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SUMMARY 

,A supersonic wind-tunnel investigation of the origin and distribution 
of store interference has been performed in the Langley 4- by 4-foot 
supersonic pressure tunnel at a Mach number of 1.6 in which separate forces 
on a store and on a 600 delta-wing—fuselage combination were measured. 
The store was separately mounted on its own five-component internal balance 
and was traversed through a wide range of spanwise, chordwise, and vertical 
positions. The configuration presented in this report simulates a heavy-
bomber delta-wing airplane and has a large external symmetrical store that 
represents a nacelle having a frontal area equivalent to a twin-engine 
nacelle. 

In general, the results indicated that the interference effects 
measured for the 600 delta-wing--fuselage combination were similar in 
character and magnitude to those previously reported for a 450 swept-
wing—fuselage combination tested in the, presence of the same store. 
However, the variation of the interference values of lift and drag with 
store chordwise. position produced on the store by the 60 0 delta-wing-
fuselage combination was somewhat smaller than the variation shown for 
the 450 swept-wing—fuselage combination. Also, the interference drag 
on the store produced by the presence of' the wing and fuselage is explained 
in a qualitative way by using the "buoyancy" method which considers the 
pressure field of the wing and fuselage and the resultant buoyant forces 
on the store.
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INTRODUCTION 

At transonic and supersonic speeds, research on external stores and 
nacelles has shown that interference between the various components may 
incur large performance penalties (ref. 1). However, very little force 
breakdown data have been obtained from which the problem of store inter-
ferences might be 'understood. In order to furnish such Information, a 
detailed experimental investigation of store interference has been under-
taken in the Langley 4- by 4-foot supersonic pressure tunnel. Reference 2 
describes in detail the investigation and presents the first phase of the 
program which includes store tests made in the presence of a 450 swept 
wing.

The results of store tests in the presence of a 600 delta-wing— 
fuselage combination at a Mach number of 1.6 are presented herein and 
Include the aerodynamic characteristics of the seinispan model (four com-
ponents) and the individual forces and moment (five components) on the 
store. The semispan wing-fuselage model and store simulate a delta-wing 
heavy-bomber configuration with a large external store (a body of revo-
lution having an equivalent frontal area of a twin-engine nacelle with 
no provision for internal flow). As in reference 2, the data are pre-
sented with a somewhat limited analysis in order to expedite . publication. 

SYMBOLS 

CD drag coefficient of wing-fuselage combination,
Drag

qS 

C L lift coefficient of wing-fuselage combination, Lif
LVf

t 
qS 

C f pitching-moment coefficient of wing-fuselage combination 

about 0.625,
Pitching moment 

qSE

C 1	 wing bending moment of wing-fuselage combination, 
wf	 Bending moment 

qS 

CD	 drag coefficient of store, Drag 
S 

CD	 base drag coefficient of store, PB 
B8	 s  
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CL	 lift coefficient of store, Lift 
s	 qF 

Cm	 pitching-moment coefficient of store about store nose or 

store midpoint as indicated, Pitching moment 
qF 1 

C	 side-force coefficient of store, Side force 
qF 

Cns	 yawing-moment coefficient of store about store nose or 

store midpoint as indicated, Yawing moment 
qF 1 

CL	 total lift coefficient of complete configuration (wing and 

fuselage plus store) based on wing area, C+ CL.( 


	

Lwf	 s  

CD	 total drag coefficient of complete configuration (wing and 
t	

fuselage plus store) based on wing area, C 	 + CD4S)wf  

CL	 slope of variation of store lift coefficient with wing-
Sa	 fuselage angle of attack 

C15	 slope of variation of store side-force coefficient with 
a	 wing-fuselage angle of attack 

pressure coefficient on store base 
S 

E	 mean aerodynamic chord of wing, in. 

a	 angle of attack measured with respect to free airstream, deg 

S	 total area of wing semispan, 0.543 sq ft 

F	 maximum frontal area of store, 0.0123 sq ft 

A	 area of store base, 0.007 sq ft 

q	 dynamic pressure, lb/sq ft 

b/2	 wing semispan, 9 . 5 in. 

