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IN FLIGHT OF A 200 CONE - CYLINDER WITH WALL TO LOCAL 

STREAM TEMPERATURE RATIOS NEAR l . O 

By Leonard Rabb and John H. Disher 

SUMMARY 

A highly polished 200 included-angle cone-cylinder body of revolu­
tion has been flown to obtain heat-transfer and boundary-layer-transition 
data at low ratios of wall to local stream temperature. During the 
flight, a maximum free - stream Mach number of 5 . 02 and a maximum local 
Reynolds number on the conical surface of 50 X106 were reached. Transi­
tions from a turbulent to a laminar and from a laminar to a turbulent 
boundary layer were observed at each of seven measuring stations on the 
cone. The maximum local Reynolds number at which laminar flow was ob­
served was 32xl06 . 

Van Driest's analysis of boundary- layer stability at infinite 
Reynolds numbers for local Mach numbers from 2.5 to 4 .0 closely approxi­
mates the conditions under which transition occurred during this investi­
gation when the analysis is based on a Prandtl number of 1.0 and a linear 
relation of viscosity with temperature . A recent analysis by Dunn and 
Lin of stability criteria for three-dimensional disturbances for a Prandtl 
number of 0.75 agrees more closely with the flight data at a Mach number 
of 4.0 than does Van Driest's two-dimensional solution for the same 
Prandtl number and viscosity assumptions. 

INTRODUCTION 

The design of hypersonic ballistic missiles can depend critically on 
the type of boundary layer that exists along the body. If laminar flow 
can be maintained over the major portion of the exposed missile surface 
area, the heat transfer into the body during re-entry will be only a 
fraction of that for a turbulent boundary layer, and appreciable econo­
mies in missile weight and cost can be effected. 
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Analyses (refs . 1 and 2) have indicated that at supersonic Mach 
numbers, laminar boundary layers can be maintained to high Reynolds num­
bers by properly cooling the skin of the vehicle. However, these a naly­
ses, although qualitatively substantiated (refs. 3 and 4), do not account 
for the effects of such variables as free-stream turbulence, surface 
roughness, and shock waves or other external disturbances. Experimental 
data are needed for evaluating theory and for practical application to 
missile design . 

Because of the high Reynolds numbers and stagnation temperatures 
involved, and because of the unknown effect of wind- tunnel-induced tur­
bulence, free - flight tests are at present the only means for obtaining 
much of the desired information . In addition to needs for evaluation of 
boundary- layer stability criteria, data are needed on heat - transfer coef­
ficients at high Mach numbers and Reynolds numbers. To facilitate pub ­
lication of the data, this report will present only the data concerning 
boundary- layer stability. 

The data reported herein were obtained from the flight of an air­
launched rocket -propelled cone - cylinder body of revolution that was de ­
signed to obtain boundary- layer- stability and heat - transfer information 
for a 200 included- angle cone at free - stream Mach numbers up to approxi­
mately 5 . 0 . During the accelerating part of the flight, the ratio of 
skin temperature to local stream static temperature remained within a 
region where theoretically the laminar boundary layer would be completely 
stable to two - dimensional disturbances. 

APPARATUS AND PROCEDURE 

A sketch of the model giving pertinent dimensions is shown in fig­
ure 1 and a photograph of the 200 included- angle nose cone is shown in 
figure 2 . 

A complete general description of the type of model used, the in­
strumentation, and the calculation procedure is given in references 5, 
6, and 7. The model described herein differed from those of references 
5 and 6 as follows: (1 ) Gross weight at launching was reduced to 197 
pounds by reducing the weight of lead ballast in the nose from 13 . 5 to 
8 pounds; (2) The telemeter antenna was moved from the nose cone to the 
trailing edge of the fins (fig. 3) in order to allow a continuously smooth 

cone surface; (3) The surface finish of the cone was l~ to 2 micro inch 

rms as determined by a Brush surface analyzer. This degree of finish was 
obtained by a metallurgical polishing technique using progressively finer 
grades of diamond polishing compound. 
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The instrumentation consisted of two axial accelerometers and nine 
resistance -wire skin- temperature elements. Of the nine temperature ele­
ments, two failed prior to launching. 

