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SUMMARY 

An initial experimental investigation has been completed on the aero-
dynamic load imposed on the wing of an airplane model by a blast-induced 
gust which increased the angle of attack well beyond the stall angle. 
Pressure distributions at intervals of 1 millisecond were derived from 
time histories of resultant pressure measured at 10 stations along the 
wing chord. Comparisonof these distributions with distributions obtained 
from steady-flow wind-tunnel tests and potential-flow calculations showed 
that neither of the latter methods was adequate to predict the loads in 
the transient conditions of the blast. A traveling peak of negative pres-
sure was disclosed that is believed to be.of significance for the high 
angle-of-attack case. It was attributd to a vortex formed by the dif-
fraction of the blast wave around the wing. The normal-force coefficients 
obtained from the flight pressure distributions were approximately twice 
those predicted from wind-tunnel tests for the first 12 milliseconds 
after blast arrival or for about 75 percent Of the time the angle of 
attack was above the stall.

INTRODUCTION 

A blast-induced gust is highly transient and produces extremely 
rapid changes in angle of attack of the wing that may go well beyond 
the stall angle. Attempts to estimate lift and moment under such con-
ditions of transient flow by the use of steady-flow theory and experi-
ment, as well as the selection of unsteady-lift functions for some of 
the conditions, would certainly be of doubtful success. As a result 
of these uncertainties, the NACA has inaugurated experiments with air-
plane models subjected to actual blast-induced gusts to obtain infor-
mation on the maximum lift coefficients attainable when the angle of 
attack goes beyond the steady-flow stall angle and on the proper
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selection of the unsteady-lift function when separation does not occur. 
The experimental work is performed at Wallops Island, Va. 

The purpose of this report is to present the first pressure-
distribution data obtained during preliminary experiments made primarily 
to develop techniques and establish the reliability of the results. 
These data were obtained during three repeat flights to examine maximum 
lift for the condition in which the blast-induced gust initially increased 
the angle of attack about four times above the steady-flow stall angle 
of the model. The large angle-of-attack change was chosen to insure that 
not only would the maximum angle of attack in the gust be in the steady-
flow stall region for the model, but that it also would be at least twice 
the stall angle for the full-scale wing section. 

SYMBOLS 

CD	 drag coefficient 

CL	 lift coefficient 

CM	 pitching-moment coefficient 

CN	 normal-force coefficient 

AP	 resultant pressure, lb/sq in. 

q	 dynamic pressure, lb/sq in. 

U	 gust velocity, ft/sec 

V	 forward velocity, ft/sec 

angle of attack, deg 

TEST PROCEDURE 

The procedure used in the experiments consists of launching a model 
into free flight by use of a rocket and subjecting it to a gust induced
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by the blast wave from a charge of high explosive. Pressures at 10 sta-
tions on the model can be recorded by a telemetering system and the 
resultant pressure distributions are compared with wind-tunnel measure-
ments and the results of steady-flow calculations. Measurements of the 
time history of blast pressure near the model and of the forward veloc-
ity, positions, and attitude of the model are used to define the test 
conditions at blast encounter. All pressures obtained in the tests were 
measured as increments from the pressures existing on the gages less 
than 1 millisecond before the blast wave struck. 

APPARATUS AND INSTRUMENTS 

Blast Area and Major Equipment 

The area at which the tests are conducted is located in the sand 
dunes north of the Langley Pilotless Aircraft Research Station at Wallops 
Island, Va., and consists of a control center housed in a trailer, blast 
gages suitably mounted on poles to determine the blast overpressure, 
camera targets, and three fixed camera stations used to record the model 
speed, position, and attitude. The general layout is shown in figure 1. 
The control center in the trailer contains the ground telemeter station, 
the test programer, blast-pressure recorders, timers, and equipment for 
making final adjustments to the telemeter in the model. 