1	 store length, 12 in. 

x	 chordwise position of store midpoint, measured from nose of 
fuselage (see fig. 1), in.
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y	 spanwise position of store center line, measured from 
fuselage center line., in. 

z	 vertical position of store center line, measured from wing 
chord plane, in. 

cotangent of Mach angle, JM2 - 1 

M	 Mach number 

Subscripts: 

f	 .	 fuselage 

w	 wing 

s	 store

APPARATUS AND TESTS 

Models and Equipment 

The principal dimensions of the models and the general arrangement 
of the test setup are shown in figure 1. A list of the pertinent model 
dimensions is given in table I. The semispan wing-fuselage combination 
was designed to simulate a delta-wing heavy bomber-type airplane. The 
600 delta wing and fuselage were constructed of metal and were mounted 

on a boundary-layer bypass plate l0 . inches from the tunnel wall. 

The fuselage and store are the same used in previous store tests 
and are described in detail in reference 2 together with a description 
of the test equipment, methods, and remarks on support interference. 
The delta-wing—fuselage model angle of attack was varied from 0 0 to li.° 
with the store angle of attack remaining constant at 0 0 ., Tests were 
made with the store in the presence of the wing-fuselage model at various 
spanwise and chordwise positions and for vertical heights z of 
1.15 inches, 1.67 inches, and 2.09 inches as shown in figure 1. All 
tests were run with boundary-layer transition fixed as described in ref-
erence 2, and with no store-support pylons or model tail surfaces. 

The tests were performed in the 14 by 4-foot supersonic pressure 
tunnel at a Mach number of 1.61 and a corresponding Reynolds number per 

6 foot of 4.20 x 10.
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Accuracy of Data 

An estimate of the relative accuracy of the present data as deter-
mined fr9m an inspection of repeat test points and static-deflection 
calibrations is presented belbw: 

Store position: 
x,	 in	 ............................... ±0.025 

•y, in............................. ±0.05 
Z,	 in............	 ...	 .............. ±0.05 

Store characteristics: 
CDs ............................. ±0.005 ............................... 0.010 ........................... .	 ±0.005 
Cvs 	 ...............................1_ 

±0.010 

Cr ............................. ±0.005 
a,	 deg	 ........................... ±0.2.

Wing-fuselage: 
C]f	 ............................. ±0.0005 
Cf ............................. ±0.005 
CmWf ............................. ±0.002 
C, wf
	 ............................ ±0.002  
deg

RESULTS AND DISCUSSION 


Basic Data 

Isolated store and wing-fuselage data. - The lift, drag, and pitching- 
moment coefficients for the isolated store at angles of attack up to 100 
were obtained from references 2 and 3 and are presented in figure 2(a). 
Data are shown for tests made with the store pitched' both in the plane of 
the normal-force beam and. in the plane of the side-force beam; for as was 
pointed out in ref. 2, the store was rdlled as the values of vertical 
height z were changed. The data thus obtained are shown to be within 
the stated accuracy of the tests. Also, the pitching-moment data are 
presented computed about the store-nose and about the store midpoint; for 
the referenced interference data have been presented about both points. 
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Figure 2(b) presents the lift, drag, and pitching moment for the 
isolated fuselage and the isolated wing-fuselage combination for angles 
of attack up to 

Chordwise plots of force coefficients.- The basic data for the 
store in the presence of the wing-fuselage combination are presented in 
figures 3 to 8. All store drag data have been corrected for free-stream 
static pressure at the base. Figures 9 to 14-show the corresponding 
basic data for the wing-fuselage combination in the presence of the store. 
The data are presented in the form of plots of coefficients against a 
chordwise position parameter x - By which is a function of the position 
of the store midpoint and the inclination of the free-stream Mach line. 
A horizontal Mach line offset, which was discussed in detail In refer-
ence 2, permits the curves of the chordwise coefficient variation to be 
faired as a "family,"and thus results in a more systematic fairing 
between test points. Offset vertical scales are used so that data for 
the 11 spanwise positions can be shown on a single figure. On the right 
and left margins, the zero for each curve is identified with the line 
Symbol corresponding to the spanwise position. The spanwise or ôhordwise 
store positions at which measurements were obtained are identified by the 
appropriate symbol in a sketch drawn to scale on each figure. 

Contour Plots 

Contour plots of the aerodynamic forces and moments for selected 
configurations have been prepared from the basic data (figs. 3 to lii.) 
and are presented in figures 17 to 25. For all the contour plots, the 
force or moment coefficient involved is plotted at the store midpoint 
for the various store locations. 