The locations of the seven usable temperature elements are shown in 
figure 4. Six of the elements were located in a line at slant distances 
of 11.66, 14.16, 18.28, 20.97, 23.53, and 25.84 inches from the cone 
apex. The seventh element was located at the 23 .53-inch station on the 
opposite side of the cone (8 = 1800 ). The skin thickness at the 
temperature-element locations ranged from 0.0295 to 0.0321 inch. The 
two accelerometers covered ranges of -2 to +37 and 0 to -12 gravitational 
units, respectively, and were connected to a common telemeter channel. 
The range was switched from positive to negative during flight by the 
"gil switch shown in figure 5. 

The model was released at a high altitude from an F82 airplane and 
was propelled by a solid propellant 6KS3000 rocket housed within the 
cylindrical portion of the vehicle. 

The calculation procedure was similar to that described in reference 
6 except as altered by the fact that static and total pressures were not 
measured during this flight. Therefore, the free-stream velocity was ob­
tained by integrating acceleration data and from radar tracking. The 
free-stream static pressure was obtained from the calculated altitude and 
an atmospheric survey conducted by the carrier airplane following the 
missile flight. 

RESULTS AND DISCUSSION 

Time histories of free -stream velocity, free-stream Mach number, 
axial acceleration, free-stream and cone Reynolds number per foot, and 
free-stream static pressure are presented in figure 6 . A curve of alti­
tude against horizontal range is plotted i n figure 7. The model was 
launched at an altitude of 35,340 feet and a free-stream Mach number of 
0.55. The rocket was ignited by delay squibs 5.7 seconds after release 
and the model accelerated to a maximum velocity of 5015 feet per second 
and a Mach number of 5.02 during the following 6.7 seconds. A peak ac­
celeration of 1093 feet per second per second was observed just after 
rocket ignition. At peak Mach number, the model was at an altitude of 
27,000 feet and the free -stream and cone Reynolds numbers were 15.9 and 
23xl06 per foot, respectively. The maximum local Reynolds number on the 
cone at a slant distance of 25.84 inches from the cone apex was 50 xI06 • 
After rocket burn- out, the model decelerated because of drag, reaching 
a maximum deceleration of -365 feet per second per second at 13.4 seconds 
after release. The inflections in the deceleration curve between 27.5 
and 33 seconds are due to changes in the aerodynamic drag forces as the 
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model passed through the transonic Mach number region. At 37 seconds 
after release, the model reached sea level and had decelerated to a Mach 
number of 0.90. 

Time histories of skin temperatures ts at seven locations are 

presented in figure 8 . Also shown are the free - stream total temperature 
TO' adiabatic wall temperature Taw' static temperature just outside the 

cone boundary layer t o' and free - stream static temperature to ' 

Because of transient flight conditions, the missile skin is, except 
for an instant near peak skin temperatures, always being heated or cooled 
by the boundary layer . The rate at which the skin is being heated or 
cooled is a function of the total energy in the boundary layer and also 
of the state (laminar or turbulent) of the boundary layer. Since the 
t otal energy in the boundary layer changes smoothly with time, any abrupt 
change in the time rate of change of the skin temperature can only indi ­
cate corresponding changes in the boundary- layer heat -transfer coeffi ­
cient . The heat - transfer coefficient h is shown in figure 9 for a 
typical temperature element . The boundary- layer heat - transfer coeffi ­
cient is directly related to the state of the boundary layer so that 
while the skin is being heated, a sudden increase in the slope of the 
skin-temperature curve indicates boundary- layer transition from laminar 
to turbulent flow. An abrupt decrease in the slope of the skin­
temperature curve indicates boundary-layer transition from turbulent to 
laminar flow . In figure 8, for each of the temperature elements, two 
distinct changes in slope are apparent between 9.3 and 11 . 2 seconds. 
The first is a decrease in slope and the second an increase in slope, 
indicating transition from turbulent to laminar flow and then from lam­
inar to turbulent flow. 

The ratio of skin temperature to local static temperature . just out ­
side the boundary layer ts / t 5 is plotted against local Mach numb er on 

the cone Me for the various stations in figure 10 . The two transition 

points for each station are indicated on the curves and the local Reynolds 
number for each is given . Van Driest has shown (ref . 2) that the required 
temperature ratio for boundary- layer stability at Mach numbers greater 
than 2.0 is essentially the same for all Reynolds numbers from 8xl04 to 
infinity . Consequently, the analytical solution of the boundary- layer 
stability equation based on infinite Reynolds number is equal to the so ­
lution at the finite Reynolds numbers encountered in this investigation. 
The theoretical curve from reference 2 is presented in figure 10 and com­
pared with the experimental data . 