Model 

The configuration of the model used in the tests was chosen prima-
rily because previous experience had shown it to have good flying quali -
ties. It is a 1/20-scale model of a DC-4 airplane modified to the extent 
that the fuselage is a body of revolution and that the wing is mounted 
at zero incidence and has an NACA 0009-64 section. A photograph of the 
model is shown in figure 2 and a three-view line drawing in figure 3. 
The characteristics of the model are as follows: 

Weight, W, lb .......................... 31.56
 Wing area, S, sq ft .......................3.72
 Wing loading, W/S, lb/sq ft ...................8.1i-8

 Span, b, ft ...........................5.95 
Mean geometric chord, ft ....................0.626 
Aspect ratio, b 2/S .......................9.51 
Airfoil section . . . . . . . . . . . . . . . . . . . . . NACA 0009-6I 
Center-of-gravity position, percent mean chord .........22 
Pitching moment of inertia, slug-ft2 ..............0.619
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As indicated in the side view in figure 3, the model was propelled by a 

modified 2k-inch aircraft rocket mounted in the aft end of the fuselage. 

A parachute was mounted in the fairing below the wing to aid in retrieving 
the model after the test. 

The model was constructed of glass cloth and plastic and was designed 
to withstand launching and landing loads rather than to have scaled struc-
tural characteristics or weight. The wing was of built-up construction 
with balsa ribs and thick glass-cloth and plastic skin except at the wing 
station 11.87 inches from the center line of the fuselage, where a solid 
rib was provided to encase 10 NACA miniature electrical pressure gages. 
The gages were arranged as shown in figure 4 to measure resultant pres-
sures at orifice locations from 5 to 84 percent of the chord. The chan-
nels from the orifices to the gages were made of equal length to minimize 
differences in response characteristics. For the first of the three 
flights, all of the gages were encased in a single solid rib of plastic, 
but preliminary flights had loosened the seal around the gages so that 
only five were reliable at the time of the flight. The plastic rib was 
removed and a split aluminum rib with provisions for better sealing was 
inserted for the subsequent flights. 

Instrumentation 

The pressure gages in the wing were in individual oscillator circuits 
whose frequency changed when pressure was applied to the gages. In turn, 
these separate frequencies modulated an FM signal which was transmitted 
by trailing wire to the ground receiving station. The FM signal was 
unscrambled into 10 individual outputs that were recorded simultaneously 
on a tape recorder of 14channel capacity, and after the test the chan-
nels were played back individually onto oscillograph records. The com-
plete system has a response that is essentially flat to 500 cycles per 
second and that is useful to 1,000 cycles per second. 

Two fixed cameras (fig. 1) were used to record the speed, attitude, 
and position of the model. The cameras were operated at about 20 frames 
per second and recorded the position of the model on 70-mm film. Both 
cameras were 11I 0 feet from the launching position of the model. They 
were at the same level and the axes of both were elevated at an angle 
of 150 with the horizontal. At each shutter opening, a mark was recorded 
on 35-mm film in a strip camera in the control center. On the same film, 
500-cps timing was recorded, together with synchronization pulses which 
tied the camera frames to the other records within an accuracy of 
2 milliseconds. 

Blast gages located as shown in figure 1 were used to measure the 
side-on pressure due to each blast. An NACA miniature electrical pressure
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gage mounted, as shown in figure 5, in the center of an aluminum disk 
18 inches in diameter and 1/8 inch thick comprised the blast gage. The 
units were mounted at an angle of 50 with the blast as suggested in ref-
erence 1 to reduce boundary-layer effects. The pressure gages were in 
a bridge circuit utilizing a 25-kc carrier system. The output of the 
system was directed to a four-beam oscilloscope and to the tape recorder. 
Photographs of the face of the oscilloscope, taken by a'35-mm stripcam-
era, recorded the output of the two blast gages as well as synchroniza-
tion marks and 1,000-cps timing. The blast-measuring system had a rise 
time of 1 millisecond.

Timing and Synchronization 

A 1,000-cps tuning-fork oscillator was used as the primary source 
for timing on all records. Synchronization pulses were sent to each 
record at 1/10-second intervals,.starting within 1/10 second after firing 
the model. Although timing could not be impressed directly on the 70-mm 
movie film, the synchronization pulses flashed a neon bulb in these cam-
eras and also on the film of the associated strip camera. When the shut-
ter of the movie camera was open at the time that the bulb flashed, a 
mark was made on a small portion of that frame. Comparison of these 
marks with those made on the strip camera referenced the movie frames to 
the other records.