Store drag. - Figure 15 shows the drag of the store (coefficient 
based on store frontal area) in the presence of the wing-fuselage combi-
nation. The influence of the wing-fuselage combination on the drag of 
the store is shown (fig. 15(a)) to increase the drag of the store about 
60 percent in the vicinity of the wing midchord inboard positions. When 
the store is moved rearward toward the wing trailing edge and outboard 
toward the wing tip, the store drag values decrease toward the isolated 
store values. Favorable interference reduces the store drag behind the 
wing trailing edge. Figure 15(b) shows that increases in vertical dis-
placement between the store and wing, in general, decrease the store 
drag for all store positions in the region of the wing plan form. 
Increasing the wing-fuselage angle of attack increases the store drag 
near the wing trailing edge when z = 2.09 (fig. 15(c)). 

Store lift.- Contour plots of the store lift in the presence of the 
wing fuselage are presented in figure 16. In the vicinity of the wing
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plan form, the data show large increases in store lift (fig. 16(a)), 
particularly for store positions inboard on the span. The increase in 
the store lift is probably caused by the negative pressure region 
beneath the wing . plan form. The store lift forward and rearward of the 
wing plan form decreases and for some store positions becomes negative. 

In general, increasing the displacement between the store and wing 
shows small decreases in store lift (fig. 16(b)). Effects of angle of 
attack on store lift indicate a small reduction in store lift inboard 
on the wing and an increase near the tip (fig. 16(c)). 

Store pitching moment.- Contour plots of the store pitching moments 
in the presence of the wing and fuselage are presented in figure 17. 
Since the pitching moments for this figure are calculated about the store 
nose, the pitching-moment values shown are largely a result of lift on 
the store and, in general, show the same trends as previously described 
for lift. 

Store side force.- The data of figure 18 show a contour plot of the 
store side force in the presence of the wing and fuselage. The data of 
figure 18(a) show a positive (inward) side force for all store positions 
on the wing plan form, except along the wing trailing edge. Increasing 
the vertical displacement between the store and wing shifts the region 
of negative side-force coefficients forward on the wing plan form some-
what (fig. 18(b)) but no major effects of vertical displacement are noted, 

However, increasing the wing angle of attack (fig. 18(c)) causes 
large increases in store side force which will be discussed in more 
detail in subsequent figures. 

Store yawing moment. - Contour plots of the store yawing-moment 
coefficients in the presence of the wing fuselage are presented in fig-
ure 19. The yawing-moment coefficients for this figure are also com-
puted about the store nose and are largely a result of side force. 

Wing-fuselage drag. - Contour plots of the wing-fuselage drag in 
the presence of the store are presented in figure 20 (coefficients based 
on wing area). The drag of the wing and fuselage shOws an increase of 
approximately 0.0010 to 0.0015 due to store interference for both store 
vertical heights (figs. 20(a) and (b)) which is about a 13-percent drag 
increase over the isolated wing-fuselage drag (0.0115). Increasing the 
angle of attack to !i.O (fig. 20(c)) raises the drag level due to angle-of-
attack loading; however, the wing-fuselage drag due to store interference 
was about the same for store positions forward of the wing plan form with 
small increases shown for positions in the vicinity of the wing trailing 
edge.
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Figure 21 shows the total drag for the complete configuration (wing 
and fuselage plus store). In the region of the wing plan form, the total 
drag varied from about 0.017 to 0.022 with the minimum values shown for 
store positions along the wing trailing edge and around the wing tip 
(fig. 21(a)). Maximum total drag is shown for store positions in the 
vicinity of the wing midchord inboard stations. Since the total drag for 
the isolated store and the isblated wing and fuselage is only 0.0172, at 

= 00 the maximum total drag (0.022) corresponds to an increase of 
approximately 28 percent due to mutual interference. 

Increasing the vertical displacement between the store and wing 
lovers the increase in total drag for store positions in the region of 
the wing root'(fig. 21(b)). Changing the angle of attack to 149 
(fig. 21(c)) affects the total drag in a manner similar to the effects 
previously discussed for wing-fuselage drag. 

Wing-fuselage lift. - The lift of the wing-fuselage combination in 
the presence of the store is presented in figure 22. With the store 
near the wing surface (fig. 22(a)), a positive lift interference occurs 
for all store positions rearward of about the wing center (about 0.5E) 
with maximum values shown inboard along the wing trailing edge. For 
store positions near the forward portion of the wing,, negative lift-
interference values were obtained. Increasing the vertical displacement 
between the wing and store tends to shift the negative lift-interference 
region forward somewhat (fig. 22(b)), but the magnitudes of the lift 
values remain about the same. Changes in lift interference due to angle 
of attack appear to be relatively small (fig. 22(c)). 

