
I' 

RM A55F23 

NACA 

RESEARCH MEMORANDUM 

NUMBERS BETWEEN 1.42 AND 2. 44 

By Richard Scherrer and Forrest E . Gowen 

Ames Aeronautical Laboratory 
Moffett Field, Calif . 

NATIONAL ADVISORY COMMITTEE 
FOR AERONAUTICS 

WASHINGTON 

September 7, 1955 
Declass ified September 1, 1959 



' . 

", 



1Z 

---------~--~---- -

NACA RM A55F23 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

PRELIMINARY EXPERIMENTAL INVESTIGATION OF A VARIABLE-AREA, 

VARIABLE -INTERNAL-CONTRACTION AIR INLET AT MACH 

NUMBERS BETWEEN 1. 42 AND 2 . 44 

By Richard Scherrer and Forrest E. Gowen 

SUMMARY 

A preliminar y investigation of a variable - ar ea, variable - internal ­
contraction air inlet was conducted at Mach numbers from 1.42 to 2 . 44 . 
All tests were performed with the mode l at zero angle of attack. The 
ReynOlds numbers of the tests based on inlet width ranged fr om 0.4xl 06 
t o 1.6xl 06 . The total pressure recovery after supersonic compression, 
the total pressure rec over y at the exit of the subsonic diffuser and the 
pressure distribution along the diffuser walls were measured. The inlet 
was tested with both r ectangular and modified internal cross sections . 
The maximum total pressure recovery obtained for the design range of Mach 
numbers was sufficiently near that obtained with other variable inlets 
t o warrant further investigation . 

INTRODUCTION 

It is necessary for some aircraft to operate efficiently at a variety 
of Mach numbers and over a wide range of a l titudes . These aircraft, to 
attain the maximum net propulsive force, require some f orm of variable 
inlet. A number of variable inl ets have been proposed (refs. 1 through 
10 ) and sufficient experimental data are availabl e to allow the designer 
t o make detailed eval uations of most of these inl ets . Littl e data are 
availabl e , however, for inl ets having both the inlet area and the con ­
traction ratio independentl y variabl e . Since such inlets in theory have 
as good or better pressure recover y and less spill age drag than other 
variable inlets, experimental investigations are warranted . 
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The purpose of the present investigation was to determine the pres­
sure recovery of one variable-internal-contraction inlet for a variety of 
entrance areas and contraction ratios. These data and the fact that the 
mass-flow ratio can always be maintained at unity for practical operational 
conditions are sufficient for evaluation of the net propulsive force of an 
engine installation employing such an inlet. The inlet selected for test 
had rectangular cross sections, variable entrance area, variable internal 
contraction, and sharp lips. 

SYMBOLS 

A inlet cross-sectional area, sq in. 

L inlet length from leading edge of side plate to rake station, in. 

m inlet mass-flow rate, slugs/sec 

M Mach number 

p static pressure, lb/sq in. 

Pt total pressure, lb/sq in. 

q dynamic pressure, lb/sq in. 

R Reynolds number based on duct width 

x longitudinal distance from leading edge of side plate, in. 

y distance from fixed plate to movable flap (fig. 1), in. 

Y1e equivalent throat height, throat area/throat width, in. 

C diffuser flap angle, deg 

Bc equivalent conical subsonic diffuser angle, deg 

Subscripts 

o free-stream conditions at entrance to inlet 

1 inlet throat station 

2 diffuser exit station 

av average 
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d subsonic diffuser f 1ap 

f front f l ap 

isen conditions for isentropic flow 

APPARATUS AND TESTS 

Wind Tunne l s 

The first tests of this investigation were performed in the Ames 8-
by 8 - inch supersonic wind tunnel. This tunnel is a continuous -operation, 
atmospheric - dischar ge wi nd tunne l equipped with an asymmetric sliding -bl ock 
nozzl e f or var ying the test - section Mach number. Tests wer e performed at 
a Mach number of 1. 90 and a Reynol ds number based on inlet width of 
1. 60xl 06 . A detai l ed description of the tunne l and its auxiliary equipment 
is presented in reference 11. 