Programer 

Since a number of functions, such as operation of the recorders and 
cameras and firing of the model and blast, had to be performed within a 
short time interval, a programer was provided to take over the operations 
on a signal from a remote position. The programer can perform an opera-
tion at any of the steps available - that is, at -60, 	 -30, and 
-15 seconds and every second thereafter to +9 seconds - so that the indi-
vidual operations can occur in different sequences depending on test 
requirements. The blast must be fired so that the blast wave strikes 
the model when it is in a given position, and the time steps provided in 
the programer itself are too coarse to provide the precise timing required. 
Accordingly, the rocket in the model is fired at the zero time step on 
the programer, and when the model leaves the ground it breaks a circuit 
which activates a delay timer. This timer is set for the time interval 
equal to the rocket burning time minus the time required for the blast 
wave to reach the model, and it fires the blast when the interval has 
elapsed. An overriding safety switch is provided so that in the event 
of trouble, the operations can be stopped at any time.
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TESTS 

Three flights were made at a velocity of about 110 feet per second. 
The model was trimmed for zero lift and launched at 11 0 with the verti-
cal. The launching angle was selected so that at rocket burnout the 
model would be flying tangent to the shock front and the gust or mate-
rial velocity would be normal to the flight path, as illustrated in fig-
ure 6. On the first flight, five channels of pressure information from 
the stations at 5, 12, 19, 68, and 84 percent of the chord were obtained, 
while all 10 channels were available for the last two flights. 

Blast-induced gusts having maximum velocities of about 76 feet per 
second were produced by the explosion of hemispherical charges of compo-
sition C-3 weighing 150 pounds. The charges were mounted 5 . 31 feet above 
the ground and about 200 feet from the point of tangency of the flight 
path of the model with the resultant shock front. Preliminary tests 
showed that, with the charge located in this manner, the model would be 
in the Mach stem region and be subjected to a single shock front with 
the resulting gust closely approximating that from a 300-pound charge 
exploded in free air. The time histories of gust velocity were deter-
mined by Rankine-Hugoniot shock-wave equations from estimations of the 
blast overpressure at the model obtained from the time histories of over-
pressure shown in figure 7. For the conditions of this test (overpres-
sures well below 7 lb/sq in.), these equations closely describe the flow 
behind the shock. The locations of the gages with respect to the blasts 
are also given in the figure and it should be noted that only one gage 
was operative for flights 1 and 3, while both gages gave records in 
flight 2. The records shown were faired to eliminate gage ringing. 
Knowing the variation of overpressure with distance from the explosion 
point, which can be determined from curves of the type shown in refer-
ence 2, the overpressure variation at the model could be estimated. In 
table I. the conditions at the time of blast-wave arrival are summarized 
for each flight. 

In addition to the free-flight tests, a wind-tunnel investigation 
was made in the Langley 300 MPH 7- by 10-foot tunnel to obtain the steady-
flow pressure distributions over the test wing chord for angles of attack 
from 00 to 450. These tests were made at the same speed as the flight 
speed, but upper- and lower-surface pressures were measured separately 
at 11 stations along the chord. Data were obtained every 20 up to an 
angle of attack of 180 and then every li.° to an angle of attack of 450. 
Lift, drag, and moment of the entire model were also obtained for the 
same angle-of-attack range and the results in coefficient form are pre-
sented in figure 8.	 -
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PRECISION 

The measured quantities are estimated to be accurate within the 
following limits for any test or run: 

Forward velocity, ft/sec ...................... ±3

 Overpressure, percent .......................±5

 Differential pressure on model, percent ..............±5

 Angle of attack, deg ........................*2 

The first 2 milliseconds of the wing pressure records afcer blast 
arrival are not considered to be of much value since the measuring system 
is usable only to frequencies of 1,000 cps. 