Figure 25 shows the total lift of the complete configuration (wing 
and fuselage plus store). These data show only small variations from the 
results previously shown for the wing-fuselage lift, and thus indicate 
that the effects of store lift on total lift are relatively small. 

Wing-fuselage pitching moments.- The data of figure 24 present the 
contour plots of the wing-fuselage pitching moments in the presence of 
the store (data computed about 0.625E). Figure .211. (a) shows that for store 
positions in the proximity of the wing (z = 1.15) maximum positive 
pitching moments occur in the vicinity of the inboard midchord stations. 
For store positions along the wing trailing edge and forward of the wing 
leading edge, the pitching moments decrease to zero. Increasing the 
store vertical height (fig. 24(b)) decreases the magnitude of the pitching 
moments and shifts the region of maximum values forward somewhat. The 
pitching moments were increased approximately 0.026 due to 40 angle-of-
attack loading (fig. 24(c)), but the effects of store interference on the 
pitching moments remained about the same. 

Wing-root bending moments.- Contour plots of the wing-root bending 
moments are shown in figure 25 (data computed about model center line).
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The bending-moment contours (fig. 25(a)) are similar to the wing-fuselage 
lift contours insofar as positive bending moments occur for store posi-
tions rearward of about the wing center and change to negative bending 
moments on the forward portion of the wing. Increasing the store verti-
cal displacement (fig. 25(b)) tends to move the region of positive inter-
ference forward on the wing, but the magnitudes of the bending moments 
show only small differences. The peak values of bending moments shown, 
about 0.024, correspond to that produced by approximately 10 angle of 
attack. The'contour plot of figure 25(p) shows that increasing the angle 
of. attack to 4 causes no appreciable changes in the incremental bending-
moment values for store positions in the vicinity of the wing plan form. 

Pressure Field Analysis 

As indicated in reference 2, there is a need for more experimental 
and theoretical studies of the interferences of actual airplane configu-
rations. Therefore, it appears that a simple understanding of the 
sources and distribution of the interference effects of specific configu-
rations would be useful, particularly with regard to drag. Thus, the 
drag data have been analyzed accordingly by using the qualitative 
"buoyancy" method outlined in reference 2. 

Store drag in presence of wing fuselage.- The effect of the wing-
fuselage pressure field on store drag for two spanwise stations may be 
seen in figure 26. The only static-pressure measurements taken in the 
flow field were at the base of the store. The difference between base 
pressure of the store in presence of the wing and fuselage and that of 
the isolated store is indicative of the mutual interference effects at the 
base. The incremental pressures obtained at the base of the store were. 
found to vary approximately as the theoretical flow field pressures for 
isolated delta wings in reference 4; so these incremental pressures were 
used for the present qualitative study of the store interference effects. 
The variation of the store plus interference drag can be shown by simply 
mapping this flow field into positive and negative pressure-coefficient 
regions as shown in figure 26. The increase or decrease in the store-
drag curve over or below that of the isolated store drag can be explained 
in a qualitative way by simple "buoyancy considerations." That is, the 
values of store drag above the isolated store values are a result of the 
presence of the store afterbody in a region of negative pressure and the 
presence of the store nose in a region of positive pressure with peak drag 
values resulting from a combination of these pressures on the store. The 
values of drag below those for the isolated store can similarly be 
explained by negative pressures on the store nose or positive pressures 
on the store afterbody. 

An attempt was made to Compute the store drag by the buoyancy method 
of reference 2 using the pressure-field information of figure 26. The
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store drag values calculated for the spanwis stations of figure 26 
(y = 5.4 and y = 7.8) showed poor agreement with the measured store 
drag, and therefore the values are not shown. No extensive calculations 
were attempted because the pressure-field information was somewhat 
limited. Thus, it appears that a more complete survey of the flow field 
than was obtained in these tests, preferably obtained by more exact 
methods of measurement, would be required to predict the store drag with 
any degree of accuracy. 