Since tests a t Mach numbers l ess than 1. 90 coul d not be run in the 8 -
by 8 - inch wind tunne l due to tunne l b l ockage by the mode l and its supports, 
a second series of tests was run in the 1 - by 3 -foot supersonic wind tun ­
ne l No .1. This wind tunne l is a continuous - operation, variable - pressure 
wind tunne l equipped with f l exibl e top and bottom pl ates for varying the 
test section Mach number . Tests at f r ee - stream Mach numbers of 1 . 42, 1 .75, 
and 2 . 44 were made at a Reynol ds number, based on inl et width, of about 
0 .82xl 06 . Tests at a Mach number of 1. 99 wer e made at Reynolds numbers of 
0 . 40, 0 .84, and 1 .10X106 . 

Mode l 

The mode l was designed to allow operation as a normal-shock inl et, and 
at the design Mach number of 2 .0 , as a three - shock inlet . The two ­
dimensional , thr ee - shock configuration for optimum pressure recovery at the 
design Mach number was se l ected and is shown in the following sketch : 

Mo = 2 .0 .. 

8f = 11° (Optimum 
wedge angle) 

Rear flap 
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A great number of shock configurations other than that shown in the 
sketch could be obtained both at the design and at off-design Mach numbers, 
because the entrance and throat areas could be controlled independently. 
This permits the experimental o~timum shock configuration to be determined 
at each Mach number . At Mach numbers below about 1.5 the inlet was assumed 
to operate as a variable-entrance -area, normal-shock inlet. 

The flow reqUirements of an existing turbojet engine were used to 
determine the ranges of entrance to throat area variations that were 
employed in the mechanical design of the model. These area ratios and 
the shock configuration for o~timum pressure recovery at the design ~oint 
(which s~ecifies the angle of the front f l ap) determine the length of the 
front fla~ . The length of the rear flap was selected so that the maximum 
divergence angle at the design condition was about 6-1/20 • This angle was 
considered to be a reasonable com~romise between the requirements of min­
imum fla~ length (to minimize weight) and of maximum subsonic diffuser 
efficiency. 

A sketch of the model and instrumentation is shown in figure 1. 
Fla~ control mechanisms were so arranged that the position of either fla~ 
could be changed during a test. Throat heights from 1.0 to 1.58 inches 
and li~ heights from 1.0 to 2.1 inches were ~rovided . The variations of 
front flap angle and entrance area with throat height for various con­
traction ratios are shown in figure 20 

Near the end of the test ~rogram two modifications consisting of 
inserts as shown in figure 3 were made to the model. The ~ur~ose of 
these inserts was to cause a more uniform rate of pressure rise. The 
fillets, in addition, reduced the wetted area slightly for a given con­
traction ratio . The curve of longitudinal distribution of cross-sectional 
area with the wedge insert installed was composed of linear segments, as 
were the distributions for the unmodified model. (These distributions 
are directly obtainable from the model dimensions, figs. 1 and 3.) The 
addition of fillets caused only a slight deviation from linearity. The 
changes in the subsonic diffuser which occurred with varying throat height 
for both unmodified and modified models are shown in figure 4. 

Instrumentation 

The model was instrumented as shown in figure 1 t o give static­
pressure distributions along the top plate and on one side plate. The 16 
uniformly spaced total-pressure tubes located at the rake station were 
used t o obtain the total -pressure distribution and were averaged to obtain 
the effective pressure recovery. Mass -flow rates through the model were 
measured with an ASME orifice meter located as shown in figure 1 as well 
as from calculations of the entering mass flow based on free - stream con­
ditions and entrance area. In general, the two methods agreed within 
1-1/2 percent. Drag data were not obtained with the present model. 



