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RESEARCH MEMORANDUM

A SPECIAL METHOD FOR FINDING BODY DISTORTIONS THAT
REDUCE THE WAVE DRAG OF WING AND BODY
COMBINATIONS AT SUPERSONIC SPEEDS

By Harvard Lomax and Max. A. Heaslet
SUMMARY

For a given wing and supersonic Mach number, the problem of shaping
an adjoining fuselage so that the combination will have a low wave drag
is considered. Only fuselages that can be simulated by singularities
(multipoles) distributed along the body axis are studied. However, the
optimum variations of such singularities are completely specified in
terms of the given wing geometry. An application is made to an elliptic
wing having a biconvex section, a thickness-chord ratio equal to 0.05 at
the root, and an aspect ratio equal to 3. A comparison of the theoretical
results with a wind-tunnel experiment is also presented.

INTRODUCTION

The most simplifying assumptions that still permit the construction
of a mathematical model general enough to contain quantitative informa-
tion about steady three-dimensional supersonic flow are those basic to
the development of linearized theory. Of these, the two principal assump-
tions are that the viscosity effects are negligible and the perturbation
velocities are almost everywhere small enough to be neglected relative
to the flight or free-stream velocity. Under such restrictions the flow
field can be described in terms of a perturbation velocity potential @
obeying the equation :

B*0xx = Fyy = 9z5 = O (1)
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where Bz - M® - 1 and the reference coordinate system! is shown in
sketch (a). Further, the wave drag

of any object in a flow field governed
by equation (1) can be evaluated (see,
e.g., ref. 1) by means of the equation

g 21
o= sy [ ax [ oo 11m (o0 | (@
-0 [e)

where x,r, and 6 are cylindrical
coordinates also defined in sketch (a).

General solutions to equation (1).
_are numerous and classical. In apply-
ing these solutions to the interpreta-
tion of physical phenomena the usual

r é . approach is to fit them to the given

/ \ boundary conditions, that is, to make

= the flow field simulated by them con-
_ Yy form to the shape of the disturbing
Sketch (a) ‘ object as well as to a uniform free

stream at infinity. Hence, from this point of view, the choice of a type
of general solution to be used in analyzing a particular problem with the
least mathematical effort depends on the geometric form of the object
under consideration. For example, general solutions based on Green's
theorem are well adapted to the study of forces on single planar wings

in a steady supersonic flow. On the other hand, the general solution
given by Lamb (ref. 2) - which is composed of an infinite set of multi-
pole distributions disposed along a line - is well adapted to the study
of the flow around fuselage-like objects.

In this report use is made of certain general solutions to equa-
tion (1) but with a deviation from the usual approach mentioned above.
One considers, in fact, two different kinds of solutions which represent
separately, in a given vicinity, different classes of real objects and,
by means of equation (2), finds optimum combinations of these solutions
from the viewpoint of low wave drag. The analysis involved in solving
this problem has, in general, a distinct mathematical advantage over the
problem of calculating the drag of a given object; namely, that the
immediate problem of finding a shape with a relatively low wave drag is
divorced from any detailed reference to the shape itself. It is true,
of course, that the stream surface representing this shape must eventually
be found and, in fact, a limitation on the applicability of the method
is given by the requirement that this shape be real. However, the problem
. 1Tt should be stressed that the x axis is parallel to the free-
stream direction (wind axes) so a body of revolution can be symmetrical
about this axis only at zero angle of attack.

RN
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of finding the shape of the object when @ is known is a matter of direct
calculation.2 One should also be careful to notice that the optimum solu-

tions obtained by this procedure are not necessarily true optimums but
purely relative to the choice of solutions used in the analysis.

L' (0),L(6)

M

LIST OF IMPORTANT SYMBOLS

wing aspect ratio

n
(-8) times the nth derivative of the nth multipole dis-
tribution . an(x) (See eq. 16.)

semiroot chord of elliptic wing

strength of nth-order multipole distribution multiplying
cos né

(-B)n times the nth derivative of the .nth multipole dis-
tribution bp(x)

semispan of elliptic wing

strength of nth-order multipole distribution multiplying
sin né

drag coefficient, é%

pressure coefficient, local pressure minus static pressure
divided by gq

wave drag

wave drag associated with nth-order multipole distribution
(See eq. 59.)

maximum fore-and-aft extent of wing equivalent multipole
distribution

maximum fore-and-aft extent of wing equivalent multipole
distribution for angle 6

free-stream Mach number

2From a mathematical point of view the essence of the method outlined
above is that the analysis involves the solution to direct problems, that

is, problems of integration.

other hand, involves the solution to inverse problems, that is, problems
involving the inversion of integral equations.

BEERSE. 17 vz a2

Calculating the drag of a given body, on the
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PoUo
q free-stream dynamic pressure, —3
F B8R
Lo

Te see equation (46)

R radius of body

S area of wing plan form

Sw(x,e) normal projection of wing cross-sectional area measured in
oblique planes

t maximum thickness of wing root chord

Uo speed of free stream

) volume

X,¥,2 Cartesian coordinate system, x parallel to free-stream
direction

X,r,0 cylindrical coordinate system, X parallel to free-stream
direction

a(x) strength of nth-order optimum cancellation multipoles
(See eq. (36).)

B M -1

M slope of wing upper surface measured parallel to free-stream
direction

-1 ‘

m tan = (B cos 0)

Po free-stream density

Q perturbation velocity potential

DEFINITION OF THE PROBLEM

The problem of designing an airplane to have a minimum wave drag
must be stated quite precisely. If the aerodynamicist is approached with
the question, "Given an aerodynamic shape, can its wave drag be lowered?"
he can always reply that any volume of material having a wave drag can
always be reshaped within a space of finite dimensions so that it will have
less wave drag at a given Mach number. Such an answer is interesting but,
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at present, not very useful to the airplane designer. There is first,

of course, the basic criterion that the total drag should be minimized

at a given lift and minimizing a component part of this total without
holding the other parts fixed does not necessarily yield the lowest pos-
sible drag for a given set of restraints. For example, the configuration
illustrated in sketch (b) has no wave drag when traveling at zero angle
of attack; but it has a relatively '

high friction drag, because of the Cylindrical shroud

large amount of wetted area, and its ;7

drag due to 1lift could also be rel-
atively high. Completely aside from
all such performance considerations,
however, are many other important con-
siderations that are unfortunately more
or less vaguely defined from an aero- \
dynamic point of view. For example, \ Body of /
an airplane must contain a certain \ revolution /
amount of usable volume, the shaping 4
of individual parts is limited by
- structural requirements, and the
arrangement of these parts must not . —-== Mach waves

seriously harm the airplane stability

and control. The interrelation of Sketch (b)

all such separate demands presents an

extremely complex design problem making it difficult to deviate too far
from the reliable shapes set by experience.

As a result of the above-mentioned difficulties, the aerodynamicist
who is concerned with discovering a practical airplane shape having low
wave drag finds the real definition of his problem somewhat obscure. In
a sense his first problem is, literally, to pose a problem; that is, to
impose a minimum number of arbitrary but pertinent restraints within the
framework of which the wave drag is to be minimized. Even when this has
been done, he still is concerned with the question of uniqueness, since
optimum shapes are not necessarily unique even when several restraints
are imposed. Consider, for example, the problem of finding the Busemann
biplane which will have minimum wave drag at a given Mach number for a
fixed section strength, volume, and —_—
wetted area. If the désign Mac,:h Mach waves at M. = 1.4/
number is 1.41, one such design (on N p
the basis of linearized theory) is N N e .T-
shown in sketch (c) where the chord- Yo RN N LT
gap ratio, h/c, is equal to 1/2. The ~— . PN PN h
resulting variation of the wave drag e N s
is shown in the upper part of sketch ' S N _l_
(d). However, when the gap is closed .
to the point where hfc equals 1/, r
the variation of wave drag, shown in Sketch (c)

ORI .
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8 the lower part of sketch (d), is
the sanme within the interval
D "9"”4" h7c=.5 1.28 <M < 1.66 and everywhere

—;‘1- else is lower. It is likely that

one would have first discovered
the former solution, yet to the
4 : ~ accuracy of the theory used, the
L~ latter is obviously preferable.

With the above observations

directed in this -report to the

/ 1.2 14 16 /18 20 tions composed of two distinct
M types of volume: planar types,
that is, wing-like volumes, thin
in one dimension and bounded by
surfaces that never deviate far
from a reference plane; and rec-

LN sion than in the other two and

/ N
40)26 / N\ disposed more or less symmetrically

about a straight line

/ 12 14 L6 .8 20 In particular the following
‘ M problem is posed:

Sketch (4d)

Given a thin nonlifting wing, what is the shape of
an adjoining fuselage, the stream surface of which
is simulated by a line of multipoles in the same
plane as the wing, that will minimize the wave drag
of the combination at a given Mach number?

BASIC CONCEPTS

A Line of Sources

The velocity potential induced at the point x,r,0 by a group of
sources distributed along the x axis, starting at -L,, is well known
to be given by

1 PXPTT ag(k)at
o(x,r,0) = - Bx = — (3)
Lo N(x - £)2 - B%r

RN

always in mind, attention will be

analysis of simplified configura-

Md-‘l.4l h/7¢c=.25 | tilinear types, that is, fuselage-
D like volumes longer in one dimen-

fs—
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where ao(g) is the source strength per unit of length. In order to
calculate wave drag one needs only the value of @ as r approaches
infinity. This asymptotic value is simple enough to find provided it

is observed that, as r 'is increased, x should also be increased so
the potential can be studied in the vicinity of the Mach waves radiating
from the disturbing object. Hence, set

X = Xg + Br (k)

so for a given r, X, measures the streamwise distance of the point
x,r,0 from the Mach wave emanating from the origin and, in particular,
the foremost wave is located at xo = -Lg. (See sketch (e).)

If equation (U4) is placed into

equation (3) and r is assumed to AT .
be large, the potential induced by ’ ’
a source is / :..l ............. —, P{x,r,ﬂ)

0 ao(e)at ; )

R /
Plr—> 21@ /L &;—_—g' (5) ,/ ,/
' e}

"and the induced velocites are

X*L‘,:ﬂ’ /%= Br /’é

NN

4 /

N
N

I, 4

P! 3

N
}"TLa—'l'%\ﬂ’ — X
\
\

Y %

1 o oag"(g)at

P> 0 = ~ onN2RT i Jxo - ¢
~Lo

CPI.)I._;m = 'BCPX

(6a) Sketch (e)

(6b)

Multipoles

Lamb, in reference 2, page 527, has presented a general solution to
equation (1) consisting of an infinite set of basic singular solutions.
These basic singularities, referred to as multipoles, can be distributed
along a line and weighted so as to reproduce certain body shapes enclosing
the line. The expression for the perturbation velocity potentialAfor a
distribution of nth-order (n =0,1,2, ...) multipoles starting at -Lo

and continuing along the

x axis can be written in terms of a cylindrical

coordinate system (sketch (a)) as
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(7)

( ) = - 1 ﬁLIl/ﬂX-Br [an(t)cos no + bn(E)sin nelde
onlx,r, T 2n \r or /. J > =
~Lo - (x - )% - B=r

13V, .
The operator (; 'a—r-> is defined as

G2) 120253 2

n
and the definition of <% EL) follows by induction. If the notation®

Aly)dy _ n (1)(3) - (2n - 1) A(y)ay
(5 > f V¥ - y - () ‘ f 2n+1)/2

is introduced, where the symbol #F is read "finite part of the integral,"”
equation (7) becomes

p0g2n(on)t fx—Br lap(€)cos no + bn(E)sin neldt 8)

@(,,9-)=‘-
n(x,r R L [(x - £)2 - Bzrg](2n+l)/2

and the general expressions for the induced velocities become - writing
only the term involving the cosine, since the result for the sine is

identical -
o= X+Br
oy (x,r,0) = Z rp20(on + 2)! j[ (x - &)an(t)cos ne ae (oa)
n=o 22n+2n(n + 1! ~Lo [(x - §)2 - B2r2](2n+3)/2
had 52001 (on) 1 x-fr [n(x- §)2+-(n+-l)B2r2]an(g)cds ne dg
(pr(xyr,e) —Z T f
L oPtln(n)t L, [(x- 5)2— 2r2](2n+3)/2