Drag of wing and fuselage in presence of store.- The variation of 
the wing-fuselage drag with chordvise store position for four spanwise 
stations is shown in figure 27. The position of the local wing section 
with respect to the store and its pressure field (ref. 2) for a number 
of points on the curve is shown in the sketches. As before, the drag 
of the wing and fuselage above or below the isolated value is explained 
by the position of the local wing-chord section in the positive or 
negative pressure field of the store. In general, high drags are a 
result of positive pressures over the forward portion of the wing section, 
or negative pressures over the rearward portion of the wing section, or a 
combination of both. Although only local chordwise effects are illus-
trated ., the same observations can be made by mapping the flow field over 
that part of the wing plan form affected by the store pressure field. 

Thus, it is shown that the method used in reference 2 to explain the 
mutual interference drag of a swept wing and a store is also applicable 
to the case of the delta-wing configuration. 

Effect of Store Vertical Displacement and 


Wing-Fuselage Angle of Attack 

Effect of store vertical displacement z.- The effects of vertical 
displacement between the store and wing on the store and wing forces and 
moments are sunmarized in figure 28 to 37 for four spanwise stations. 
The store moments for these figures were calculated about the store mid-
point. As was previously noted in the discussion of the contour plots, 
figures 28 to 37 indicate that the effects of store vertical height on 
the measured store and wing-fuselage forces and moments are relatively 
small or negligible except for store drag and store lift which showed 
significant changes for some store positions. Similar results due to 
the effects of store vertical displacement were also shown in references 2 
and 3 for the swept-wing configuration. 

Effect of wing-fuselage angle of attack.- The effects of the wing-
fuselage angle of attack on the. store forces and moments are presented 
in figures 38 to 44. It should be noted that the store angle of attack 
remained at 00 when the wing-fuselage angle of attack was changed. The
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values of the store data, therefore, represent only the interference 
values; and thus in applying these data for angles of attack other than 
zero, the effects of store angle of attack must also be considered. 

Figure 38 shows that increasing the wing angle of attack to 14.0 

increases the store interference drag considerably for store position 
along the wing trailing edge. However, for inboard store positions on 
the forward portion of the wing plan form, increasing the angle of 
attack decreases the store drag somewhat. 

The effects of angle of attack of the wing-fuselage combination on 
store lift are shown in figure 39. Increasing the angle of attack to 40 
(fig. 39) decreases the store lift considerably for inboard spanwise 
store positions on the wing plan form. This result, as pointed out in 
reference 2, was probably due to increased intensity in the positive 
pressure region ahead of the wing leading edge which is to be expected 
with increased angle of attack. 

The contour map of CL	 in figure 40 for angles of attack up to 
CL 

40 (linear variation between 0 0 and 14.0) shows that wing lift changes 
store interference lift in a negative direction for store positions over 
a range slightly larger than the wing plan form except for store posi-
tionsin the vicinity of wing tip. For the region around the wing tip, 
some increase in store lift was noted which probably resulted from the 
effects of tip vortices. 

The data of figures 41 and 42 indicate large increases in store side 
force with increases in angle of attack. The contour plot Cy 	 (linear 

ScL 
variation between 00 and 40) shows that the maximum increase in side force 
occurs in the vicinity of the wing tip. This is as expected since the 
intensity of the spanwise flow increases toward the tip. The small change 
in vertical height which occurs when the wing-fuselage angle of attack is 
changed is small and has little effect upon the side-force loads now being 
considered. 

Although the contour plot C 
s( (fig. 142) was prepared from data 

limited to 40 angle of attack, these data indicate that, for higher 
angles of attack, the side-force loads on the store or pylon would con-
tinue to increase and become critical. This has been shown to be true for 
a similar delta-wing configuration tested in the 9- by 12-inch blowdown 
tunnel for angles of attack up to 10° (ref. 5). A comparison of the data 
of the two investigations was made in figure 9 of reference 6 and showed 
good agreement between the results. Alo, as was pointed out in refer-
ence 6, the comparison indicated that the side-force data from the present 
tests might be cautiously extrapolated to higher angles of attack using 
the 9- by 12-inch blowdown tunnel data as a guide.
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Figures 43 and 144 show the effect of angle of attack on store 
pitching moment and yawing moment, respectively, to be measurable, but 
small. Figure 44 also shows but little variation of store yawing moment 
with store chordwise or spanvise positions. However, the store yawing-
moment data of reference 3 for tests on a 14.50 swept wing also indicated 
similar results. 

