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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

INTERACTION OF A JET AND FLAT PLATE LOCA'I'ED IN AN AIRSTREAM 

By Gerald W. Englert, Joseph F. Wasserbauer, and Paul Whalen 

SUMMARY 

The interaction between a flat plate and a nearby jet issuing from 
a convergent nozzle was studied over a range of pressure ratios from 
jet-off to 9 and at free-stream Mach numbers of 0.1, 0.6, 1.6, and 2.0. 
The effect on this interaction of the presence of streamline, blunt­
base, and curved-base fairings between the plate and parabolic afterbody 
housing the exit nozzle was also investigated. The plate was located at 
various distances from and at various angles with respect to the nozzle 
axis of symmetry. 

The jet deflection was about 30 when measured at a pressure ratio 
of 5 and a free-stream Mach number of 2.0. Addition of fairings, es­
pecially those with curved or blunt bases, increased this angle con­
siderably, decreased the average pressure on the plate, and shifted the 
center of pressure rearward. Largest pressure gradients on the p~ate were 
due to the intersection of the plate with a boattail shock and with shocks 
originating within the jet stream. Change of exit-nozzle angles of attack 

o from 0 to 8 toward the plate showed no large effect on the plate normal forces 
at a free-stream Mach number of 1.6 and a pressure ratio of 2. 

INTRODUCTION 

In the design of j~t-propelled airplanes or missiles it may at times 
be advantageous to locate the exhaust jet at positions other than the 
rearmost extremities of the airplane. However, drag, vibration, control, 
and cooling problems may then become especially complicated because of 
the interaction of the jet and nearby airframe surfaces (refs. 1 and 2). 
Several studies have been made of the influence of an exhaust jet on 
wings (refs. 3 and 4) and tail fins (refs. 5, 6, and 7). 

The many different shapes, contours, and flow conditions about these 
airframe surfaces make generalization of results very difficult. This 
difficulty is increased because of the many different possible orienta­
tions of the jet with the nearby surfaces and the variety of exhaust 
nozzles or exhaust systems. Therefore, a preliminary study of a series 
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of elementary contour surfaces and a jet from a simple converging nozzle 
was made to approach the problem. In attempting to eventually lead 
systematically to more complex cases, families of concave, convex, 
wedge - shaped, and flat plates were studied with various fairings in­
stalled in the region between the surfaces and the afterbody housing the 
exhaust nozzle . 

This report presents the results of jet interference on a flat 
plate oriented at various distances from and at various angles to the 
nozzle axis of symmetry . The study was made over a range of pressure 
ratios and free - stream Mach numbers in the NACA Lewis 8- by 6- foot 
supersonic wind tunnel . 

A 

C 
P 

L 

SYMBOLS 

The following symbols are used in this report: 

plan area of plate from nozzle - exit station to plate trailing edge 
station) 1 . 5 sq ft 

p - p~ 
pressure coefficient) 

length of plate from nozzle -exit station to plate trailing edge 
station) 1 . 5 ft 

distance to center of pressure from nozzle-exit station along sur ­
face of plate in chordwise direction 

M Mach number 

N force normal to plate ) positive when directed toward the nozzle 
centerline 

P total pressure at nozzle entrance 

p static pressure 

q dynamic pressure 

r radius 

S axial distance from nozzle -entrance station 

V velocity 

w width of jet normal shock of first period 
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x distance downstream of nozzle - exit station and parallel to free-
stream direction 

Y vertical distance between plate leading edge and nozzle centerline 

y coordinate orthogonal to x and z coordinates 

z spanwise distance from midchord of plate 

angle of attack of exit model with respect to free-stream direction, 
positive when nozzle is directed toward plate 

angle of attack of plate with respect to free-stream direction, 
positive when nozzle centerline for ~m 0 is farther from 
trailing edge than leading edge 

angle of jet deflection with respect to nozzle centerline, con­
sidered positive when jet deflects toward plate 

Subscripts: 

a afterbody 

j 

n 

ne 

w 

condition in jet when expanded isentropically and one -dimensionally 
over p/Poo 

nozzle 

nozzle exit 

normal shock of first jet period 

free stream 

APPARATUS AND PROCEDURE 

The jet was supplied by the exit -model apparatus reported in ref­
erence 8. The general layout of this model, the flat plate, and the 
support system are shown in figure 1 . The dimensions of the convergent 
exit nozzle and parabolic afterbody are given in figure 2 . 

Part of the runs at zero model and plate angle of attack were made 
with biconvex circular- arc fairings between the exit model and flat plate 
(fig. 3) . The aft ends of these fairings were termi nated as either a 
sharp trailing edge, or a blunt , or curved base. The curved- and blunt­
base fairings separated the plate a distance of 2 . 03 exit-nozzle radii 
from the nozzle centerline . Two shar p trai ling- edge fairings set this 
distance at either 1 . 40 or 2 . 03 exit - nozzle radii. The plate was tangent 
to the exit model at its maximum body radius when this distance ratio was 
2 . 03 . The fineness ratio of these fairings was 3 . 
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Static - pressure -measuring orifices were located on the plate as 
shown in figure 2 . Two total - and static -pressure rakes were located 
at the trailing edge of the plate . Schlieren photographs were taken 
of the jet structure and flow over the plate . 