(9v)

3For a detailed discussion of the flnlte—part concept as used in this
report see reference 3.
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1 N nrh_lﬁzn(en)!

n=o Lo [(x - §)2 - B2r2

x= an(t)sin no 4t

](2n+1)/2

(9c)

Another very useful way of developing these multipole solutions
evolves from an application of operational techniques. To begin with,
rewrite equation (1) in terms of a polar coordinate system, thus

B.__-_____-iz_;o (10)

Next, define the Laplace transform of w(x,r,e) by

oo

d(s,r,0) =f o(x,r,0)e *5dx _ (11)
o]

and apply this transform to equation (10). There results (for a proof
see Appendix A)

- — 2
0% - od - F st - - (12)

Now, if a general solution to equatioh (12) is expressed in the form
o(s,r,8) = f(r)cos ne

then f(r) must satisfy the equation

2 2
a7t 1df _<.n_+ 3252>f=0
dr2 r dr r2

Solutions to this are given by

£(r) = Cn(s)In(Brs) + An(s)Kn(Brs)

where Ip-and Kn are_modifiednBessel functions as defined in reference h,
page 77. Hence, if ¢ is to vanish as r goes to infinity, a general
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solution to equation (10) can be written in the form

P(s,r,0) = %X[Kn(S)cos no + Bp(s)sin nolKn(Brs) (13)
5 :

The above result will be transformed back to the physical plane in
two ways. First, apply the identity (ref. 4, p. T9)

Kn(z) = <-1)n<% %)nxc,(z)

and re-express equation (13) as (only the coefficient of the cos ng
term is written since the treatment of the sine term is identical)

- 1 n A (s) 1 d .
o(s,r,8) = - 5;—2;(—1) cos né Bgsn rf F & Ko(Brs)

The inverse Laplace transform of Ko(Brs) - see reference 5 - is

-1 ° x <Pr
L "[Ko(Brs)] = '
____l___ X > Br

X r

So, since
Xn-1

x Xy X )
' [ dxlf dxp ¢ ¢+ - f dxpAn(xn) = -(—n—_%'-f (x - x]_)n lAn(xl)dxl
:L ) . -Lg ‘ (14)

o —LO -LO

an application of the convolution integral and other standard operational
techniques yield

@(X,r,e) = - L AO(E)dE
” k[I\‘o V&X - £)2 - p3r®

X-Br

)" 3 -
. [___l_jﬁ___. [ (¢ - xl)n lAn(xi)dx%]

© n n - 1)t 2 .
YeGs) [ e .
I “L,, (x=8)" - p%r (15)

~
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From comparison of equations (8) and (15), the relation between the
strengths ap(x) and An(x) for the two different forms of the solution
is found to be

Ao(x)

ao(x) =
(16a)
X -
() en(0) = s [ 6 Ul n >0
Lo
or
(-8)"at™ (%) = An(x) (160)
(n) . s an . i
vhere a, ~(x) symbolizes the operation oa a,(x) and where use is made
of the conditions
™ (1) = P (Lg) = - - - = ap(-Ly) = 0 (1)

Another way to transform equation (13) back to the physical plane
is to do so directly. In this way one finds (from ref. 5)

0 s x < Br

L—l[Kn(Brs)] = cosh[n cosh'1<§%;ﬂ
2 - p2r2 ’

X > PBr

from which equation (13) reduces immediately to

x-pr An(&)cosh[n cosh 1<kﬂ; E:ﬂ

J(X - E,) 2 2 (18)

0
o(x,r,8) = - E%- Ej cos né
n=o0

The perturbation velocities in the field represeﬁted by this potential
are readily calculated. Thus
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N 5? fo-Br An‘(E)COShEICOSh-l<% érg>}
- cos né
o

Px(x,r,8) = - 3 (19a)
. 1, Jix - £)2 - g2
2 x-pr An(E)cosh[n cosh-l<% - £ }
L op(x,1,0) = g5 ) 0 1n 50 P 22 (a9
~ 5 Lo Jx - £)? - g2

and by taking the derivative of equation (13) with respect to r, one
finds .

2

e = 2 {poRo(e)Ealpre) + L) soha(a) Knmalore) + fea(re) 1}
1

which transforms to

x-B - '(e)a v
CPI.(X,T:Q) = 'El—ﬂ [ T E)AZ (El i + %Zcos no
- rl(x- )% - p7r 1

"LO

v/f-ﬁr An'(€) cosh[(n—l)cosh-1<%é§;ﬂ+coshEn+l)cosh-1<%é% I}dé

J(x-£)2-p2r?

Lo
(19¢)

If the relation between the functions an(x) and An(x) is given by
equation (16), the velocities represented by equations (9) and (19) are,
of course, identical.

In order to obtain limiting values induced by multipoles distributed
along the x axis starting at -Lo, one returms to either equation (8)
or (18) and calculates the leading term in a 1/r expansion. As in the
derivation of equation (5), it is necessary to observe that as r is
increased, x should also be increased so ¢ is given in the vicinity
of the foremost Mach cone created by the multipole distributions. Hence,
using equation (U4), one finds for equation (18)
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[o o]

1
Q)—TQn: cosn@f

o L, /2Br(xo o)1+ %)

which has the leading term as r goes »to infinity

X0 Ap(€) cosh[n cosh™ (l + XOB—;€>:]d€

1 f An(g)de
JE o | P (20)
CP)r > or F—EB:;'ZCOS n  —

-LO

Similarly, the perturbation velocities reduce to

0 XO 1
Px) S Ecos né ——An (£)ae (2la)
o
Pr) . oo = “BOx (21b)
= Xo :
1 1 . An(g)dg
-cp> =———Zn sin nef —_— (21c)
r 76 > 2n/2Br S Lo Xo = E. .

In calculating the wave drag using equation (2) only the velocity
components cpx)r9 . and q)r)r__> . &re necessary. Hence, from comparison

of equations (2la) and (21b) with (6a) and (6b), it follows that at a
given 6 a series of multipoles: induce the same momentum flux on an
infinite cylindrical control surface _as a line of sources having a
strength variation ap(x) equal to % cos noAn'(€). If one identifies a
line of sources with a body of revolution, then it is apparent that, at
a given 6, a dragwise equivalence has been established between a line
of multipoles and a body of revolution.
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Hayes' Theorem and Its Application

In the previous section a relation was found between multipole and
source strergths which produce, at a fixed 6, equivalent momentum trans-
port across a cylinder of infinite radius. By using a theorem due to
Hayes (ref. 6) one can derive the strength relationship between any dis-
tribution of singularities throughout space and a line of sources which
gives the same equivalence.

The essence of Hayes' theorem is that, for a fixed 6, the velocities
. induced on a cylinder of infinite radius by singular solutions to equa-
tion (1) (e.g., sources and doublets) are invariant to displacements of
the singularities along certain oblique planes. In order to be specific,
the equation of these oblique planes is next derived.

Consider the point x,r,6 in a flow field having a supersonic free
stream moving parllel to the x axis. Sketch (f) shows the Mach fore-
cone (by definition the Mach forecone is the boundary of the region within
which a disturbance in a supersonic stream can affect the flow at the

Mach forecone
from P(x&)

Sketch (f)

cone apex) from x,r,0 in x;,y3,z1 space. The equation of the forecone
is

xy = x -BJ(r cos 6 - y1)2 + (r sin 6 - z1)% (e2)

. ‘ .
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One wishes to let r become very large and find the shape of the fore-
"cone as it passes through regions close to the origin of the x3,y;,2:
coordinate system, regions in which the objects creating the wave drag
are located. From equation (L4), and the expansion of equation (22) for
large r, it follows that

oql/2
y12 + le]

X3 = Xo + Br - Br[l - % (yicos 6 + zisin 8) + .

= Xo + B(yicos 6 + z3sin ) - g% (y18in 6 - zjcos 9)2 4 oo . .

and when 1r goes to infinit&
Xy = Xg + Byicos 6 + Bzjsin 6 (23)

which is the equation of the oblique plane mentioned above. It should

be noted that the envelope formed from these planes by fixing xo and
varying 6 between O and 2n coincides with the Mach forecone and after-
cone from the point x4,0,0.

Hayesf'result can now be stated4

To the lowest order.in l/r, as r tends to infinity,
the magnitude of the perturbation velocity potential
and its gradients at a fixed azimuth .angle is invar-
jant to a finite translation of sources (or any other
singular solution to the wave eQuation) on planes
parallel to that given by equation (23).

Consider the application of Hayes' theorem to planar distributions
of sources lying in the z; = O plane. As is well known, such a distri-
bution simulates a wing symmetrically disposed about the horizontal
(zq = 0) plane. In fact, if Ay(x3,y1) is the local slope of the wing
upper surface, the local source strength per unit area (according to thin
airfoil theory) required to simulate the wing is -Uohy/m and the veloc-
- ity potential of the disturbed flow field is given by

A (x1,y1)dx1dys

otey,2=-2 [ [ — — (2h)
T (x - x1

2 B3y - y1)Z - Bz

“For proofs, see Hayes'! original derivation (ref. 6) or, if more
convenient, reference 1.

TR
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where T 1is the area of integration
(see sketch (g)) bounded by the wing
edge and the trace in the z; =0
plane of the Mach forecone from the
point x,y,z. Next introduce the new
coordinates &3 and 17 such that €3
lies along the x; axis and 173 1lies
along the intersection of the z; =0
plane and the plane given by equa-
tion (23) (see sketch (h)). Set

Wwing plan form

tan 4 = B cos @ (25)
Vxl
and
Sketch (g) , 9
Wing plan form | €1 = X3 - yitan p
N1 = yisec u _
Y (26)
X1 = gl + 'qlsin V)
Y1 = njcos
J
7 Then, in terms of the ¢£;,n1 system,
| : equation (24) becomes
xl:d;

Sketch (h)

ot =2 [ 7=

Ma(Ea + masin p,macos p)cos p dEadn;

2 2 2
£y - Nasin p) - B (y - nicos p) - B222

(27)

As before, the asymptotic value of ¢ as r =-Jy2+z2 > o 1s to be cal-
culated. Accordingly, one can apply Hayes' theorem and sum up all the
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sources along a line £; = constant (e.g., between a.and b in sketch (i))
and plaqe-them as a single source on the axis. The strength of this
large equivalent source is given by

. A
UoSw (£1,8) = 2Uscos u /ﬁ Mu(E1 + nisin p,nicos p)dny (28)

wing Wing plan form

where the integration is taken
across the complete wing along
the line £, = constant and

s.(£1,0) = -8—2—1 5, (£1,6) -

& = constant

1

The term Sy(x,6) has a clear
geometrical interpretation (see 7
sketch (j)), being simply the normal Q)
projection of the wing area inter- .
cepted by the oblique plane> Equivalent

Xy = X + Byjicos 6. single source Line of wing sources
1x5,¢&

The above defines the strength
variation of a line of sources (and,

therefore, a body of revolution) Sketch (1)

which induces, for large r and a Six,pe) = Normal projection
of wing area along AA

fixed 6, a potential field identical
to that induced by a given wing.
Hence, the results given in equa-
tion (6) yield

) Uo *o 8y (£1,0)dk
P = - '
Frse 2nVEBr_L<9) ./xo - E1
(292)
(Pr)ré o = _BCPX (29b)

A similar result exists for a
planar doublet distribution (see Sketch (J)
ref. 1 or 6) but, in this report, only problems in which the wings have

5The true oblique plane is given by equation (23) but the wing
is so close to the z3 = O plane that the variation with 2z, can be
neglected.
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no loading (local 1ift) will be considered. Lifting effects can be
treated in a similar fashion, of course, if the wing doublet strengths
are known.