NACA RM A55F23 5 

Test Procedure 

The test procedure for a given wind- tunnel setting ( i.e . , Mach num­
ber and Reynol ds number ) and a given throat setting of the model invol ved 
two separ ate operations, name l y , the determination of the maximum con­
traction ratio for supersonic inlet f l ow and the determination of the 
maximum pressure r ecovery for each throat height . With a given throat 
setting and minimum back pr essur e (normal shGck downstream of the throat) 
the front f l ap was moved so that the entrance opened s l owly to a point 
where the shock woul d pop out if the f l ap wer e opened further. The 
resul t i ng entrance - to - throat- area ratio was denoted as the maximum con­
traction r atio for that par t i cul ar set of test conditionso For this f l ap 
setting the back pressur e was then increased by cl osing the throttl e val ve 
s l owl y, causing the nor mal shock to move upstream toward the throato 
Static - pr essure distributions and total-pressur e recoveries were recorded 
for several positions of the nor mal shock . Typical static - pressure dis ­
tributions for different shock positions are shown in the sketch bel ow 
a l ong with the corresponding pressure r ecover ies . Inc l uded in the sketch 
is one static - pressure distribution for subcrit ical operation of the inlet 
after a small increase in back pres sure caused the normal shock to jump 
from the throat position (distribution ItCIt) to a position just ahead of 
the inl et face (distribution "D " ) 0 
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The highest pressure recovery at which the inlet would run continuously 
without the normal shock moving out in front of the entrance was recorded 
as the maximum pressur e recovery. It should be noted that for a given 
throat height , the maximum pressure recovery was not a l ways obtained at 
the maximum contr action ratio . 

Certain of the tests in the 1 - by 3 - foot supersonic wind tunnel No . 1 
at the highest Reynol ds numbers were restricted in the inlet -area variation 
avail able due to the l imited pumping capacity of the wind - tunnel equipment. 
As a result, the largest throat openings could not be run at a Mach number 
of 2.44 or at the highest Reynol ds number at a Mach number of 1 . 99 . 

RESULTS AND DISCUSSION 

Pressure -Recovery Characteristics 

Pressure recovery is usually presented as a function of mass - flow 
ratio . In the present investigation, however, the mass-flow ratio was 
always unity, so, for convenience, the pressure-recovery data in this 
report have been pl otted against the dimensional parameter, throat height . 
In addition, the contraction ratio, Ao/Al' for each data point is shown. 
These plots, with those of figure 2, all ow replotting of the data in 
several additional forms if desired. 

The maximum total-pressure recoveries obtained with the unmodified 
inlet are presented in figure 5, and those for the inlet with the wedge 
or fillet inserts are shown in figure 6 . l The results show that at all 
Mach numbers the maximum total- pressure ratio occurred at the greatest 
throat height available and indicated that the optimum throat height for 
best pressure recovery could not be attained because of mechanical limi ­
tations . For small throat heights at a Mach number of 1.90 (i.e., Yl of 
1.0 in. and 1 .1 in . in fig . 5) the maximum pressure recovery was not 
obtained at the maximum contraction ratio, so both the maximum total ­
pressure ratio and the total - pressure ratio at maximum contraction ratio 
are included for comparison . Since the pressure recovered by supersonic 
compression is proportional to the contraction ratio, these results for 
small throat heights l ead to the conclusion that the loss in pressure 
recovery due to viscous effects (e . g . , shock -wave -boundary-l ayer inter ­
action and separation) absorbed the gain in pressure recovery which 
resulted from the increased contraction ratio. 