The angle-of-attack variation, determined basically from the varia-
tion in gust velocity, was corrected for wing flexibility and model motion 
by calculations involving the weight and pitching moment of the model and 
the fundamental bending frequency of the wing. The angle-of-attack varia-
tfon caused by the gust, as obtained in one test, is shown as the solid' 
line in figure 9 . The dashed line in the figure represents the estima-
ted actual angle-of-attack change at the measuring station, obtained by 
subtracting the calculated angle-of-attack change due to the motions of 
this station from the gust-angle change. Since the effects of the motions 
of the model are small, errors due to the approximations made in the cal-
culations have little effect, particularly in the early portions of the 
time history where the gust angle is large. 

RESULTS AND DISCUSSION 

Time histories of the differential pressure at each active gage sta-
tion on the wing were evaluated for each flight. A sample time history 
for the 37-percent-chord station is shown in figure 10. Chordwise dis-
tributions of the resultant pressure coefficients were obtained from the 
time histories of resultant pressure at each gage station for each flight. 
These distributions are presented in figures 11(a) to 11(r) at increments 
of 1 millisecond, starting 3 milliseconds after blast arrival. The values 
of dynamic pressure used in computing the pressure coefficients from the 
pressure results were based on the resultant velocity and air density 
caused by the blast-induced gust. In the present case the gust caused 
an initial instantaneous increase in the dynamic pressure of about 115 per-
cent. The values given in the figure legends for angle of attack and dis-
tance traveled after blast arrival are averages for the three flights. 

Examination of figure 11 shows that the results from the three 
flights are consistent to the degree that the reliability of the technique
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is believed established. Except in figures 11(g) and 11(h), where there 
are obviously some questionable data points for flights 2 and 3, a region 
of high negative pressure coefficient is indicated which moves along the 
chord with time and passes beyond the range of the rearmost measuring 
point after about 18 milliseconds have elapsed. During this time the 
airfoil has moved forward 3.2 chord lengths, so it is apparent that the 
movement of the pressure area was not directly related to the forward 
speed of the model. This moving pressure region is believed to be of 
significance for the high angle-of-attack case. It is thought to be due 
to the influence of a vortex passing over the upper surface of the wing. 
This vortex, in turn, is believed to be formed at the leading edge on 
the upper surface of the airfoil by the diffraction of the shock wave as 
it passes over the airfoil in a direction normal to the chord line of 
the wing. This premise is based in part on shock-tube investigations of 
the type reported in reference 3, where interferograms show the formation 
of a vortex when a shock wave passes over a bluff body. 

Single pressure distributions for each millisecond after blast 
arrival were obtained by simple averaging of the data from the three 
flights. For comparison with these experimental results, pressure dis-
tributions for steady-flow conditions were determined from the wind-
tunnel tests for the corresponding angles of attack. In addition, pres-
sure distributions were calculated for each angle of attack by the method 
of reference 4 from data given in reference 5. This method utilizes 
potential-flow concepts and the results represent the pressure distribu-
tions for the unstalled condition with the flow remaining attached to 
the airfoil. The two-dimensional slope of the lift curve, 2t per radian, 
was used in the calculations. No consideration was given to unsteady 
lift in the calculations. Figures 12(a) to 12(r) present the pressure 
distributions obtained by the three different methods and show that the 
flight results are not predicted by either the wind-tunnel investigation 
or the potential-flow calculations. It appears that the traveling vortex 
modifies the flow over the wing so that neither the separated flow indi-
cated by wind-tunnel tests nor the attached flow assumed in the calcula-
tions predominates. Inspection of the figure shows that the maximum 
value of the pressure coefficient due to the vortex is always above the 
potential-flow line. 

Normal-force coefficients on the wing chord investigated were deter-
mined by integration of the resultant pressure-coefficient distributions 
of figure 12. The results are shown in figure 13 plotted against angle 
of attack. The time sequence of the curves is from high to low angle of 
attack, and the points for the flight data which start 3 milliseconds 
after blast arrival are separated by time intervals of 1 millisecond. 
For about 12 milliseconds after blast arrival, the normal-force coeffi-
cient is about twice that obtained from the wind-tunnel tests. The 
flight data then fall off until they are below the wind-tunnel data, 
and they cross the zero axis while there is still an indicated angle of 
attack of about 40.
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A possible explanation for the large differences noted in figure 13 between 
the flight tests and wind-tunnel tests is that the flow on the upper sur-
face of the wing lags behind the change in angle of attack. Since steady 
flow exists on the wing before it is struck by the blast gust, about 
3 chord lengths of travel are required for complete separation to occur 
(assuming the pressure peak to be associated with the separation). 
During this time, it seems reasonable that the load is higher than the 
wind-tunnel data, where complete separation exists for the same angle 
of attack. Just about the time that the separation is complete, the 
angle of attack falls below the wind-tunnel stall angle and, since the 
flow is separated and must reattach itself, the load is less than the 
unstalled wind-tunnel data. 