Cancellation Multipoles and Drag Minimization

Since the flow field is governed by a linear partial differential
equation the velocities induced by different solutions to it are additive.
Therefore, the drag of an object simulated by various multipoles dis-
tributed along the x; axis and a sheet of sources in the z; = O plane
is given by

o fznde fwd%{rl.i}mm[(q)r)m + (q)r)wJ [(qu)m + (@x)w]}
o o

where the subscripts m and w refer to the multipoles and wing sources,
respectively. But equations (21) and (29) identify, for a fixed 6,
these velocities with those induced by equivalent line sources. Hence,
for any given 6, one can immediately apply Karmants drag formula (ref. 7)
and then for the total drag, integrate 6 from O to 2=. This leads to

L(6)

0. 2n L(e)
D=--8—°§f def dxlf dxo
. LA

-L'(6) L' (e)

{?OSW"(X1,9)+-E?(-B)n[a£n+1)(xl)cos ne + b£n+l)(x1)sin ne}}’
5 ; .

{?OSW"(X2,9)+-}:(-B)n[a£n+l)(x2)cos noe + b£n+l)(x2)sin nél}lnlxl- X5 |
)

However, since both the wing and multipoles are in the same plane (inter-
preted physically, the wing is centrally mounted on the fuselage) and
the wing is simulated by sources only (has no twist or camber), one can

show the optimum value of each bgn+l)(x1) is identically zero.®

8By symmetry " ;
Sy (x,8) = S (x,2n - 6)

Hence
2n
f sin nes,"(x,0)de = 0
‘ ) o - (n+1) .
and any positive or negative variation of - bn (x4) can only increase
the drag.
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Hence, one can write

an L(6) L(g) =
D“équf,%f “*ﬁ%mhbW$mmm”ﬂ
o -L'(6) -1"(8) o
[UOSW"(Xz ,‘9)+Z (-B)nar(lm 1) (x5) cos neJlnlxl - Xo ' (30)
(@] .

Next expand the term Sy"(x,0) in.a Fourier series. One finds

UoSy (x,6) =Z(—B)na,,(1n+l)(x)cos ne (31)
5
where
on
an(x) = I—QJ%L[ Sy'(x,0)d6 ‘ (32)
O .
a,r(ln)(x) = o )n[ Sw'(x f)cos no de (33)

Place these expressions in equation (30), integrate with respect to 6 -
using the orthogonal property of the trigonometric series - and one finds

8

D=2Dg+ ) Dn (34)

where

[aén*1)<x2> ; aén*l)(x2>]1n|x1 - % ()
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Since one can show’

Lo
I-= z/ﬂ dx, /a dxof?(x1) £ (x2)1n|xy - x| 20
Lo Lo

Lo

the minimum value of D as expressed by equation (34) is given when
each D, is itself a minimum. In other words, each Dn can be mini-
mized separately. Further, it follows that the value of the minimum
itself is zero and occurs when

Uo an "
T on Sw (x,6)ds, ) n=0
O

alr(ln+:|.)(]_{) _ ~0Lr(ln+1)(x) =ﬁ

2%
U
- ——Q——f s, "(x,6)cos n6 46, n >0

| P o (36)

Equation (36) is the mathematical definition of the optimum cancel-
lation multipoles; namely, those multipoles which are just equal in mag-
nitude and opposite in sign to the wing equivalent multipoles - equivalent
in the sense that they induce an identical momentum flux across a cylinder
of infinite radius.

Obviously, if all the optimum cancellation multipoles were used, the
wave drag of the combination would be zero. This result must, however,
be properly interpreted with regard to the simulated shape. In order that
the multipole lines can represent the distortion of a real fuselage, one
must assume a cylindrical body exists upstream from the Mach cone

" x + Lo = Bpr (the effects of the nose are being neglected). This body

forms the initial boundary of the stream tube which represents the physical
fuselage in the vicinity of the wing and multipole lines. Clearly, the
area enclosed by this initial boundary can be small enough for the sub-
sequent stream surface to cross itself and represent, therefore, a physi-
cally unreal body. Hence, the fact that the wave drag of the wing and
multipole combination can be reduced to zero is quite valid, but in the

o0 .
Tset f(x) = %Ansin ny, x = -Locos ¥. Integration gives

o]

ﬁ 2
—

1

which can never be negative.
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over-all picture not only have the inevitable nose and tail drags been
neglected but also the shape simulated by the combination can be unreal-
istic. )

Some Properties of the Cancellation Multipoles

Let us consider next some of the restrictions necessarily imposed
on cancellation-multipole distributions and some of the particular prop-
erties of those given by equation (36). In the first place, if ap(x)
is any multipole distribution that generates a potential field given by
equation (8) or (15), it follows from equation (17) that the value of
an(x) and its first n derivatives should be everywhere continuous.
Further, if an(x) is a constant behind some point, say Lo (i.e., for
o« >x> Lg), the induced flow field would simulate expanding streamlines
in the case n = 0 or some form of vorticity in the case n > 0; the for-
mer case is to be avoided since any simulated body is assumed to have a
finite area at x = », and the latter case is to be avoided if there are
no resultant forces normal to the free stream.

One can show that all the above f ,”\\\ »
properties are satisfied by an(t), yd N ran’'/8
the optimum cancellation-multipole Lo' d N Wing
distribution as defined by equa- 7/ \ /
an form
tion (36). First, notice that NP
a£n+l)(§) must be zero everywhere

outside the wing-enclosing Mach
forecone and aftercone, that is for
o <t < -Lo? and Ly < & <o (see
sketch (k)). (Any multipoles in
these regions cannot combine with
the wing equivalent multipoles and
must, therefore, increase the drag.)
Hence, one can set

agn%‘Lo')

- 7
ougn l)(-Lo') r .\\ 7"-(: constant
/7
M O.Ln("Lo')
= O ' {’x'(

Sketch (k)

i}

Then the condition of continuity is automatically satisfied for ann(g)
in the entire interval -« <X <o if SW'(g,e) is derived from a wing
having finite wave drag (in particular, from a wing having no blunt edges
along which the normal component of the freessfream Mach number is unity
or greater). It follows immediately that ™/ (¢), m < n, is continuous

since the latter is found by integrating (further smoothing) ann)(g).

rONRRUE T RAT
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The proof that ap(Lg) as given by equation (36) is zero requires
more consideration. One can show, h wever, that an (Lo) = O where

0 <m <n. First, the equality cx,n (Lo) = O follows from the fact that
the wing closes and Sw(Lo,0) itself is zero. Next consider the defini-

tion of a,n (¢). Thus

l

25
a,r(lm)(ﬁ) L f Sy ' (£ ,6)cos ne a6

(-p) "%
-oU ax : h;i(e,t)
= ( )?1 f cOs U cOs né de )\u(g + 1 sin u,n cos p_)d_‘rl
-f) x
P o(6,8)

where use has been made of equation (28) for the definition of Sy'(t,6)
and hgy and hy; are defined in sketch (k). Since

{4
@ L ()
® - _m)_f'u, £ s (828 (37)

one has
(m) ey = -2Uo =%
ay (&) (o) B = n)[ cos no de

3 hl(e)gl) . n-m-1

d§1f dn(e - €1) Ag(E1 + M sin p,n cos M) cos W

“Lo'  ho(6,E1)

Change the ¢&;,1 coordinates back to the x,y system by means of equa-
tion (26) and this becomes '

-oU 2n -m-1
uélm)(g) = = 2o f cos né def (¢- x+By cos e)n " M(x,y)dx dy
(-8)"al(n -m) A ‘ |

CANEBYINETI.
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The area Sg, shown in sketch (k), becomes independent of 6 when § = 1g
(being then just the area of the wing itself), therefore

_ -20,
(-8)"x(m - n)

aé?)(Lo) JF A(x,y)dx ay

S

2 n-m-1
(Lo - x + By cos 8) cos n dg = 0
o

since, for m <n

L

on
/\ cos®Q cos ng @6 =0
o)

Hence, for the ay(f) defined by equation (36)

oM (1) = P (1) = P (1) = - - - = an(lo) = 0 (38)

ATRPLANE SHAPE

In the previous section a connection was established between multi-
pole distributions and their resulting wave drag. Further, this connec-
tion was direct and relatively simple if the strengths and positions of
- the distributions were given. Unfortunately the connection between the
multipoles and the shape of the simulated surface is generally not so
simple. Such a relation does certainly exist, however, and if the
strengths of the multipoles are known, the relationship is again direct.
That is, a given distribution of multipoles yields directly, by the for-
mulas given in the previous section, the induced velocities everywhere
in the flow field; these, in turn, fix the stream surfaces along any one
of which (since, of course, the theory neglects viscosity) a physical
surface can be imagined.

In general, if

|
o

Fc(x;y,z) (39)
39

|
o

Fp(x,r,e) =
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are the equations of a stream surface in Cartesian and polar coordinates,
respectively, then the equations

OF ¢ OF oF, )
(Uy + ox) % + Qy Eg; +9z S, < 0
) (ko)
OF. OF JF
i TS eh J
(Vo + ) ox r3 2% J

must hold.

For example, in studies of thin wings lying in a plane, the partic-
ular form of equation (39)

z - h(x,y) =0

is assumed and equation (L40) becomes

-(Uo + ox) oh @y'ég + ¢z =0
BX By
or, neglecting second-order effects,
oh _ 1
— =209
dx  Ug 2

which is the familiar boundary condition used in thin-airfoil theory.
On the other hand, if the equation of the body shape is written in the
form

r - R(x,0) =0

then equation (40) becomes, for linearized theory,

R _, PR
Yo 3% =9 T R2 3o (1)

If the flow field is radially symmetrical or if the body surface is
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quasi-cylindrical, equation (41) reduces to

R _ 1
-B—X —UO Or ()"'2)

which is the familiar boundary condition used in the study of quasi-
cylindrical bodies or bodies of revolution.

In general, a nonlinear partial differential equation of the first
order such as equation (L1) can be reduced to two simultaneous, ordinary,
nonlinear differential equations of the first degree (see, e.g., ref. 8).
Thus equation (41) becomes

de _ 1
i .I_J:)—RE QQ(X;R:Q)
- (43)
R _ 1
-5(‘ = UO (Dr(X,R,G)‘

and if ¢@g and ¢ are known functions of x, R, and 6, these can be solved
numerically. ’

If the strengths of all rectilinear multipoles and source sheets
are given, equation (19) or (24) can be used to find @, and 9y at arbi-
rary field points. Hence, the first step in finding the body shapes
reduces to that of integrating such equations. However, these integra-
tions are difficult and tedious even when entirely numerical procedures
are employed and the results still have to be interpreted in terms of
the body shape according to equations (43). Therefore, from a practical
viewpoint, it is necessary to study certain approximate methods for
obtaining the velocity field.

Let attention be concentrated on the disturbances created by a line
of multipoles. In particular, consider the fields induced by simple
polynomial distributions satisfying, in each case, the end conditions given
by equation (17). For particular variations set

ao(X) = co(l - X)X

ca(l - ¥2)°% (L)

az(i)

C4(l - .)_(2)5.}_(

aq(X)
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where Cos Cz2, and c, are constants determining the amplitudes and

X = x/L,. Figure 1(a) shows the variations of these coefficients with
¥, and figures 1(b) through 1(f) show how velocities induced by these
distributions vary with Xo(xo = x - pr) and ¥ (F =pr/Lo). The results
have been compared with those for large T given by equation (21) and
with those for small T given by slender-body theory. Values for the
latter theory are determined from equations (9) or (19) by expanding the
expressions in powers of r and neglecting all but the first terms.
Thus it can be shown

ao(x)

2nr

?n,.) = (L45a)
T (-2)nn!an(x)cos no

Y2 ’ "o

1 (-E)nn!an(x)sin no
6>r>o— , m20 (k5b)

- On
T n+1
bar T

The significance of figure 1 with regard to practical applications
is more or less obvious. The first step in its use is to find the effec-
tive length of the cancellation-multipole distributions. Since the wing
is given, the streamwise variation of the cancellation multipoles can be
calculated. Actually this
variation will extend
between the apexes of the
enclosing Mach forecone
and aftercone, a distance
of Lo + L¢ (see sketch
oq#k) (x)). However, depending

' on the wing plan form and
section, the effective
> e lengths of the distribu-
tions (the interval of
principal variation) can
be considerably less as
illustrated in sketch (1)).
Designate this effective
length as 2Le and the
distance to the vicinity

2L,

L + L' ‘ of the body surface as
° o

r and one can define
Sketch (1) €’
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the parameter T¢ thus

Br
To = — (146)

Le

Using figure 1 and the parameter T,, one can now estimate the error
incurred by the use of various approximate methods for calculating the
body shape. A convenient way to carry out these estimations is to study
the magnitude of the first crest of the waves shown in figures 1(b)
through 1(f), and the distance this crest lies from the foremost Mach
cone. Graphs showing the variations of these quantities with T are
given in figures 2, 3, and k4,

By means of the above concepts, let us study briefly four different
approximate methods that can be used to calculate a body shape.