The data of figures 45 and 46 show the effects of angle of attack 
on wing-fuselage drag and total drag (wing and fuselage plus store), 
respectively. Figures 14.7 to 49 illustrate the effects of angle of 
attack on wing-fuselage lift, total lift (wing and fuselage plus store), 
and pitch, respectively. Although the data for each of these figures 
show that the curves were displaced considerably due to angle-of-attack 
loading, the variations with store chordwise position are similar in 
shape and in magnitudes of changes shown. Thus, in general, the figures 
show that the interferences of the store on the wing-fuselage combination 
are little affected by wing angle of attack and appear to depend primarily 
upon-store position. A similar result was found for the swept wing of 
reference 3. 

Relative Contribution of the Store and the Wing and Fuselage 


Toward Total Drag and Lift 

Figures 50 and 51 show the drag and lift for the store (based on 
wing area), the wing-fuselage combination, and the sum of these two which 
is the total for the complete model plotted against store chordwise posi-
tion. The data of figure 50 show that the maximum drag for both the 
store and the wing and fuselage occurs at about the sane store chordwise 
positions (between x = 20 to 24), thus causing high peaks in the total 
drag curves. Similar results were also noted in reference 2 for the 
swept-wing configuration; however, the drag-curve peaks were somewhat 
more pronounced and slightly farther rearward (about stations x = 214-
to x = 28). Figure 51 shows that the store lift (based on wing area) 
is very small and consequently it contributes only a small part toward the 
total lift.

Comparison of Store and Wing-Fuselage Forces 


for the Swept- and Delta-Wing Combinations 

Figure 72 shows a comparison of the contour plots of the store drag 
and total drag (a = 0°, z = 2.09) for the 60 0 delta-wing combination 
and a 115° swept-wing combination (refs. 2 and 3). Although the wing 
plan forms differed markedly in sweep, aspect ratio, and thickness ratio, 
the interference values of store drag produced on the store by both model
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combinations were of comparable magnitudes and, in general, showed simi-
lar trends. The maximum store drag for store positions' in the vicinity 
of the wing occurred for both models inboard on the wing plan form. How-
ever, the data of reference 2 for the swept wing indicated that the 
fuselage has a significant effect on the store interference drag for 
some inboard store positions, and thus should not be neglected in making 
comparisons. The contour plots for total drag show a considerably higher 
drag level for the 1t5° swept wing, and the magnitudes of the incremental 
drag variation due to store interferences are approximately twice the 
incremental values shown by the delta wing in the vicinity of the wing 
plan forms. Also, the variation of total drag with store spanwise 
position appears to be somewhat larger for the 1150 swept wing. 

Comparisons of the contour plots of the store lift for the delta and 
the swept wing are shown in figure 53. The data show that the magnitudes 
of store lift for both wing-fuselage combinations were of comparable 
magnitudes; however, the values were slightly larger for some store 
positions in the presence of the swept wing. Contour plots of the total 
lift (wing and fuselage plus store) show that maximum total lift inter-
ference occurred on both wings for store positions in the vicinity of the 
wing plan form along'the wing trailing edge near the inboard stations. 
The magnitudes of the maximum total lift interference in this region are 
slightly larger for the swept wing (about 0.01) as a result of the 
slightly higher store lift values. 

A comparison of the contour plot of the store side-force slope coef-
ficient Cy	 for the two wings can be found in reference 6 (z = 2.09). 

Sc:L 

These data indicate that the highest side-force loads are obtained at the 
tip for both wings and the coefficients show values of comparable magni-
tudes. Further, the comparison showed the chordwise variationof Cy

ScL 

to be essentially zero in the case of the delta wing, whereas the swept 
wing showed considerable chordwise variation of Cy 

CONCLUSIONS 

A supersonic wind-tunnel investigation has been conducted in the 
Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 1.6 
in which separate forces were measured on a store and on a 600 delta-
wing—fuselage combination for a wide range of store positions. The 
results are compared with similar tests of the store in the presence of 
a 450 swept-wing—fuselage combination refs. 2 and 3) and indicate the 
following conclusions:
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1. Large changes in store and wing-fuselage forces and moments may 
occur for both wing-fuselage combinations with small changes in store 
spanwise or chordwise positions. 

2. The store positions for high drag with both complete configura-
tions (wing and fuselage plus store) were in the vicinity of the wing 
inboard spanwise stations. 