Figure 114 presents the moment coefficients about the quarter-chord 
point of the airfoil as a function of angle of attack, as determined 
from the flight and wind-tunnel tests. Once again the time sequence is 
from right to left. It is immediately apparent that the flight results 
differ considerably from the wind-tunnel results both in magnitude and 
direction. The effect of the traveling high negative pressure area is 
shown at the high angles of attack by the fact that the curve first indi-
cates positive moments and then crosses over to negative moments as the 
pressure region moves aft. As a matter of interest, the moment coeffi-
cients are also shown in figure 15 plotted against the normal-force 
coefficient. 

In the application of the results of these tests to conditions of 
larger scale and higher speeds, certain reservations must be kept in 
mind. Perhaps the most important of these is the question of similarity 
of the vortex formation when the blast wave is diffracted around the air-
foil under the new conditions. In the present case a vortex apparently 
was formed, but additional tests will be required to establish the param-
eters governing its formation and strength. Until such time as test 
results are available, shock-tube investigations such as described in 
references 6 and 7 may be used to gain some idea of the influence of 
Reynolds number and changes in shock strength on the vortex formation 
over sharp-edged bodies.

CONCLUDING REMARKS 

The results of the low-speed investigation to determine the pres-
sure distribution on one chord of a wing for an angle-of-attack change 
to about four times the angle at stall, caused by a blast-induced gust, 
showed that steady-flow wind-tunnel tests and potential-flow calcula-
tions are inadequate to predict the loads for this condition. For the 
first 12 milliseconds after blast arrival, or for about 75 percent of 
the time the angle of attack was above the stall, the normal-force coef-
ficient was about twice that predicted by wind-tunnel tests. A traveling
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peak of pressure was found that was attributed to a vortex caused by the 
diffraction of the blast wave around the wing. Further tests will be 
required to establish the parameters governing the formation and strength 
of this vortex and to determine if it is important at higher speeds and 
Reynolds numbers. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., August 9, 1955.
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TABLE I. - TEST CONDITIONS 

Maximum overpressure, lb/sq in...... 
Maximum gust velocity, ft/sec ...... 
Angle between flight path and gust, deg 
Forward velocity of model, ft/sec . . 
Maximum angle-of-attack change, deg . 
Duration of gust, milliseconds 
Distance of model from blast, ft . .

Flight 1 Flight 2 Flight 3 
•

	
1.40 1.43 1.43 

•	 75.0 76.5 76.5 
90 90 90 

•	 115 111 107.5 

•	 35.1 3.6 35. 
•	 25.2 26.2 26.2 

196.3 200.0 196.3
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Figure 1.- General view of blast area.
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Figure 3 . - Three-view drawing of test model.
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Figure 5.- Photograph of blast gage.	 L85041
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Figure 12. - Comparison of chordwise pressure distributions obtained from 
flights, calculations, and wind-tunnel tests.
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Figure 12.- Continued.
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Figure 12. - Continued.
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(g) Time, 9 milliseconds; a = 18.60 ; distance, 1.60 chords. 

(h) Time, 10 milliseconds; a = 16.90 ; distance, 1.78 chords. 

Figure 12. - Continued.
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(i) Time, 11 milliseconds; a, = 15.149; distance, 1.96 chords. 

(j) Time, 12 milliseconds; a = 13.80 ; distance; 2.13 chords. 

Figure 12. - Continued. 
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Figure 12.- Continued.
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Figure 12. - Continued.
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Figure 12. - Continued.
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Figure 12. - Concluded.
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Figure 13.- Comparison of normal-force coefficients obtained from flight 
and wind-tunnel tests as a function of angle of attack.
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