Slender-Body Theory

Slender-body theory is represented in figure 3 by the straight lines
having the slopes, on the log-log scale, equal to =-(n+l) where n is
the order of the multipole. Sinhce this theory amounts to an expansion
of the equations for the velocities in powers of F, it obviously repre-
sents a good approximation when T, 1is sufficiently small. Notice that
for a given percentage error the limiting value of Te for which the
method applies increases as the order of the multipoles increases. For
example, when Te = 0.2, Do, as given by slender-body theory is 19 per-
cent less than that given by exact linearized theory for the case shown,
whereas ®p, 1is only 3 percent less. Correspondingly, the positions
of the wave crests follow the path predicted by slender-body theory to
larger values of T as the order of the multipoles increases. The lat-
ter trend is illustrated by figure k. :

If for a particular problem T, is small enough for sleﬁder—body
theory to be considered a good approximation, the equation for the body
shape, r = R(x,0), corresponding to the combined wing and optimum cancel-
latlon multipoles defined in equation {36) is determined by the expres-
sion (using equations (45), (36), and (lh) together with equation (42))

i cpe(x,R,e) <B> sin ne
- 5 n+2

v f xy(x - x7) "cos Sy (x,¥)
o Lo (47a)
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n
o | = 2]
dRr [@r(X,R,G)} . z <B> 'cos ? fzﬁd\y fxd.x ( X )1’1 \lfsw"( ¥)
& —_— ) — X - cos n X
~Lo (k7o)

wing and (q)l‘/UO)wing’ the veloc-
ities induced by the wing, can
often be used also, but these

ay = couo//_;zj ra apply to individual cases and
cannot be discussed here.

3.0
. \ Theory for Large Te
25T

The asymptotic values for

Approximate methods for finding (cpe/UoRz)

Source distribution given by

7

/]

2.0 magnitude and position of the
27,.¢ \ first wave crest obtained by
r . i :

T placing equations (k&) into
ﬂCoUo equations (21) are also shown
1.5 N in figures .2, 3, and L. For

\ n <4 it is clear that this
theory can be used when T is

greater than about 2.

0N
V—m—mm et ——
o .

A5 J 4 ]

’ Control-Surface Theory

Amplitude of first crest

The approximations inherent
_ in ordinary control-surface the-
.8 : ory can also be estimated by

| ——— inspecting figures 3 and U4, where
/’ by control-surface theory one
/ I means that the exact linearized
| theory is used to evaluate induced
: » velocities along a given surface
.6 M and these values are assumed con-
stant for all T in the vicinity
of the surface. As shown in
sketch (m), this amounts to assum-

ing ¢, and Qg are given by a
straight horizontal line in fig-

|
|
|
|
1
|
{

4 ure 3 and by straight lines with
4 2 lﬁc 3 4 o unit negative slope in figure k.
r Obviously, the error in the body
Position of Ffirst cres?t shape calculated by this theory
Sketch (m)

(Y
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increases as the amplitudes of the disturbing multipoles increase and as
the radius of the control surface diminishes.

One of the simplest applications of control-surface theory arises
in the study of quasi-cylindrical bodies. In such cases the expression
for the body surface can be derived immediately from equation (42). Thus,
if the amplitudes of the cancellation multipoles are small enough and
R, the radius of the control surface, is large enough for control-
surface theory to be considered a good approximation, the body shape,
r = R(x,0), corresponding to the combined wing and optimum cancellation
multipoles is determined by (using equations (19c), (16b), and (36)
together with equation (L42))

- OpCOos né
* z ’-I-TIZRC f
0

-Lo' J(x-8)7 - p2Re

-1 X-£
x~-BRe (x*&)cosh<n cosh™* BR. )dé

dR _ [Qr(x{Rc’e)]
dx

U .
© wing

27

Sy"(& y¥) cos ny ay (48)

where op =1 forn =0 and oy = 2 for n >0.

A study of optimum fuselage shapes using control-surface theory
has been carried out by Nielsen (ref. 9) for a constant-chord sweptback
wing having a biconvex section and a sonic leading edge. The set of
interfering singularities used in reference 9 are equivalent (the singu-
larities are limited to the x axis) to the multipoles used herein.
The fuselage shapes calculated by Nielsen are thus the same - within
the accuracy of control-surface theory - as those given by equation (48).

Modified Control-Surface Theory

A method of modifying control-surface theory to increase its
accuracy is illustrated in sketch (n). Induced velocities computed by
this method are based on those calculated along a given control surface

but extended away from this surface varying in magnitude as (f)7n where
the value of 7, 1is fixed by the slope of the curves in figure 3 at

;l < a E
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T = Te, Te being defined by equation (L6)

]
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(see sketch (n)). With this

modification equation (L48) becomes
dr [¢r(X:Rc,9)] zc > opcos né
Tz ), 2n
x-BRe (x-g)cosh<% cosh™t 2% dag
| BRC n
SW (&,¥)cos ny dy (49)
Lo Jix-6)2 b
Source distribution given by
- which can be solved using
dp = €, Uo (1-%%) numerical techniques.
3.0 A further refinement of
equation (L9) can be obtained
25 if the position of the induced
,an'/), velocities is also varied
) Lt according to the slope (again
2.0 I at T = Te) of the curves in
21r¢, | figure 4. Defining this slope
jZi;z;‘ : as O®p, see sketch (n), and
OI% ! < Xy as
| ! xg = x - B(1 + 8p)(R - Re)
A5 2 | 4 .5

~

Amplitude of first crest

=

tan' 8

okl

Position of first crest
Sketch (n)

one can see this refinement

simply amounts to replacing the
value of x in the right-hand
term of equation (49) with Xge

ILLUSTRATIVE EXAMPLE -
ELLIPTIC WING

In order that one may be
able to assess the practical
significance of the preceding
sections, the concepts presented
therein will now be applied to
the solution of a particular
problem. For the basic wing
plan form in this particular
example an ellipse will be
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chosen. There are two good reasons for this choice; first, the ellipse

is effectively unswept and places a severe test on the role of body
interference in reducing the wave drag at a supersonic speed, and, second,
for a given volume, the optimum section (i.e., the one yielding minimum
wave drag) for these wings when considered separately has been discovered
(see ref. 10) so the reduction in wave drag brought about by the body will
reduce the minimum value possible for such wings when flying alone. The
drag reductions for the first few cancellation-multipole distributions
will be calculated and compared with the total drag of the wing alone, the
wing mounted on an infinite cylinder, and the wing mounted on a basic
body of revolution. Finally the details of calculating a body shape
simulated by the wing source sheet, a source line representing a basic
body of revolution, and the first two optimum cancellation multipole dis-
tributions will be carried out.

The Elliptic Wing
Consider the elliptic lens specified by the equation

2
z=i%<—§§-%—§> (50)

where the thickness, span, and chord are shown in sketch (o). The stream-
wise slope of the upper surface is seen

to be
t .
92| _ng(x,y) = - (51) b
ox|, a -
f y
and the total wing plan-form area S and a
volume V are, respectively,
S = nab , {'x
(52) Wing plan form
=X :
v 5 tab
t

Wave drag.- The wave drag of the <=:::::]Zfi::=>
elliptic wing represented by equation (50) | |
can be calculated by means of equation (30) 2a
in which, since one wishes now to find the

wave drag of the wing alone, the ap's are Root section
set equal to zero. The value of 8 "(x,6) Sketch (o)
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follows by placing equation (51) into equation (28) and integrating. Thus

hy ' . h
2tUycos p 2 1
' _ _t . _ o n<sin p
UoSy (x,6) = 2Ugcos f (;)(g +7 sin p)dn = <§n + ——2—>
h, by
£ = il Wing
constant S plan form
N
where, by referring the equation of
the plan form to the £,y coordi-
. nates (see eq. (26)) and solving
~ for the points where the straight
T * 1Jline ¢ = constant intercepts the
Y. Y wing edges, one finds - see sketch (p)
hy
D i
o}
[~ 7 - 2 2
-b2¢ sinp iabJé cos p+basin2p-§2cos2u
X = »
Sketch (p) a®cosZu+b3siny
Hence,
' hxtab > oo > >
Sy (x,6) = - JaZ + b2B2cos20 - x (53)
(a2 + b2p2co0s20)”
From the relation
L3(0) = a® + b3p3cos36 (54)

the wave drag can be expressed in the form (integrating once by parts)

d€j

R O Y I

Further integration yields

| |
| by 1 fzxde fL(e) L(e)d . r 12(6) - 26 7] to [2(0) - e.2 e
a - F A §2|j
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Finally, the wave drag can be expressed in coefficient form, based on
the total wing area nab, as
: 2
a
1L +2(=
e = L (Y <b6> / (55)
D B \2a

on3/2
bB

Equation (55) represents the lowest value of wave drag possible for a
wing having an elliptic plan form and fixed volume. This equation was
first derived by Jones- in reference 10.

The velocities induced by the wing source sheet in the vicinity of
the fuselage.- Later, when one wishes to calculate a stream surface in
the presence of the source sheet that simulates the wing given by equa-
tion (50), it is necessary to know the velocities induced by these
sources at the body surface. Hence, the value of @, induced by the
source sheet was calculated at the four points indicated in sketch (q).

As it turns out, these values are Values of ¢ U

so close (see the sketch for a » . ‘ r--o
numerical comparison) to those Point Exact Ackeret
obtained by assuming the source number !inearized. wave —
sheet to be two-dimensional with Meo,y tlx-r) /02
a chordwise intensity identical

to ‘that along the root section ! .044 .050
of the elliptical sheet (i.e., : 2 -.053 -.050
using the Ackeret wave generated Aegion fo be . 3 =102 -.100
by the root section) that the occupied 4 -./04 -.100

effect of the wing can be assumed b)’ body
to be given everywhere in the .
vicinity of the body by the lat- Sireamline
ter velocity field if (as will
be the case in subsequent
application) the surface of the
body passes through the region
shaded in the sketch. That is,
the effect of the wing in the
equations for the fuselage shape v
(such as egs. (47), (48), or

(49)) is assumed to be Sketch (q)

/
/
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1
L t -for0<@<x
— Py = F—5 (X F Br sin 6)sin 06
Uo T a2 P ) ’ 4 for n <6 < 2n
Y (56)
- for 0 <6<
— Qg = F—5 (x ¥ Br sin @)cos 6, 0 7
rUp - a + for n < 6 < 2xn

The Optimum Cancellation Multipole

One can now find the strengths of the multipoles along the x axis
which induce around a cylinder of infinite radius a momentum field iden-
tical to that created there by the elliptic wing. The negatives of these
variations are, according to equation (36), the optimum cancellation
multipoles. Hence, combining equations (53) and (36)

aén)(x) = =On

2tabUgx 2N Ja2 4 b2B2cos29 - x2
—_— cos n6 46  (57)

n(-p)" ) (a2 + b3p2cos30)

where op =1 for n =0 and op = 2 for n > 0. Particular variations of

ahn)(x) are shown in figure 5. These results are for n =0, 2, and 4,
since agn)(x) for any odd n is zero by symmetry, and apply when the
wing plan form and free-stream Mach number are related by

gl (58)

which contains the particular case for which the Mach number is 'JE and
the aspect fatio is 3. It is apparent that there are at least n + 1

n
roots to ap (x) for =Ly < x <Lg. This follows immediately from -

equation (38) and is true in general. As a result the curves for the
higher values of n Dbecome increasingly wavy and, correspondingly,
increasingly difficult to evaluate numerically.