As the model penetrates the infinite stability region during accele­
ration, the boundary layer is observed to go from turbulent to laminar 
for each of the stations . However, at local Mach numbers from about 3 . 5 
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to 4.0) and at wall to local stream temperature ratios of about 1.2 to 
1.3) the flow is observed to go back to turbulent. These valu=s 0f 
ts/to and local Mach number are well within the theoretically stable 

region. The local Reynolds number at which these transitions occurred 
varied from 9xI06 to 32XI06 based on slant distance from the cone apex. 
The transition was observed under nearly identical conditions at the two 
23.53-inch stations) which were 1800 apart. 

Cl'I 
~ The temperature ratio at which transition occurred is plotted against 
~ 
~ local Reynolds number at the instant of transition for the various sta-

tions in figure 11. The data are plotted separately for the turbulent­
to-laminar and laminar-to-turbulent cases. Local Mach numbers for each 
point are indicated on the curves. Also shown is one of Van Driest's 
solutions (for Prandtl number of 0.75 and Sutherland viscosity law) for 
temperature ratio required for infinite stability at Mach numbers of 
2.5, 3.0, and 4.0 on a flat plate. The local Mach number at which tran­
sition occurred varied from 2.67 to 2 .74 in figure ll(a) and from 3 .45 
to 3.93 in figure ll(b). It is apparent from the shape of the experimen­
tal curve that further small decreases in temperature ratio might lead to 
appreciably higher transition Reynolds numbers. It i s of interest that 
in reference 4) there is an indication of a transition from turbulent to 
laminar flow on a 200 cone at a Reynolds number of 90 xI06 ) local stream 
Mach number of 2.3) and skin to local stream temperature ratio of about 
1. 20. 

In figure 12) the data of figure 11 are combined and compared with 
recent tunnel results of a boundary-layer stability investigation con­
ducted on a 100 cone (ref. 8 ) at a free - stream Mach number of 3.12 (cone 
Mach number of 3.02). The maximum transition Reynolds number of the tun­
nel tests was about 10 . 6xI06 . The tunnel model had a surface finish of 
the order of 16 micro inch rms (somewhat rougher than that of the flight 
model). The results of the tunnel and flight investigations appear to 
agree within the scatter of the data at a Reynolds number of about 10XI06. 
The tunnel and flight cone Mach numbers at this condition were 3.02 and 
2.7) respectively. 

The significance of the agreement between the wind-tunnel and flight 
data at a Reynolds number of 10xI06 is difficult to assess with the lim­
ited amount of data at hand. The agreement may indicate that at these 
conditions there is no appreciable effect of using a surface finish finer 
than the tunnel value of about 16 rms and that the turbulence level that 
existed in the tunnel (0.5 to 1.0 percent) did not affect results at a 
Reynolds number of 10xI06 . Apparently the flight data provide an excel­
lent extension of the tunnel data to high Reynolds numbers. 

The flight data at Reynolds number ,- ~ar 20xI06 indicate little Mach 
number effect on stability criteria at local stream Mach numbers between 
2.68 and 3.92. 
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A large amount of data is believed to be required before actual 
boundary- layer stability' criteria can be determined . However , from the 
limited data of the fl i ght, it appears that with a 200 cone polished to 
a surface finish of 1 . 5 to 2 . 0 micro inch rms and f l own under actual 
atmospheric conditions, the temperature ratio required for boundary- layer 
stabilization at high Reynolds numbers is lower than that predicted by 
Van Driest when h i s solution is based on a Prandtl number of 0 . 75 and the 
Sutherland vi scosity law . 

A Prandt l number of 0 . 75 and the Sutherland viscosity law are be­
lieved to be reasonable assumptions for calculating the boundary- layer 
stability criteria for the range of conditions encountered during this 
investigation . However, in reference 2, calculations are also based on 
the assumption of viscosity proportional to temperature and a Prandtl 
number of 1.0. Shown in figure 13 is a comparison of the conditions at 
which transition was observed in flight with Van Driest's infinite ­
stability- criteria solutions for the various assumptions. Although 
boundary- layer stability or instability and boundary- layer transition 
are not synonymous, the conditions under which transition occurs in this 
investigation are probably indicative of boundary-layer stability crite­
ria. If this is assumed to be true, th& observed transition conditions 
for the configuration flown indicate that the Van Driest solution based 
on a Prandtl number of 1.0 and viscosity proportional to temperature 
gives a better prediction of stability criteria in the range of Mach num­
bers from 2 . 5 to 4 . 0 . 

