127 .422 .006 -.120 

.398 .006 -.122 

.448 .005 1	 -.117 

TABLE V.- VALUES OF	 AND N2R-

N2j N2i 
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_________________ 
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txtic Itxtic

 
ac 1tc Exact txtic Exact txtic Exact txtic 

P - 0.148 8 - 0.222 8 = 0.296 
-0.852

o
- = - 0 = =0.178 0 - = - 0 - - -0.7014 0 =	 -	 - 0 

-.802-3.16 31 -.728-2.18 29 654-1.72 27--- -.752 .92 = = = -4.05 - - -.678 1.22 - - -3.04 604 1.25 -	 . -2.52 - - - 
-.702 -.85 - = - -3.28 628 -.30 - - - -2.05 554 -.11 - - - -1.52 - - - 
-.652 -.93 ... -3.91--- -.578 -.38--- .2.27--- -.504 -.19--- -1.60--- 
-.602 - .95--- -14.61 41--- -2.56 454 -.22--. -1.74--- 
-.552 -.96=-- -5.28 48 -.42--- -2.86 404 -.23--- -1.90--- 
-.502 1.96 - - - -6.04 428 -.42 - -	 - -3.18 354 -.23 - - - =2.07 - - - 
-.452 -.96 -0.97 -6.76 -6.75 -.378 -.42 -0.43 -3.49 -3.48 -.304 -.214 -0.24 -2.24 -2.23 -.402 -.97 -.97-7.49-7.48 -.328 -.43 -.43-3.81-3.80 =.2514.21. -.24 .2.42=2.141 
-.352 -.97 -.97 -8.21-8.21 -.28 -.43 -.143 -4.13-4.12 -.204 -.24 -.24 -2.60.2.59
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(a) Multipole distributions. 

Figure 1.- Radial and tangential velocities induced by three different 
multipole distributions at four radii. 
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(e) Concluded. 

Figure 1.- Continued.
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(f) Concluded.


Figure 1.- Concluded. 
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(a) Radial velocities induced by sources. 

Figure 2. - Positions of crests of waves created by multipole distribu-
tions shown in figure 1.
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(b) Radial velocities induced by second-order multipoles. 


Figure 8.- Continued. 
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(c) Tangential velocities Induced by second-order multlpoles. 


Figure 8. - Concluded. 
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