Figure 6 presents the values of (x) for the same elliptic-wing
Mach number relation given by equation (58). Notice that each of these
curves has only one root (they necessarily have at least one) in the
interval -L, <X <Ly and is increasingly smooth with increasing n.
The latter follows from equation (37) and the fact that the first =n
derivatives of these curves must, in general, be continuous. For example,
at x = L, the first four derivatives of a4(x) must vanish.
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Wave drag.- One can now calculate how much the wirg-alone drag is
reduced when combined with each successive optimum cancel]lation-multipole
distribution. If Dn denotes the drag saved by the nth- order cancel-
lation multipoles, then by equation (35)

_]%n f dxlf Zar(1n+1)(xl) (n+1)(x2)1n|xl Cxa|  (59)

hﬁU
o e

where Lo is the maximum value of L(6) as given by equation (5k)

Lo- = a2 + b2p2 (60)

The total drag saved by means of the first m multipole distributions,
would, by equation (3k4), be
m
+) T (61)
1

Using equations (53) and (36) to define the a£n+l)(x) in equation (59),

reversing the order of integration, and integrating once by parts, one
finds

3 Ly PR /2 | L(61) L(62)
.= cos nb 1d91f cOos 1'1926.62 f dg 1 f d§2
. L ‘

-L(61) -L(62)

(btab)®  L2(02) -28,° 21P(0,) - £2
1 (0)1%(02) J12(0,) - £,2  E1 - E2

: /2 /2

64(tab)> /.
= - — cos nP,de; cos nf-4d60o
0

[e}

-n2/41.%(65) , L2(91) < L2(92)

-2/ 41%(6,), 1%(0,) >1%(65)
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b = bp

7/
4
4
e

2 2 ’
<
LGl <L) s

Ny

/
4

L) > g,

%

Sketch (r)

z
2

Do _ 32(tab) fﬂ/z
q = T J
[e]
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It is apparént from sketch (r) that this
can be written

2

|/

61

2
cos nf146;

L%6;)

_ 16(tab)”

W/
Fis Jf
0O
/2

cos ndodoo +\jp cos nfydo,

Do
a

o]
61
. COs nfp
Ve~
o) L (62)
or
/2

cos nfy 46y

/P cos nP-d6>  (62)

2 202 .24 Y2,
(a® + b2B2cos®0;) &1

The total drag saved by using all the cancellation multipoles is, by

definition,

/2

ollw]

61 -

— e

nfA

and since

_ 16(tab 2f doy
= 2 .
o (a2 + b2B2c0s261)

o0
Z% sin 2n6jcos 2ndj

n=1

o
bid 1 ..
X _-11- E.ﬁ sin 2nx cos 2nx
=1

this is equal to the drag of the wing alone, as it, of course, should be.

The reduction in wave drag as the wing is combined with the first

three optimum cancellation multipoles is presented in figure 7.

In

studying figure 7, one sees, as the Mach number approaches one (i.e.,
B 9’0), more and more of the original wing wave drag is destroyed by a
line of simple sources alone. Further, the value of T¢ which can be
written - see equations (U46), (54%), and figures 5 and 6 - '
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5 ____Pre (63)

€ ’az + b2p2

tends (for a fixed average distance to the body surface re) to zero as
the Mach number approaches one; and this, in turn, means that as B goes
to zero the effect of the multipole strengths on the body shape can be
calculated using slender-body theory. .

" When various orders of multipoles are distributed along a line, one
can show the cross-sectional area normal to the free stream of the sim-
ulated body as given by slender-body theory is a function of the source
distribution only (see Appendix B). Coupled with the discussion in the
preceding paragraph, this can be used to demonstrate that, for Mach
numbers close to one, the "supersonic area rule" proposed in reference 11
and discussed in reference 12 gives a good approximation for the wave
drag of an elliptic wing and body combination which is symmetrical with
respect to the plane of the wing.

The induced velocity field.- A method for calculating the velocity
field induced by the multipoles when ap(x) is given numerically is pre-
sented in Appendix C. By means of this method, velocities induced by
the ap and ap multipole distributions shown in figure 6 have been
calculated for T equal to 0.1L48 and the results are shown in figure 8.
Since the distributions in figure 6 were for the particular case
a/bB = 4/3n, it is evident from equation (63) that the values in figure 8
apply to the case re/b equal to 0.161; that is, when the body radius
is about 16 percent of the wing semispan.

For comparative purposes, the values given by slender-body theory
are also shown in figureAB. The degree of agreement between the two
curves is consistent with the results shown in figures 3 and 4.

Interpretation of Drag Reductions

Comparison with wing mounted on a - ——--- Mach waves from wing
circular cylinder.- With regard to fig- -
ure 7 one should be careful to notice root section
that the drag of the wing alone has been
used for the reference drag. The drag
reductions shown, therefore, represent
gains brought about by interfering with
the velocity field induced by a planar
source sheet, or, in terms of a combina-
tion with an upstream cylindrical stream
surface, gains made by modifying a body,
shown in sketch (s), which bulges behind

Sketch (s)
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the wing leading-edge Mach wave in accordance with the velocities induced
there by the source sheet. Obviously, from this viewpoint, a considerable
reduction in drag can be brought about merely by eliminating the bulge,

thereby making the body a circular cylinder throughout. Mathematically,
such a procedure amounts to using a certain set® of cancellation multi-

poles along the x axis behind the point -Lg, and, if the drag of this
resulting combination were used as a reference, the gains shown in fig-

ure 7 would be diminished..

An approximate way to estimate the drag of a wing mounted on a cir-
cular cylinder is illustrated in sketch (t) and consists merely of sub-
tracting from the wing source sheet those sources blanketed by the body.

] Wings
. 1 -
2b — 2R =
T|.._ 20—
1 N
/ 2 3

-
Y
[

\

\

‘ \
N\
\-dc

Sketch (t)
Using the subscripts 1, 2, and 3 to designate the wave drags of the indi-
vidual wings as indicated in the sketch, Jones (in an unpublished com-

munication) has shown that if wing 1 is an elliptic wing with a biconvex
section and wing 2 lies entirely within the plan form of wing 1, then

oy |
Dy = Dl(\l + —{E)+ Do (6h)

where Vs and V3 are the volumes of wings 1 and 2, respectively.

8

The exact evaluation of multipole distributions necessary to simu-
late a circular cylinder for the entire body length has been studied in
reference 13. '

/mf‘
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For a supersonic Mach number, D is closely approximated by the
wave drag of a rectangular wing having the same section and aspect ratio.
If Ap, URa, and T, are, respectively, the aspect ratio, plan-form area,
and thickness ratio of the rectangular %wing, its drag can be expressed in
the form

BDs

qTz2

= lRaN, ‘ (65)

where

16

sin~lpA, W1- B2A22 ( B A2>cosh

2

BAz| 3 A »  BAz<l

Np = (66)
16

3 3 BAZE 1

Further, if A; 1is the aspect ratio of the elliptic wing, one can show -
‘see sketch (t) and equation (52) -

R
BAz = ¢ -5> BAy | - (67)

The drag of the elliptic wing follows from equation (55) and can be
written

BD
L = babN, (68)

T2

where hr 2
' 1+ 2<;BA;>
Ny = - (69)

5~3/2
[ < ]
TBA

Finally, therefore, equation (64) can be put in the form
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Dy _ |, .32(R)| ,& M
'D-l’[ 3n<b>]+b1 (70)

and the ratio Np/Ni is a function of the parameters R/b and BA; only.

By means of equation (70), the dashed curves shown in sketch (u) —

?__::-:37 [ — 4

LO
.8 | /
R/ | -——_— L __:— —.
0 .6 '/:.—_____-..____-_— C; — ==
ol o ==
T a,+0
////// ”/”””,,,
2 " L — 004q2+a4
. //’
_—1—
0 y 5 L J
LA
Sketch (u)

representing approximately the wave drag of a wing mounted centrally on
a circular cylinder - were calculated. Though considerable drag reduc-
tion is indicated by adding just those multipoles necessary to make the
body cylindrical, it is apparent the.total wave drag can be reduced fur-
ther, for the range of parameters shown, by using only the first two
optimum cancellation-multipole distributions, ag(x) and ap(x), given by
equation (36).

Comparison with wing mounted on a basic body of revolution.- 4
Sketch (u) shows the effect on the wave drag of adding the optimum can-
cellation multipoles either to the wing alone or to the combination of
an infinite circular cylinder and a centrally mounted wing. Estimates
of their effect when added to a wing mounted on a basic body of revolu-
tion can also be carried out. In order to present these estimates, how-
ever, the results of the following two theorems due to R. T. Jones are
needed.
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1. Designate the closed body of revolution which, by a slender-
body theory, has a minimum drag for a fixed volume and length as a Sears-
Haack body. Then the total wave drag of a Sears-Haack body and any other
body of revolution or any centrally mounted thin wing which lie entirely
within the Sears-Haack body's enclosing Mach forecone and aftercone is

given by the equation
av
D=DSH<1+@;>+D2 (71)

where:
Dgg wave drag of Sears-Haack body alone
Do wave drag of other body or (exposed) wing alone
VsH volume of Sears-Haack body
Vo volume of other body or (exposed) wing
2. Designate the closed body which, by slender-body theory, has a
minimum drag for a fixed base dlameter and length as a Karmén ogive.
Then the total wave drag of a Karman ogive and any other slender body of

revolution or any centrally mounted thin wing which lie entirely within
the ogive's epclosing Mach forecone and aftercone is given by the equation

- Dg + Da - (72)
where: |
Dx waveldrag of Karman ogive alone
Do wave drag of other bédy or (exposed) wing alone

In order that the theoretical results could be tested by wind-tunnel
experiments, a basic body of revolution having a finite base area was
chosen. Such a body can be simulated by a combination of the source dis-
tributions which produce,9 separately,

i ’sThe source distributions simulate the Sears-Haack body and the
Karman ogive only when slender-body theory is used to calculate the body
shapes. If linearized theory is used instead, the body shape will, of
course, be somewhat different. However, the subsequent results and con-
clusions are by no means limited by the assumptions pertaining to slender-
body theory. The latter theory is used only to obtain an estimate of
the body volumes -or to study cases for which it gives results that are
not significantly different from those given by linearized theory.
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the Sears-Haack body and the Kérmén ogive. Thus, if 21 1is to be the
body length, the line of sources

yr ' 0(x) _ <VK - Weg >~/—

U, 53
o @ (73)

simulates (by slender-body theory)
~ 2a body of revolution (see sketch (v))
‘=:::::j- - X having a total volume V equal to
Vsg + Vx, a cross-sectional area given
2 1— W

Sketch (v)
14 8v : 3/2
s(x) =:f—7:%[x~/12—x2+ 12<%+sin"l%]+§;{s% (12- &) y "l <x<1

and a base area S(1) equal to Vk/1.

(74)

The wave drag of a wing mounted on this basic, ummodified body will
now be calculated. Just as was the case in studying the wing attached to
an infinite cylinder, the assumption is made that the wave drag of this
combination is the same as the wave drag on the configuration simulated
by superimposing the singularity distributions which create separately
the exposed wing panels and the body of revolution. With this assumption,
the wave drag can be written explicity in terms of the wing and body
geometry by applying equations (71) and (72). Hence,

=%+%(+—Q+% (75)

where Dg is the drag of the exposed wing panels alone, given by equa-
tion (70) and shown for various values of R/b in sketch (u), and Vg
is their volume (see sketch (t))

_ x _8R

Since Dk and Dgg, the wave drags of a Kdrman ogive and a Sears-Haack
body flying alone, are well known to be

_q V¢

bx =%
Tl (77)

8 Veg©

DsH = ECE

the wave drag coefficient of the unmodified combination, based on the
complete wing area mab, can be expressed as

2 2

Vi +8v 1 t2 N
D _ ¢ YK *8H  16%Vsw g-§§>+1_g.;[1_325>+5_2]
qnab 7214ab 214 \2 30 na2p 3t b b N3

(78)
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where N; and No are defined in terms of Mach number and wing-body
geometry in equations (66) and (69). An example of the variation of C
with Mach number for the particular combination shown in sketch (Xx)
(R/b was set equal to 0.181) is given by the dashed line in sketch (w).