Without fairings the plate was positioned at vertical distances of 
1 . 0 to 5 . 6 nozzle - exit radii from the jet centerline) and at angles of 
attack of _80 ) 00 ) 80 ) and 160 with respect to the free - stream direction . 
The exit - model angle of attack was set at either 00 or +80 • 

Pressure inside the nozzle was varied from a jet - off value to val­
ues producing a pressure ratio p/~ of 9 and the free - stream Mach num­
ber was set at 0 . 1) 0 . 6) 1 . 6) and 2 . 0 . 

RESULTS AND DISCUSSION 

Influence of Plate and Fairings on Jet 

Sketches of typical jet structure of a convergent nozzle operating 
at high pressure ratios in subsonic and supersonic free streams are 
shown in figure 4 . With subsonic external flow) the jet structure is 
of a periodic nature and all shocks are restricted to within the jet 
stream. With supersonic external flow) the oblique shocks) which are 
formed near the nozzle exit) intersect with each other or with a normal 
shock) reflect) and then pass through the turbulent mixing zone and out 
into the external stream (ref . 9) . No reflection of these shocks from 
the mixing zone back into the jet stream was observed . 

Deflection of the jet toward the plate was the only effect of the 
plate surface or fairings with the plate outside the jet boundary . The 
width of the normal shock and its distance from the nozzle exit remained 
unchanged with the addition of the plate or fairings (fig . 5 ). These 
distances were in close agreement with the results of reference 9 for 
the case of the jet alone in quiescent air . 

Schlieren photographs were used to determine the amount of deflec ­
tion of the jet toward the plate . The angle between the nozzle axis 
and a line extending from the center of the nozzle exit to the inter ­
section of the first two jet shocks (or to the midpoint of the normal 
shock if the two oblique shocks did not intersect with one another) is 
presented in figure 6. This angle was considered positive when the jet 
deflected toward the plate . 

Deflection in the case of the plate without fairings was about 30 

for a pressure ratio of 5 and a free - stream Mach number Moo of 2 . 0 (fig . 
6(a ) ) . The tendency of the jet to aspirate the region between the plate 
and jet and attach to the plate was counterbalanced by the inrushing air 
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from the plate sides and leading edge . The presence of the blunt or 
curved bases permitted a low- or base - pressure zone near the jet exit 
at supersonic speeds. The jet in these cases deflected an appreciably 
greater amount. The effect of the streamlined fairings) although small) 
increased the deflection of the jet toward the plate beyond that of the 
plate alone. 

In general) increasing the pressure ratio p/p~ increased jet de­
flection in the subsonic free-stream case and decreased deflection in 
the supersonic case. Typical results are shown in figure 6(b) . Absence 
of shock patterns on the schlieren photographs prevented determination 
of the curve at low pressure ratios . Increased free-stream static pres­
sure and a curtailed nozzle - supply pressure limited the subsonic curve 
at high pressure ratios. 

Influence of Jet Fairings on Plate 

The steepest pressure gradients measured on the plate in a super­
sonic free stream were due to shocks formed either within the jet or 
near the boattail trailing edge . Even with subsonic stream flow) ap­
preciable pressure gradients were transmitted to the plate because of 
the deflection of the streamlines of the external flow passing over the 
jet. 

Typical contour plots of the plate pressure distribution with the 
plate located 2 . 03 nozzle - exit radii from the nozzle centerline are 
shown in figure 7. The measured inlet total- to free - stream static­
pressure ratio across the nozzle was 5 . The increased pressures due to 
the jet shocks were usually restricted to narrower zones in the super­
sonic free-stream cases than in the subsonic case. Intersection of the 
shocks with the surface was calculated from schlieren photographs by the 
measured shock angle and axial position . 

The normal force coefficient and the center of pressure location 
were determined by integrating the pressure distributions on the plate. 
Normal force was considered positive when acting from the plate toward 
the nozzle centerline. 

The effect of vertical distance between the plate surface and nozzle 
centerline Y/rne at a free - stream Mach number of 1.6 is shown in fig­
ure 8. The pressure ratio across the nozzle wa3 set at 2 so that no 
effect of jet shocks would be present . The distance to the center of 
moments increased because of a strong boattail shock striking the plate 
at increasing axial distances from the nozzle as the plate was lowered 
away from the jet. The plate pressure distributions showing the effect 
of the boattail shock are presented in figure 9. 