3. The interference drag on the store produced by the presence of 
the wing and fuselage is explained in a qualitative way by using the 
"buoyancy" method which considers the pressure field of the wing and 
fuselage and the resultant buoyant forces on the store. 

4. Increasing the wing-fuselage angle of attack caused large changes 
in store lift and side force with both wing-fuselage combinations, but 
resulted in only small changes on the measured store moments. The inter-
ferences of the store on the wing-fuselage combinations were little 
affected by wing-fuselage angle of attack and appear to depend primarily 
upon store position. 

5. The interference values produced on the store by the delta-wing-
and swept-wing—fuselage combinations were of comparable magnitudes at 
00 angle of attack for lift and for drag. However, the variation of these 
forces with store chordwise position was greater for the swept-wing com-
bination. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., September 12, 1955-
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TABLE I.- PERTINENT MODEL DIMENSIONS 

Store: 
Maximum diameter,	 in.................... 1.5 
Maximum frontal area,	 sq ft	 ................ 0.0123 
Base	 diameter,	 in	 .................... 0.96 
Base	 area,	 sq	 ft	 ........................ 0.005 
Overall	 length,	 in .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 12 
Nose	 fineness	 ratio	 .................... 3 
Afterbody fineness ratio	 ................. 1.82 
Overall fineness ratio	 ................... 8 
Ratio of wing area to store maximum frontal area ......

Fuselage: 
Maximumdiameter, in..................... 2.75 
Maximum frontal area (semicircle), sq ft ......... . 0.0206 
Base diameter, in	 ...................... 1.372 
Base area (semicircle), sq ft ............... 0.0051 
Overall length, in..................... 35.75  
Nosefineness ratio	 .................... L75 
A±'terbody fineness ratio .................. 3 
Overall fineness ratio ................... 13 

600 Delta Wing: 
Semispan, in. 
Mean aerodynamic 
Area (semispan), 
Aspect ratio 
Center-line chor 
Section . .

9.5 
chord, in.... ... ........... 10.97 
sqft ..................... 0.5143 

2.31 
in.	 .................. 16.Ii.54  
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Figure 12.- Total lift of the complete configuration (wing and fuselage 

plus store). M = 1.61.
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(a) z = 1.17 inches; a = 

Figure 13. - Pitching moment of wing-fuselage combination in presence of 

store (computed about 0.625ë). M = 1.61.
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(b) z = 1.67 inches; a = O.


Figure 13.- Continued.
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(c) z=2.O9 inches; cL=O°.


Figure 13-- Continued.
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Figure 46. Effect of angle of attack of wing-fuselage combination on 

total drag. z = 2.09 inches.
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to total drag. z = 1.15 inches; a = 00.



NACA RM L77I27.	 127 

CL, (S)	 _-_0.-

CLEf 

(3J•	 CL	 __ 

S 

(5J 

C 

U 

-J 

C 

-j

20 24 

Chcjdwise position, x, in. 	 Chcrdwise position, x ,in. 

Figure 71. - Relative contribution of store lift and wing-fuselage lift 

to total lift. z = 1.15 inches; m = 00.



co 

126

PA ILMI: — .aw rr' UI 
! I FAFAIIIIM uiiiugij 

N. 

I'V I/I/I/X/J'!I A3

vi 

N..

'
WHHIH 
ILIIP,Ain u!iiiii1I ll1llIiI Ui!iIIii1

I A	 I/I	 I	 I A 1 

NACA RM L55127a 

0
0 

.4.) ... 
-o w 

N.

C) 

0 

0. 

tII 

H. 
bo 

rd 
r. 
Cd 

+ 

bO 

rd 

) 
c	 * 

¼1	 N 1+) 
0) 

o 

0 

00) 
W4 

tp 

N.

0 
0

cu 110 

.4.). 

o.J
wH 

0)0)11 

hi 



.4. 

0 .4	 g: 

c::	 co

r..

NACA flM L55127a
	

127 

C7 

oil 

.4.) .s 
o N..	 r4 Q) 
A 10 

C) .c

go 0. 
oc¼j 
43 11 
4-i 

CC bD 

.rIN 
H 

air;j 

4-4 
c	 *CO(	 co 
cr5	 I5	 N	 q 14) 

0 

Co 

CH 
0 

Oa) 

cd 

',-1--

bO 

0

P4 r-4 

0
4). 

• 

Lr\ Co H 

G) II)	 Ii 

PLI 

N/IC/I - Langley Field, Va.


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129