.024 \
\
\
\
\\
.020 B
\
N —+ Unmodified combination
N
*\\\
.0l6 =
\\\‘.
\\
GD T
012 ' ("=
e \
.008 AV Y
Modified combinafionx
Same ftotal volume
Less ftotal volume —1
.004
o
1.00 110 1.20 M 130 140 1.50

Sketch (w)

It is now possible to find how much the drag of this unmodified com-
bination can be reduced by means of the optimum cancellation-multipole
distributions used to derive the results shown in figure 7. Again apply-
ing equations (71) and (72), one can show
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D=DK+DSH<1+%;>+D4 (79)

where V, is the total volume and Dg
the total wave drag pertaining to the
wing (now the complete wing including
the portion blanketed by the body) and
the multipoles. However, within the
Maximum thickness of wing along accuracy of the approximation - being,
center line , 1, = 0.234 in fact, exact within slender-body

o theory, see Appendix B - the volume
Total volume of b ady = 44.60 added by the wing is subtracted from

Vou = 31.72 the basic body by the optimum cancel-
- lation - source distribution so that

1 12.68 V, is zero. Further, if N, is the

" Sketch (x) value of D/Dy read from figure 7 for

a specific value of BA; and a specific number of multipole types, one
can readily show '
t2b
D4 = q

Ba

where N; is defined in equation (69). Hence, the drag of the unmodified
combination can be reduced to either

p .1 2 z_ﬁﬁz}i @
Tieb Cp = ey {&K '*8[VSH + tab<é 3 b)ﬁ + s NiNg (81)

if the same total volume is maintained (maintained, as is obvious from
an inspection of the equation, by increasing the value of the Sears-
Haack portion of the basic body an amount equal to the volume of the
exposed wing) or to

NiN, (80)

1 2 £2
CD = —m— <V + 8v § + N1N4 (82)
2abr? \ K SB/ " xap

if the volume of the fuselage is reduced by an amount equal to the wing
volume. 4

The results expressed by equations (80) and (81), when applied to
the first two optimum cancellation-multipole distributions, are shown
for the geometrical parameters presented in sketch (x) by the solid
curves in sketch (w). The value of R/b used for the solid curves was
0.161 instead of the 0.18} value used to calculate the dashed curve. _
The smaller value was used since the modified body is drawn in along the
sides by the cancellation multipoles (see fig. 9), decreasing the average
body radius in the wing region from about 1.00 to about 0.89. One must
be careful to notice that the solid curves represent minimum (relative
to the special method being discussed) values which can be obtained by
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a specific desigp at a specific Mach number and do not represent the
variation of wave drag with Mach number for any given combination.

The Body Shape - First Calculation

The final step in studying the effect of the optimum cancellation
multipoles, defined in equation (36), is to find the distorted body shape
which they produce in combination with the wing and a basic body. The
decision was made to calculate a body shape which would be optimum at a
Mach number equal to N2. The details of the wing and body geometry are
given in sketch (x) and the basic body parameters Vi and Vg were inter-
preted in terms of source strength by equation (73).

It was apparent from the results of figure 8'that, for the values of
re and b given by sketch (x), the velocity field induced by the first
two optimum multipole distributions can be calculated with good accuracy
using slender-body theory. Combining the values of @, and Pg so cal-
culated with those induced by the wing, given by equation (56), and those
induced by the basic body, using also slender-body theory to interpret
equation (73), one can find the body shape by solving the two simultaneous
nonlinear differential equations presented as equations (43). These were
solved numerically by the method outlined in Appendix D and the results
were, unfortunately, unrealistic. Sketch (y) shows an example of a
streamline close to the 6 = O plane .
and the crossing of such streamlines : Yy Wing
obviously invalidates the solution. source

S

sheet

.................

Body Shape - Second Calculation R =
885~
The failure observed in the _ . \
first calculation has a simple enough Multipoles
interpretation. For the chosen wing

Streamline, 8 ~0

the basic body was too small in diam-
eter at the wing-body juncture to Sketch (y)
permit the use of the first two cancellation multipoles in their entirety.

Several avenues of approach are yet available. One could, for
example, maintain the same wing and basic body but reduce the Mach number,
one could start with a larger basic body, or one could lower the thickness
ratio or aspect ratio of the wing, thus diminishing the strength of the
cancellation multipoles. All of these, however, are modifications of the
basic conditions or basic restraints and as soon as such restrictions are
abandoned it must be remarked that no matter how low the wave drag of a
set of nonlifting, volume-enclosing surfaces has been made, another
arrangement of the same volume within a finite space will give a lower
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value, unless, of course, the wave drag of the first arrangement is
already zero. Therefore, instead of modifying any of the initial
restraints, consider the following alternative:

How much can the drag be reduced by using only a portion
of the first two cancellation multipoles so that a real
body would still be simulated?

In order to answer the above question, examine briefly the first
calculation. Notice, from figure 8, that the cause of the body collapse
is attributable to the large values of @, and ¢g induced by the second-
order cancellation multipoles, ap(x). Hence, let ag(x) be maintained at
its full value and reductions permitted only in the magnitude of as(x) .
To carry out such a procedure efficiently, one must be able to determine
the effect of a given variation of as(x) on the body shape. Fortunately,
Graham, in reference lh, has developed a method by means of which the
relation between do(x) and body shape can be quickly estimated. Graham
has shown, if

M = 14l 1. a rectilinear distribution of

’ second-order multipoles of
strength ay(x) is placed
along the x axis (see
sketch (z)) in a supersonic
stream (M = ~2),

2. slender-body theory is used
to evaluate o, and @g,

Multipoles

3. R =R, is the radius of a
c¢ircularly cylindrical tube
for -ILg >x > -,

*

X
L
y _ h, F (%) =;a§}jaa4xgdx2
Sketch (z) ~Lo

then

1/4

1+ 2F*(x)cos 09 + N1 + 4F¥(x)cos 20 + M F¥(x)1Z
R = Re , : (83)

2
is the continuation of the stream tube for x > -Lg.
Since the initial strengths of the cancellation multipoles are

negative, F*(x) is negative and the critical value of R occurs along

the plane 6 = O or x. The variation of R/R, with F;ax is given
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in sketch (aa) from which one can see that the maximum value of [ 7|
must be less than 0.5 if the simulated stream tube behind the plane
x = =Ly 1s to be real.

The problem can now be continued, using Grsham's result as a guide,
by assuming the critical body radius in the more complicated source and
multipole arrangement is principally determined by F¥(0) - the parameter
governing the body indentation at the center of the cutout and at the
wing-body juncture. In the first
place, since there is no interference
between different orders of multipoles,
it is necessary to consider only the \.
drag produced by the second-order R \
multipole. Appendix E presents a Rc
method for finding the optimum dis- \
tribution of the second-order can- 5
cellation multipoles for a .given
wing and a fixed value of F¥(0).
The resulting wave drag is given in
equation (E1l). At a Mach number
equal to«2 and for the basic wing
and body parameters presented in
sketch (x), FW*(O) (defined by eq. E8) - o 25 .50
equals -2.90 and the reduction in _F*

D>/qS, the amount of drag caused by : max

the wing second-order multipoles
alone - see equation (62) and fig-
ure 7 - is shown in sketch (ab) for
a range of F*(0). Variations on
the strength of various combinations No cancellation multi-
of second-order multipoles are shown po/es7

in sketch (ac) on page 48. It is .004

important to notice that for a given /
percentage reduction in the maximum 0. F——t1t-—t1t+--1
strength of the multipoles the result-
ing percentage reduction in Do is q9S
much larger.

Sketch (aa)

The strengths of as(x) shown
in sketch (ac) must now be combined
with the zero-order multipoles and
wing source sheet, and the combined
velocity field used to calculate the
shape of the new body. Using again
slender-body theory to evaluate the o 2 4 .6 .8
velocity field induced by the multi- ) _F'{OI
poles and the numerical methods given
in Appendix D to compute the stream-
lines, one finds, by restricting the Sketch (ab)

SEaermng
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‘ |- a.(x), variation of second-order
A\ | _~1 muttipotes for wing alone. (If

. @ there were no restraints on
F¥x), this would be reduced
! \—4 to zero.)
M\ \ \ : aplx) + ocglx) for

Fo) = 45

- FY0)= 70
v '

P4

-6

Sketch (ac)

distribution and strength of the second-order cancellation multipoles to

their optimum values corresponding to the restraintl® Fx*(0) = -0.6,

that a real as well as reasonable body shape results. The details of
I0Sketch (aa) gives 0.5 as the maximum permissible value of -F*(x).

However, that value is based on a distribution of ap(x) alone, and in

our more general case the added velocity field caused by the presence

of the other singularities permits the larger value.
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this shape are presented in figure 9 and thelr general 1nterpretat10n

is discussed in the next section. Finally, using the value F *0) = -0.6,
the drag curves shown in sketch (w) were reinterpreted, and the results -
which represent an estimate of the amount the wave drag of an elliptic
wing mounted on a basic body of revolution can be reduced by realistic body
distortions - are shown in sketch (ad).

.024 Y
\
\
\
I\
\\
020 <
N Unmodified combination
\.
\\\
RS
. \\
.016 \\\\
CD "\\_\s
.012 -
e — _“_T_ i

.008 —X
Modified combinations with same

total volume
complete first two multipole d/srnbuf/ons

Second=order multipoles diminished to
.004 provide - real body shapes

"l/ /

o
100 110 1.20 u 1.30 ‘ 140 150

Sketch (ad)
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Discussion of Results

It is possible to gain some insight into the reasons for the various
body distortions shown in figure 9 by inspecting, in another light, the
body shape first calculated. Consider first the elliptic wing at the top
of sketch (ae). The air over the forward part of this wing, when it is
alone in a supersonic stream, is compressed (mathematically, the sign of
ox 1is negative), the compression being greatest near the leading edge.

: On the other hand, the air over the after portion
of the wing is undergoing an expansion, the magni-
tude of which is greatest near the trailing edge.
Consider now, in combination with this wing, a body
which is to have a shape providing favorable inter-
ference. It is apparent that the body should cast
expansion waves over the forward portion of the wing,
destroying the compression there, and absorb the
expansion waves c¢oming from the wing after portion.
Or in another light, the positive pressure on the
forward region of the wing (one can use the equation
Cp = (p-po)/q = -29x/Uy for the pressure coeffi-
cient) should be reduced as far as possible by a
wave shed from the body and having large negative
pressures where it comes in contact with the wing
forward region.

" Since waves in a supersonic flow field are
fundamentally associated with the slope of the
disturbing surface, the aforementioned favorable
interference fields would be created by a body
having, longitudinally along its surface, slopes
such as those shown in the lower part of sketch (ae).
This is exactly what the solution obtained from the
calculation of the first body shape tried to estab-
lish since the fuselage near the plane of the wing
(the portion most strongly affecting and being
affected by the pressures on the wing) and ahead
<5 of the wing chordwise center line was distorted
= in a manner that caused an expanéion across the

L . wing entire forward portion. The difficulty arose
r'tf_M ultipoles because the fuselage was not wide enough to provide

the longitudinal extent of favorable slopes neces-

Region of sary to create the positive pressure called for by
. the wing forward compression region, and the body
=Foé compression streamline near the wing root, following a path
z¥isw. expansion  such as that shown by the line in sketch (ae),
crossed the body center line before it reached the
wing chordwise center.

Sketch (ae)
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Consider now the second body calculated in the previous section.
In this case an additional restraint was imposed which, effectively,
fixed the maximum body indentation. Subject to such a condition, an
optimum interference field was discovered. If the resulting fuselage
shape is inspected near the plane of the wing, surface slopes are found
similar to those shown in sketch (af). The following discussion is
intended to show that, from a physical viewpoint, this arrangement is
reasonable, ' :

Most of the wing pressure drag occurs on the wing inboard portioms.
Hence, for a fixed maximum fuselage indentation, it is beneficial, from
an’ over-all point of view, to create initially a compression wave, which
increases the preSShre drag on the forward por-’
tion of the wing tip but provides a succeeding
extent of fuselage having slopes that generate
a strong expansion wave over the forward por-
tion of the wing inboard section. Similarly,
the final portion of the body is forced to have
a region of unfavorable interferences where the
expansion waves from the wing tips combine with
body expansion waves to increase the local drag
(i.e., increase the local suction pressure) in
order that the over-all interference effects
are as beneficial, under the given restraints,
as possible. This arrangement (i.e., unfavor-
able interference near the wing tip and favor-
able interference near the wing root) is given
further support by the attenuation property
inherent in three-dimensional waves., Thus the
pressures induced by the body en the wing tips
are not as strong, for a given generating sur-
face slope, as those induced on the inner por-

Region of
tion of the wing, simply because the tips are === compression

farther from the disturbing surface. | Xomag expan sion
Although these considerations are somewhat Sketch (af)
oversimplified (the shape of the upper part of the body has been com-
pletely ignored in estimating the effect of the waves), the longitudinal
variation of surface slopes near the plane of the wing and the resulting
body streamlines there are, from a physical point of view, reasonable.