Normal force approached zero) as expected) as Y/ r ne was increased 
beyond 2.03 . As Y/rne was decreased below 1.4) however) the absolute 
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value of the normal forces decreased as the plate became submerged more 
and more into the jet stream . The static -pressure coefficient of the 
jet stream measured by the pressure rakes at the plate trailing edge, 
is marked by the x on figures 9 (b) and (c ). 

The effect of nozzle pressure ratio on the plate is shovm i n figure 
10 . A Y/ r ne of 2 . 03 was selected as the boattail shock was far enough 
forward of the plate to cause very little contribution to the trends . 
When the jet was turned off, the pressure at the nozzle exit corresponded 
to that behind a blunt trailing- edge body . With a supersonic free 
stream, base pressure was well below free - stream values . This zone of 
low pressure was felt on the fore part of the plate and tended to de ­
crease the absolute value of the normal force and shift the center of 
pressure rearward . As the jet was turned on , the pressure in these 
regions was increased . However, a low-pressure zone preceded the jet 
shock as the jet was overexpanded. Also, as the pressure ratio acros s 
the nozzle was increased, the shock pattern elongated in an axial di ­
rection (fig . 5 ) exposing more of the plate to the low- pressure region . 
This is believed to have caused the decreasing absolute value of the 
normal forces as the pressure ratio was increased at the high values . 

The influence of fairings on the plate is shown in figure 11 . The 
pressure integrations to obtain forces and moments for these configura­
tions were made over the same projected area as that of the configura­
tions which had no fairing . The low-pressure zone created by the blunt 
and curved fairings appreciably decreased the average pressure on the 
plate and shifted the center of moments rearward . Each test point 
of figure 11 was first set by increasing the nozzle pressure ratio from 
a low value to the value recorded . Some difference of forces and 
moments were then obtained for the plate with fairings by arriving at 
the test point by lowering the nozzle pressure ratio from a higher 
value . This hysteresis effect was especially apparent for the blunt ­
and curved-base configurations . 

Only slight changes of the forces were noted by increasing the angle of 
attack of the exit model from 00 to 80 at a free - str eam Mach number of 1 . 6 and 
a pressure ratio of 2 (fig . 12). This indicates that the jet may have turned 
in a free - stream direction very near the nozzle exit . Normal forces 
varied linearly with plate angle of attack from 00 to 160

, and the center 
of pressure changed somewhat erratically . It is possible , however , for 
small changes in pressure distribution to cause large changes in center 
of pressure location . 

The effects of distance between the plate and nozzle center line , of 
pressure ratio across the nozzle , and of fairings on the pressure fluc -

(
Pmax - Pmi n\ 

tuations q~ J at two points on the plate (see fig . 2 ) are shown 

-~ ~ --------~ 
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in figures 13, 14, and 15 . The pressure - recording system used to obtain 
the data presented in these figures was accurate up to 100 cycles per 
second. Various frequency - amplitude surveys were made with equipment 
accurate to 1000 cycles per second . These measurements shovTed no reso­
nant or especially large pressure amplitudes at any frequency, but 
showed instead a typical noise trace over the range studied . Pressure 
amplitude fluctuations of the order of 0 . 1 were observed on the plate . 

The pressure amplitude was greater at the aft dynamic pickup loca­
tion than at the fore location for the plate without fairings . This 
difference may have been due to the spreading of the jet to regions near 
the plate at the aft pickup location. The addition of fairings, however, 
increased the disturbances at the fore position and decreased those at 
the aft . 

Pressure amplitudes of the fore pickup measured at a free-stream 
Mach number of 0 . 1 were of the same order of magnitude as the jet - noise 
data for a l-inch- diarueter jet alone in still air (ref 10) . This com­
parison was made by use of the evaluation of reference 11 to correct the 
l-in~h-diameter jet data to the larger size exit of this investigation. 

SUMMARY OF RESULTS 

The following results were obtained by investigating the interaction 
of a flat plate , a jet issuing from an axisymmetric body, and fair-
ings between the plate and body over a range of free - stream Mach numbers 
and pressure ratios across the exit nozzle : 

1 . With the plate at zero angle of attack, jet deflection of ap­
proximately 30 was obtained at a free - stream Mach number of 2 . 0 and a 
pressure ratio of 5 . Installations of fairings between the plate and 
the exit models housing the exhaust nozzle increased the jet deflections 
which were always toward the plate . 

2 . Largest pressure gradients on the plate were due to the inter­
section of the plate surface with a boattail shock and with shocks orig ­
ir.ating within the jet stream. 

3 . The presence of fairings decreased the average pressure on the 
plate and shifted the center of pressure rearward. 

4 . Change of exit - nozzle angle of inclination from 00 to 80 toward 
the plate showed no large effects on plate normal f orces at a free - stream 
Mach number of 1.6 and a pressure ratio of 2 . 

5 . Pressure fluctuations on the plate as great as 0.1 were observed. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aer onautics 

Cleveland, OhiO, July 20) 1955 
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