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SUMMARY 

The average bond energies D(B-Z) for boron-containing molecules 

have been calculated by the Pauling geometric-mean equation. These cal-
culated bond energies are compared with the average bond energies 
Dexp(B_Z) obtained from experimental data. The higher values of 

exp(B_Z) in comparison with bgm(B_Z) when Z is an element in the 

fifth, sixth, or seventh periodic group may be attributed to resonance 
stabilization or double-bond character. 

INTRODUCTION 

Only recently have accurate therm ochemical data on boron-containing 
molecules become available. These dat'a (refs. 1 to 7) permit the calcu-
lation of a number of experimental average bond energies Dexp(B_Z) 

usually from reactions of the type 

BZ3 (g) - B(g) + 3Z(g) 

In this paper the electronegativitY of boron and the boron-to-boron bond 
energy are calculated and used to compute the D(B-Z) bond energies 

from the Pauling electronegativitY equation. The calculated values of 
B-Z) are compared with the experimental values, and the differences 

between the values are interpreted in terms of partial double-bond char-
acter and resonance in BZ3 compounds. 

CALCULATIONS 

The average bond energies are calculated from the equation (ref. 8) 

gin(BZ) = '[D(B_B)D(Z) + 23.06 (xB - xZ)	 (1)
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where 'J5B)D(Z-Z) is the geometric mean of the nonpolar bond energies 
and x.B and x are the electronegativitieS of atoms B and Z (ref. 

9). The geometric-mean rather than the arithmetic-mean equation (ref. 
8) is used because the geometric-mean equation gives more satisfactory 
values of covalent bond energies when the atoms concerned are not alike. 
In any subsequent use of this equation or the expression D(Z-Z), Z will 
be replaced by the proper atomic symbols. 

The heats of formation of B113 and BR3 (R = CU3, C2115 , etc.), along 

with the new value of 141 kcal per mole for the heat of sublimation of 

boronj are used to calculate a De(B_H) of 93 kcal per mole and a 

of 87 kcal per mole. 

By use of equation (1), two simultaneous equations can be solved for 
D(B-B) and the electronegativity of boron xB. In one equation, 

exp(B) D(H-H) (ref. 10), and x11 (ref. 11) are known; in the other 

equation	 (B-C), D(C-C) (ref. 10), and XC (ref. 11) are known. Solv-

ing these equations gives D(B-B) of about 80 kcal per mole and xB of 

2.0. Using different data, Pauling (ref. 8) previously estimated an 
electronegativity of 2.0 for boron. 

Another method of obtaining D(B-B) uses the dissociation reactions 

of BH3, B2H6, B5119 , and B101114 to B(g) and 11(g) (ref. 12), along with 

the valence bond treatment recently proposed (ref. 13), to calculate a 
D(B-B) of about 85 kcal per mole. 

To compute D(B-Z), values from reference 11 for the nonpolar 

bond energies and the electronegativities are used, except for D(N-N), 

D(S-S), xN, xS, and D(Ge-Ge). For D(N-N), the bond dissociation 

energy of 60 kcal per mole obtained from the homogeneous dissociation of 

N2114 into I2 radicals (ref. 9) is used. Recalculation of the electro-

negativity differences for N-H, N-F, and N-C results in an xN of 3.05 

(fortuitously the same as xN in ref. 11). For D(S-S), a value of 61 

kcal per mole is obtained from 

us-Su(g) - 2 SH(g) and S 8 (g) - 8S(g) 

using the values D(H-SH) of 90 kcal per mole, D(H-S) of 84 kcal per mole, 

AHOf 	 of 32 kcal per mole, and L.H(S(g))of 64 kcal per mole (ref. 

14). Recalculation of the electronegativity differences of S-U, S-F, 
S-Cl, and S-Br results in an x5 of 2.75. A D(Ge-Ge) of 46 kcal per
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mole is used, based on n51 (Ge(g)) of 92 kcal per mole (ref. 15). 

The value Of Xce given in reference 11 should not change appreciably 

(XSI = 1.90; x = 1.90; and xSn = 1.90 (ref. 11')). 

RESULTS 

The calculated bond energies for bonds between boron and hydrogen 
and between boron and elements of the fourth, fifth, sixth, and seventh 
groups of the periodic table are listed in table I. Average bond ener-
gies obtained from various thermochemical studies are also listed in 
table I along with the molecule from which the thermochemical data were 
obtained.