In order to support the above conclusions, the source and multipole
distributions simulating the final modified body shown in figure 9 were
used to calculate (see Appendix C) u/U, in the plane of the wing near
the root section. The values of u./Uo induced by the wing sources along
these sections were assumed to be the same as those induced by a two-~
dimensional biconvex section having the same local chord; that is, tip
effects were neglected. These values for body and wing were added and
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the resulting pressure distributions, shown in sketch (ag) (Cp = -2u/Uy) ,

were obtained.

The results are similar to the estimates presented in

sketch (af). The large drag saving near the root section is illustrated

A5
v | o . . L~
— Two-dimensional biconvex section ~
Uo \ A
4 | \/ 1 / ,
L~
SN Ze —T
\\
_ /\ /
= \\ y //
\Af‘/
~15
o Percent chord 100
Wing
leading edge
\l | ) . 0 2.
< /ere of Two-dimensional
l* [l zero biconvex section ;.
* I\ pressure Cd /
S|AA: | gradient} | = TTT°77 =
S o/l Wing and mod-
® ' ified body
®
[
0 /2 .3
r

Sketch (ag)

in sketch (ag) by the graph showing the low
ficient along the inner portion of the wing.

values of section drag coef-

Another important characteristic of wing-body combinations designed
to have low wave drag is also illustrated in sketch (ag). As shown

* s
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in the graph of u/Uo, over the surface of a two-dimensional biconvex
section the air is everywhere accelerating in the streamwise direction.
In studies concerning the effects of viscosity on the fluid flow and,

in particular, studies concerning the boundary layer, this positive fluid
acceleration is referred to as a favorable pressure gradient. If the flow
is laminar in the vicinity of the leading edge of a smooth wing and the
pressure gradient is everywhere favorable, the flow tends to remain lam-
inar and unseparated over most of the wing chord. Notice that the modi-
fied wing-body combination has a line of zero pressure gradient extending
along a Mach line downstream from a point near the body and wing leading-
edge juncture. Immediately behind this line the pressure gradient is
unfavorable which gives rise to the possibility of flow separation or,

at least, transition from laminar to turbulent flow there.

Comparison With Experiment

: The modified wing-body combination shown in figure 9 was tested in

the Ames 2- by 2-foot transonic wind tunnel. The Reynolds number of the
test, based on the mean aerodynamic chord, was approximately 1.5x108.
This combination had an exposed wing volume of 3.44 cubic inches and a
body volume equal to 4h.60 cubic inches, for a total volume of 48.0k
cubic inches. As a control, an umnmodified combination composed of the
same elliptic wing mounted on a body of revolution (the area distribution
of which was determined from equation (T74) with 1 = 10.5, Vg = 12.88,
and Vgg = 29.02 cubic inches) was tested. The exposed wing area in the
unmodified combination was 3.32 cubic inches and the body volume was
41.90 cubic inches, for a total volume of 45.22 cubic inches. Thus, the
unmodified combination had the same body length as the modified one but
less volume.

.The wave drag at M = 1.41 of the combination shown in figure 9 has
already been calculated and presented in sketch (ad) by the curve pertain-
ing to real body shapes. By use, in equation (78), of the values of Vg
and Vsg mentioned above and a value of 0.176 for R/b, the wave drag
for the unmodified body was calculated throughout a supersonic Mach num-
ber range. The theoretical results obtained for body configurations are
shown by the dashed curves in sketch (ah).

The wind-tunnel results for the total drag on both configurations
are shown in figure 10 for 0.6 <M < 1.h. DNotice that three groups of
data are shown. The lower one represents the unmodified body alone, the
middle one represents the modified and unmodified combinations with no
fixed transition, and the upper one represents both combinations with
transition fixed along the leading edge. The models tested with natural
- transition did not show the predicted drag reduction. As was pointed out
in the discussion of sketch (ag), however, the adverse pressure gradients
on the modified model could be inducing transition in the vicinity of .
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the 450 line behind the juncture of the wing leading edge with the fuse-
lage. This, in turn, would cause the wing of the modified model to have
a larger area covered with a turbulent boundary layer and, hence, cause
the drag of the model to increase. In order to separate the potential
and viscous effects, the transition-fixed tests were made. If the exper-
imental wave drag is taken to be the difference between the drag at a
supersonic Mach number and the drag at M = 0.6, the resulting values of
experimental wave drag are as shown in sketch (ah).

024 ‘
— Experimental valves of Cp- Cp ¥e.6
--= Theoretical wave drag
020
\
\!
N
\
\\ Unmodified (total
.016 ~C volume 45.2 in3)
~
/ \/ .“\\ /l
K T 1\ \‘\< 1
012 \\ ‘\\'\\““—--\
\\‘ \-‘

.008 \1; _
Modified (total
volume 48.0 in>)

004

0
1.00 110 120 p 130 140 150

Sketch (ah)
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Sketch (ah) shows that the experimental reduction in wave drag
brought about by the modification agrees with that predicted by theory.
Both theory and experiment show a reduction of about 0.0015 in the drag
coefficient at the design Mach number (l.hl), and the experiment further
shows an average reduction of 0.0020 over the Mach number range
1.2 <M < 1.4k, A further study of figure 10 shows that the difference
between the experimental and theoretical wave drags shown in sketch (ah)
for the wing-body combinations is nearly the same as the difference
between experiment and theory for the body alone.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Feb. 16, 1955
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APPENDIX A
DERIVATION OF THE OPERATIONAL FORM OF THE WAVE EQUATION

For convenience, take the normalized form of the wave equation in
Cartesian coordinates, thus

% 3% %

- - (1)
dx2  dy?  dz
and define the Laplace transform of o(x,y,z) by
[+0]
- : -sX
?(s,y,2) =f e o(x,y,z)dx (A2)

¢}

Now if x = f(y,z) is the equation of the foremost Mach cone or Mach cone
envelope and f(y,z) >0, it is apparent

¥y ; P06y, 2) e ax A Y oy & x=f (3)

since (@)X=f is, but (S—> is not necessarily zero. From equa-
' Y/ =
tion (A3) we see f

-SX 82q> aq) af —Sf<§ Al‘,
f YT /). . (4b)
(o] : X=

® ox % . % . - f<a<o>

sx 90 43, .99, 9f -sff%Q A

%( e - X ® + Y e S2). . (A5)

Further, integrating by parts gives

oo.. a - -f
[ S e o)

o

qﬂ!!ﬁi!!ilﬂl!ﬁﬁ
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o7

Hence,

T %0 %0 % . _ .a- 0% %W
[e 52 “ 52 a2 75

-s£/90 , 9 of §_°a_a_f>
e @+6y3y+azazx (A7)

The last term on the right is the directional derivative of the per-
turbation potential along the surface x = f(y,z). This is, of course,
along the so-called conormal. Since ¢ 1is a constant on the forward
envelope, its gradient along the envelope is zero and

Yo% o PNy = 900
Jf NSE TS Bz? dx = 8¢ -~ =% - =0 (A8)




58

NACA RM A55Bl6

APPENDIX B

ON THE VOLUME OF BODIES CALCULATED USING SLENDER-BODY THEORY

The following proof shows that in a rectilinear distribution of
singularities, only the sources contribute to the total cross-sectional
area of the simulated body and, hence, to its volume.

According to slender-body theory, the velocities induced in the
field by distributions of multipoles along the x axis can be written

ag(x)
2nr ’

0 (Bla)
n = n
* (-2) ntap(x)cos ne

n+1

R n >0
brr

n
1 (-2)"n'a,(x)sin no
T Png = P L (B1b)

Further we have derived - see equation (L41) - neglecting only second-
order effects, the equation representing the boundary condition for the
body, thus :

v B - ( %o R (B2)
o =\®r - 75 X5
ox r2 08 r=R(x,06)
Combine equations (Bl) and (B2)
OR n .
2nUoR - = ag(x) +—§;(-2) n!an(x)<°°;nne - s;g+?e %%)
1

multiply by d6, and integrate

m——
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21 2 = 21/R cos ng - sin ng S8
9 R n, 96
2nUq Se 5 do = 2rnay(x)+ ) (-2) nlap(x) =T de
' R
°© ' 1 o

or

= 251 .
2nU % s(x) = 21tao(x)+Z(-2)n(n -1)!%(x)f % <§3§n—nﬁ> d6  (B3)
1 o)

Since the integrand in equation (B3) is a periodic function in 6, we
have

ao(x)
o (B4)

which shows the simulated-body normal cross-sectional area to be dependent
only on the source strength. Further, the total volume is given by

4 T

1 1
v‘=f S(x)dx =f (1' - x)s*(x)ax + (1' + 1)8(-1)
-1 -1 '

and when S(1') = S(-1) = 0, there results

. 2'
1
V = - ﬁ;\/ﬁ xag(x)dx (B5)
-1
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APPENDIX C

ON THE CALCULATION OF VELOCITIES INDUCED BY ARBITRARY

SOURCE DISTRIBUTIONS

The potential and velocity fields represented by equations (18) and
(19) are difficult to evaluate analytically even if An(t) is a simple
function. However, the calculations can be reduced to a relatively simple
process. First, let equation (18) be expressed in terms of the dimension-

less variables X,t, and T where

% = x/Lg
E = ¢/Lo (c1)
r = pr/Lo
Then ' - -
x-r R
- - Ao(E)de
9o (X,7,0) = - -él;f °_ = (c2a)
-1 'j(i -8 -1
X-7r - _ -2 21 .-
_ . cos 20 aa(B)[a(z - ©)° - £t -
q)Z(X}r}e) =T —é_‘l-f_ > (CEb)
-1 2 J(x - ) -72
LA &)
and so forth. Consider next
the variation of Ap(E) shown
in sketch (ai) and represented
by the equation
m . n &
i £

-/ -95 -9 -85 -8 =75 -7

Sketch (ai) ‘
((190n - 360m) +(390n _760m)E + (2000 - boom)EZ, -1 <f<-0.9
(E) = _
o n .,  0.9%<E
(C3)

As seen in the sketch, An vanishes at E = -1, is a pargbola between -1

and -0.9 (assuming the values m at & = -0.95 and n at £.= -0.9), and
SRR
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the straight line, Ap(¢) = n, for & greater than -0.9. The velocities
induced by a multipole distribution given by equation (C3) can be cal-
culated in a straightforward manner in the two regions -1+ r<X < -0.9 + F
and -0.9+ r<X. For example, if -

%+1.0+4v(£+1.0)2 -F°
[(i+0'9)“/(i+l-Q)2-"f-2+521nx+ (xf+ )2 -F ,
-l +F<X<=0.9+T
nEM, (%)
= (-(%+ 0,93+ 1.0)% -2 + (2+1.0)J(3+0.9)2 - 2 +
- i+l.0+~/(5’<+l.0)2-f-2 -
i ’ -0.9+Tr <X
%+0.9+V(%+0.9)2 - 72 o
| o (ch)
( % - 2 -
) 1.0 1.0)° -2
(% +0.95)(%+ 1.0)2 - 72 - £21n — +~/(}_<+ )" -1
7
-1+1r<X<-0.9+7
ﬂfNOf(x)
100 =<

(% + 0.95)\/(§+ 1.0)% -2 - (% +1.05) J(i+o.9)2 -r2 -

%+1.04d(3+1.0)2 - 72

r21n , -0.9+ r<X
- - 2 -
L x+O.9+J(x+O.9) -2
: v (c5) -
then q)oi-. can be writfen
Pog = Moz (%) + nNoi.(i) _ (c6)

Now, if one is given a distribution of sources that is composed of,
or is adequately approximated by, a series of 20 equally spaced parabolic
arcs, equation (C6) can be used for each individual arc and the results
superimposed for the complete solution. To this effect, define my and
ny in terms of Ay(x) by
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/1 -0. i -
?ni:AO_T)—s“l)'AO(llol'l)
ny = Ao(']‘_% - 1) - Ao<' ;ol - 1>

so they represent the magnitudes shown in sketch (aj). Then, if [Z%]
denotes the greatest interger contained in X (e.g., [6.34] equals 6),

A

(c7)

. -6 ”7
)
Sketch (aj) -

the equation for the radial velocity becomes

[ 1o(x-T)+11]

S N IVt Ry

i=1

Values of Moz and Nof are tabulated in table I for T equal to

0.074, 0.148, 0.222, and 0.296. The asymptotic magnitudes of these func-
tions are given by slender-body theory. Hence, one can easily show for
large X :

N
o

Moz
: (c9)

13

1
Moz onr

Notice that both functions have essentially reached their asymptotic

values for large x by the time X = -1 + r + 0.5. By applying simple
tabulative procedures to equation (C8) - for example, listing mj and ny
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in reverse order and accumulating multiplications of adjacent terms -
the value of @oz for any Ay(X) representable by equation (CT7) is
readily calculated.