A recent analysis by Dunn and Lin (ref . 9) considers the effects of 
three - dimensional disturbances on stability. Their solutions for three ­
dimensional disturbance stability criteria at a local Mach number of 4 . 0 
and based on a Prandtl number of 0 . 75 indicate a lower temperature ratio 
required for stability than does Van Driest ' s analysis for the two ­
dimensional disturbance with the same Prandtl number and viscosity rela­
tion . The solution at Mach 4 . 0 shown in figure 13 is in closer agreement 
with the experimental data shown than is the stability criteria based on 
two - dimensional disturbances . Complete solutions for the three ­
dimensional case have not as yet been made, so that comparisons at other 
Mach number s are not available . 

At appreciab l y higher free - stream Mach numbers than covered here but 
with the same range of local cone Mach numbers, the high air temperature 
in the conical flow field and in the boundary layer will have an appreci ­
able effect on Pr andtl number and viscosity . Caution should therefore be 
used in applying results of the present investigation to high free - stream 
Mach numbers with blunt cones, even though the local Mach number, Reynolds 
number, and temperatur e ratios may be compar able in both cases . 
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CONCLUSIONS 

A highly polished 200 included-angle cone-cylinder body of revolu­
tion has been flown to obtain boundary- layer transition data at low 
ratios of wall to local stream temperature. The following results have 
been obtained: 

1. A maximum free-stream Mach number of 5.02 and maximum local Rey­
nolds number on the cone of 50 xI06 were reached during the flight. 

2. Transition from a turbulent to a laminar and from a laminar to a 
turbulent boundary layer were observed at each of seven measuring stations 
on the cone. The minimum and maximum transition Reynolds numbers observed 
were gXI06 and 32xI06, respectively. The maximum transition Reynolds num­
ber occurred at a local Mach number of 3.56 with a wall to local stream 
temperature ratio of 1.20 . 

3. If it is assumed that conditions under which boundary-layer 
transition occur in this investigation are indicative of boundary-layer 
stability criteria, the data suggest: 

a. Van Driest's solutions for the stability criteria based on two­
dimensional disturbances and a Prandtl number of 1.00 with vis­
cosity proportional to temperature closely approximate the free­
flight data at local Mach numbers from 2.5 to 4 .0 and at Reynolds 
numbers from 9xI06 to 32xl06. 

b. The experimental temperature ratio for boundary-layer stability 
at a local Mach number of 4 .0 is closer to the value calculated 
by Dunn and Lin than that calculated by Van Driest. The analyses 
by Dunn and Lin and Van Driest are for similar assumptions (Prandtl 
number of 0.75, infinite Reynolds number , and linear viscosity­
temperature relation) but differ in the type of boundary-layer 
disturbance. Dunn and Lin assume three-dimensional disturbances, 
whereas Van Driest assumes two-dimensional disturbances. The 
three-dimensional analysis gives a temperature ratio of 1.47 as 
compared with 1.65 for t he two-dimensional analysis and approxi­
mately 1 . 30 for the experimental data at a local Mach number of 
4 .0. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, September 15, 1955 
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Model Specifications 

Gross weight at launching, lb 
Height at end of rocket boost, lb 
Launching altitude, ft 
Center of gravity at launching (station), in. 
Center of gravity at end of rocket boost (station), i n . 
Cross - sectional area (max . ), sq ft 
Skin t h ickness at temper ature measuri ng stations, in . 
Skin t h i ckness of shel l , i n . 
Fin area (2 fins), sq i n. 
Stabilizing- fin r oot- chord - t h i ckness rat i o 

CA- 2 

197 · 6 
93 

35,340 
49.9 
47 · 2 

0 . 466 
0 . 0295 t o 0 . 0321 

0 . 032 
152 

0 . 011 

80.00 . 1 

Fi guare 1 . - Dimen si ons and spec ificat i ons of model . 
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Figure 2 . - Instrumented cone . 
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Figure 3. - Photograph of fins showing telemeter antenna installation. 
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Figure 5 . - Photograph of telemeter assembly showing " g" switch . 
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