DISCUSSION 

The experimental values of (B-Z), when Z is a fifth, sixth, or 
seventh group element in BZ 3 type compounds, are all higher than the 

calculated values. Since the calculated bond energies are for single 
bonds, this result is not surprising. When boron forms compounds with 
elements having unshared electron pairs and the boron has a six-electron 
valence shell (sp 2 hybridization of boron in BZ3 compounds), the tendency 

is to fill up the valence shell by formation of structures of the type 
Z2B = Z, often with several resonance forms possible (refs. 8 and 16). 

Therefore, B-Z bonds should have appreciable double-bond character and 
resonance stabilization, and should have higher bond energies than those 
calculated for single bonds. Thus, for B-F, B-Cl, B-Br, and B-I bonds, 
the strengthening (table I) amounts to about 17 kcal per mole per bond 
for B-F, about 10 kcal per mole per bond for B-Cl, and about 9 kcal per 
mole per bond for B-Br and B-I. Similarly, the B-O bond in B(OC 2H5 ) 3 is 

about 15 kcal per mole stronger than calculated, while the B-O bond in 
(n-C4119 ) 2BOH appears to be almost 30 kcal per mole stronger than the 

calculated value. Also, the B-N bonds in B(N(C11 3 ) 2 ) 3 and B3N3113C13 

(B_trichloroborazole) are 9 and 12 kcal per mole stronger than calculated, 
respectively. It is of interest to note the decreasing strengthening of 
the bond going down and to the left of F in the periodic table, that is, 
going from BF 3 to B13 and across to B(N(CH3 ) 2,) 3 . The rather large dif-

ference between the bond strengthenings in B(0C 2115 ) 3 and (n-C4119)2B011 

possibly indicates a very large double-bond character for (n-C4H9)2B011 

of the form (n-C 4119 ) 2B = 0H. These results are supported by the esti-

mate that resonance stabilization in borate esters B(OR) 3 should exceed 

17 kcal per mole based on a rough thermochemical determination (ref. 17).
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Further support is provided by the estimate (from thermochemical data 
other than those used in this paper) that the single-bond B-F bond 
energy should be between 130 and 140 kcal per mole (ref. 18), which is 
in agreement with the 137 kcal per mole calculated in the present 
investigation.

CONCLUDING REMARKS 

Experimental results indicate that the Pauling geometric-mean equa-
tion does not successfully predict the actual bond energies for compounds 
formed between boron and fifth, sixth, and seventh group elements of the 

form BZ3, since they have some multiple-bond character. The Pauling 

equation in its usual form is set up to calculate single-bond energies. 
On the other hand, the comparison of the hypothetical single-bond ener-
gies with the actual energies provides a method of estimating the amount 
of bond strengthening resulting from multiple-bond character and reso-
nance. The bond energies of boron-hydrogen and bonds involving boron 
and group-four elements (carbon, silicon, germanium, and tin) should be 
calculable from the Pauling equation, since these elements have no un-
shared electron pairs. If stable covalent bonds exist between boron 
and alkali metals, their bond energies may also be calculable as single-
bond values. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, September 28, 1955 
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TABLE I. - AVERAGE BOND ENERGIES 15(B-Z) 

Bond. Dg.(B_Z), 
kcal/mole

exp (B_7), a 
kcal/mole

Source Refer-
ences 

B-H 92 93±2 BH3 5,6 

B-C b89 87±3 BR3 (R = CH3, C2H5 , 6 
C3H7 , c4u9) 

B-N 95 104±5 B(N(C113)2)3 4 

107±5 B3N3113C13 2 

B-0 104 119±5 B(0C2H5)3 1 

133±5 (-C4H9)2BOH 3 

B-F 137 154±5 BF3 6 

B-Si 64 
B-P 64 
B-S 83 
B-Cl 98.5 108.5±2 BC13 6 

B-Ge 61 
B-As 55 
B-Se 65 
B-Br 81.5 90±2 BBr3, 7 

(-C4H9 ) 2B(Br) 3 
B-Sn 53 
B-Sb 52 
B-Te 54 
B-I 62 71±5 (n-C4119)2B1 3

aEx.perimental thermochemical values recalculated using 
L$(B203(s)) of 305.4 kcal/mole and LHsUbl(B(s)) of 

141 kcal/mole. 
bBased on D(C-C) of 82 kcal/mole. 

NACA - Langley Field, Va. 
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