The velocities induced by higher order multipoles can be calculated
in a similar fashion. Because of the asymptotic behavior of the M's and
N's, however, one is led into the numerically inefficient process of
obtaining small numbers from differences of large numbers., For the veloc-
ities o, and @g, the following is a method for circumventing this dif-~
ficulty.

It follows from equations (9) or (19), that for small T, Onz and Png

can be expressed in terms of the multipole strengths an(x) - as defined
by equation (7) - by the equations

On
B+ r - v
H(cos oy Co+.Car + « ¢« « +Cyr" + - - (c10a)

~ Pn
n+ 0 _ : v
T RCr sin né) =Do + Dar + « + - + Dyr” + -

. (C10b)
where for v <n, n>1 i
( nie
1 - (x), v even (c11a)
Cv = ' F<} + %>
L 0 s v odd

( | '
y(-l)mls vanes oelo - 9 i), v even

D, =< <1 N > (C11b)

L : , v odd

Consider now the velocities ®2f apd Qae induced by the multipole

strength defined by equation (C3); thus
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Per mMo=(X) + nNo=(X)
= -(x) + =(x
cos 26 2r er _ (c122)
——cpze mMo,, (X) + nNop(X)
— = X + X Cl b
r sin 20 20 , 26 (c12 )

where values of the M's and N's are listed in tables II and ITI. Their .
asymptotic values, as given by equations (C10) and (Cll), are

M 19 + 20% W
o= = T =
T 15078
. 150%2 + 275x + 126

2— =

r 15073 ' >

- (c13)

M _ 19 + 20x 3

20~ 150773
N = 150%% + 275% + 126 1

20 -3 T onr

150xnr
J

and these are also given in the tables.

As the tables show, equations (C13) are sufficiently accurate
approximagions to M and N for practical calculating purposes when
¥ >-1+71 +0.5. Hence, referring to sketch (ak) one can see that the

Effect of multipoles in sz
e »~ 0
this interval on velocities R4
at (X,7) given by equa- e
tion (C13). /’ Line of
7 J mulfipoles/
4
£ >
. i &
-/ xX-r-5§ x-r
Sketch (ak)v . .

velocities at the point Xx,r induced by the multipoles in the interval -
-1 <E <X -7 - 0.5 can be calculated using equations (C13). In terms
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of the distribution for Ao(E) - which is equal to agz)(g), see equa-
tion (16) - this means the multipole distribution shown in the upper
part of sketch (al) can be calculated by means of the asymptotic formulas
and the result added to that obtained for the distribution shown in the
lower part of sketch (al) by use of equations (C12b) and tables II and
III in a manner identical to the one represented by equations (C6), (CT7),

“and (C8). 4 (é’}‘
n

—— X = — éF
f - y T v ¥ v v P
-/ -8 -6 -4 <2 o
pf———— 4-————————-J
;,? >
i ! Anl&)
I |
|
| | ;
'y . i
-/ -8 [,

Sketch (al)

The value of mze(i,f) induced by a multipole distribution such as

that shown in the upper part of sketch (al) is, on the basis of equa-
tions (ClO) and (Cl1),

¢29 _ - - o - - - .= Az(i)
=5 - B(x7) = —5 | (X - t)as(8)ag - ——
-1
50 . 2(F + %1
H(x,r) = ﬁgs ag(% - F - %4) + rnfsxl) él)(' - T - %) +
NI |
aé?)(x -r - X [(r +_zi - QifJ (Clh)
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where Bzagz)(x) = Ap(x) and x4 is shown in sketch (al) and defined
by the equation

- - - [10(x - 7)]
Xxi =0 +x -1 - _—_ﬁ_EB——l— (C15)

the symbol [ 10(x - r)] meaning, as before, the highest integer value
contained in 10(x - r). A similar result can be derived for @pz and

one has finally for -1 <[10(xX - F) + 11] <5

[ 10(%-T)+11]
q)26(x)

_ i-1 _i-1
————tt—— - - at— N - —— :
T sin 20 Z [mlMae(X 10 >+ = ""-e<x 10 >]
h

(C162)

[ 10(x-r)+11]

v25(%) . i-1 . i-1
cos 28 - mngf<% T + niN25<; - T )
1 .

(c16b)
and for [10(X - F) + 11] > 6
) [ 10(x-r)+11] .
P2g (X . .
fign.29= }; [miM29<% - l’iﬁ%) + niNée<% - l—i6{>J + H(X,T)
[1o(i—f)+11]-5 : (C17a)

5 [ 10(%-F)+11] |

(% o L N

q;il; 20 z ’ [miM%FG‘ - 1ol> + niN23~<X - = 101)] + B(X,F) -
[ 10(X%-F)+11]-5

Ap(X - T - Xi)

(C17p)

2nr

The streamwise gradients of induced velocities can also be defined
in terms of M's and N's as were the velocities oz and‘f Pg- Thus
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Poz = mMoz + nNoz
P2z - nN‘
——— - + -
cos 20 2x 2x

Values of Moz, Nog, Mpz, and Nog
0.296 are given in tables IV and V.

for T

equal to 0.148,

0.222, and

67
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APPENDIX D
NUMERICAL METHOD USED TO CALCULATE BODY SHAPE

The method used to calculate the body shape was a standard step-
by-step solution to the two simultaneous total differential equations
(eq. (43) in the text)

o _ _1
dax U ORZ

Pg(x,R,6)
(D1)
ar
dx .
The essentials of the process are recognized from the following computing-
sheet heading set up for initial values of 6 and R equal to 30O and

0.148, respectively, where X = x/L, and R = BR/Lg

@ @ ® ® ® || @
@nxo.os + @nxo.os + <Lb_g <d_g> 1 %)

1
ff; q’r(x:R:e)

, Uo 36 dx U, o7/
n X ®n-1 QDn—J_ for @ . for
) ﬁ @and@ @2 @and@
0 |-0.852 0.52h 0.148 - - - - - - - - -
1| -.802 - - - - - - - - - - - - - - -

2| -.;52f --- - - - R I B

® | W | @ Q Q
® x0.05+ @) x0.05+ (ULO _2_% <%%> U_lo g% <%_g %%)
for +

@ av
C31&—1 n-1 for ©n-1+@n o N
61 R

. |®a®) @F |®ma@—2 |7 2
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APPENDIX E

OPTIMUM VARIATION OF ay(x) FOR A FIXED VALUE OF \jp as(x)dx

-LO
Given
Dp = lhtUo f f |: (Xl) + O’I'ga)(xl)][ (o )(Xz) + (3)(X2)]
Lo -Lg ‘
1n | X2 %2 ax.ax, . (E1)
Lo

where the variation of a, (x) is fixed, pose the restraint

L as(x)dx = F*(O) £-Rc4 = constant (E2)
TUg L ‘
_Lo .

and ask for the functlon az(x) which minimizes D, for a given value
of the constant.

If f(x) = £(-x), then

1.1 o _©O
f f f(Xl)f(X2)ln|AX1 - X2|dX1,dX2 = fo f(xl)f(xZ)ln-I'xlz - X22 d.de.XZ

-1 -3 ' -1 -1
( ( 2), _
and since ap(-Lg) = (-Lo) = (-Lo) =0
a (3)
f G‘Q(X)dx = = ‘—f X Qo (X)dX
Lo -Lo

Therefore, the standard variational problem
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reduces to

21'(U0
-Lo 'LO

and this becomes

(o)

I o2 (xy)
\ TS

—LO

o
8D2+)\fgg(_)i‘i(

Uo

-LO

ff[ (m+émnﬂéa

-

%12 - X2

In L02

-LO

)(x2) + ab

0
dxydxgy - -ég—f
o
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°) (Xz)]

(3)

38
X3 Q2

Lo .

%fo[a(z:B)(Xz) + d(23) (Xz)]

dx 1 U

X12

1ln
Lo2

2

Integrating three times by parts, using the relations

Bax( -Lo)

Bap(0)

and

ox3

@)

XJ.;O

.0 ) -
1lim __8___f [a(zs)(xz) + @(23)(X2)Jln

(2)(0)

It

sabD) (-Lo) = 8t (-Lo) = O

by symmetry

(x1)ax;

3
.Axl

(E3)
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yields

o o 2_ .2
Jf S[GZéXl)del = \jp [a£3)(xa)+-aés)(xz)]ln 2 dxz + Uohoxy®) = O
0 d3x,3 Lo®

-Lo 1 1-Lo

where ' Art )y
Ay | (E%)

By the fundamental lemma of the calculus of variations

3 O )
9 (3) (3) ¥i-X2
aXls f {8‘2 (X2) -.'-a’z (X2) In L02 dX2 +UO}\OX13 = O, 0 > X7 > “"LO

~Lo

One can also show

3 Lo '
i [ [a£3)<x2)+aé3’<x2>]1n

3
5;{1

Xlz- X22

L2

dX2 -Uo)\oxls = O, LO > X1 >0

Hence,
(3) 2 2 o (s '
° sz (x2) In e dxp =75+ 7 x£-Noxy® f ag )(XZ) In xfoxg dx
Up L02 2 ° =t * UO : 'LOZ 2
—LO -LO
(ES)
Integrating by parts and changing the notation so that
_ 2
xp2 at? (x)
e = 25, f(n) = S tm
L, o
2
%42 (ns) = ag )(Xz)
N1 =’L_O'2' p) éinz) = Uo
one has .
* £(nz)dnz \ . 8/2 fl g(n2)anz (56)
——— + - - ———
f Mz - N2 Yo ¥ 721 oflr . M1 - M=

(o}
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Equation (E6) is the familiar singular integral equation known, in
aerodynamic applications, as the airfoil equation. Its inversion is
discussed, for example, in reference 3. If one solves equation (E6) and
applies the conditions

(Lo) =0
then
WALo L8 Lo
o= T TM5x 0 727 Tgg
and
az(x) | 8a(x) _AoLo*x [ <O> J h < >+3< > 1n Lo Vio- X
Uo Uo 6072 Lo Lo Lot /L 2
(ET)
Now set
az(x) * 1
f o dx = Fy; (0) 3 RS (E8)
“Lb
so that Fy (0) is a known constant. Then
O 4 - 8
ap(x)dx * T s *, 2holo
——— - = - 0) = 4
k/“ o F (0) L Re Fw ( )h Re™ + 2252 (E9)
_Lo
Using the above expressions, one can show
ax(x)  ap(x) '
+ .
2. 2
15"RC2X[F (0) +F, (O)] [10(——\ ] / -<—> +3< 2o VLo T X
32L . L + ’L 2. 2
(E10)
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The wave drag can be calculated by combining equations (E5) and (E1).

Lo (3) (3)

Do = - a X 2_ A x a\| @z (Xl) + (o8- (Xl) dx

2 =" 50 _70 + 72X3 oX1 To U 1
0

Integrate three times by parts and there results, finally

6 ReY'
Dy = _3%5_ L02n3<-L—§> [F*(O) + FW*(O)] (E11)
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