For the range of throat heights available with the present model, the 
maximum contraction ratio at each Mach number was essentially independent 
of throat height (figs. 5 and 6) except for a Mach number of 2.44, and for 
this Mach number the variation of maximum contraction ratio was not large. 

lFor the model with fillet inserts the throat section is not rectan ­
gular and the effective throat height is considered to be the throat area 
divided by the throat width. 
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In figure 7, the maximum contraction ratios obtained from figures 5 and 6 
with both the unmodified and the modified models at each Mach number are 
shown as a function of Mach number . Inc l uded in figure 7 are the line for 
maximum contraction for isentropic flow and the line for maximum contrac ­
tion for starting the flow (corresponding to an initial normal-shock loss) 
in a fixed - contraction supersonic inlet (ref . 12) . Comparison of the con­
traction ratios for the modified and unmodified inlets indicates that both 
the modifications resulted in improved pressure recovery at the throat 
(i . e . , increased contraction) . This increased pressure recovery and con ­
traction is believed to be due to the more uniform rate of pressure rise, 
as can be seen by comparison of the curves of figures 8 and 9. However, 
an increase in pressure recovery at the throat did not always result in 
an increase in pressure recover y at the exit rake station. (See figs . 
6(a) and (b) . ) 

In order to obtain more accurate data on both the preBsure recovered 
by super sonic compression Pt

1 
and the duct l osses between the throat 

and rake stations, a total-pr essure survey was made near the throat with 
a single pitot t ube at a test Mach number of 1 . 90 . Thi s pitot tube was 
l ocated in the vertical center p l ane about 1/4 inch downstream of the 
model throat . Resul ts of this survey correct ed for normal-shock l osses 
are shown in figure 10(a) a l ong with the theoretical pressure recovery 
calculated from the pressure l osses through the two obli~ue shocks ahead 
of the survey probe by use of the charts of reference 13 . The center line 
distribution of total-pressure r ecovery at the rake station is shown in 
figure l Oe b ) . Comparison of the distributions at the throat and rake 
stations indicates that the total-pressure l osses between the free - stream 
and the throat station were about e~ual to those through the normal shock 
and in the subsonic diffuser. 

The effect of Reynolds number on the performance of the inlet was 
investigated at a Mach number of 1 . 99 . Resul ts of these tests are pre­
sented in figure 11 . The range of avai l able Reynolds numbers was rather 
restricted and the throat heights for which data could be taken at the 
largest Reynolds numbers were limited by the capacity of the tunnel pump ­
ing e~uipment . An attempt was made to simulate higher Reynolds number 
test conditions by use of fine wires to cause transition to turbulent flow 
in the boundary layer . The resul ts do not indicate an improvement in 
pressure recovery and it was concluded that the thickening of the boundary 
layer due to the transition wires had probably masked any favorable effect 
due to ear l y transition . The results obtained without the trip wire 
indicate that there is a favorabl e effect on pressure recovery of increas ­
ing Reynolds number, but that additional tests are needed for a wide range 
of Reynolds numbers to establish trends more c l early . 

The ef fect of typical inlet - operation conditions on the flow uniform­
ity at the exit rake is illustrat ed in figure 12 . Figures 12(a) and (b) 
show the comparison of normal - shock and internal-shock operation at Mach 
number 1. 42. Al though the region of highest pr essure recovery is greater 
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for internal-shock operation, the average total-pressure recovery was 
less than for normal-shock operation (fig . 5) . As would be expected from 
the data presented in figures 6, 8 , and 9 for a Mach number of 1. 99, a 
more uniform distribution of pressure ratio was obtained with the fillet 
and wedge inserts (figs . 12(g) and (h)) than with the unmodified inlet 
(fig . 12(e)) . 

The results of the present investigation indicate several design 
trends for variable -area, variabl e - internal-contraction inlets. As in 
all inlets, a major factor that limits pressure recovery is boundary­
l ayer separation . The adverse effects of what appears to be separation 
have been shown to be reduced by increasing throat height which, with the 
present inlet, was accompanied by a reduction in the divergence angle of 
the subsonic diffuser . It appears probabl e that a more gradual change in 
slope of the variable wall near the throat would be advantageous. The 
effect of fi l lets was such as to indicate the desirability of nearly cir ­
cular cross sections; thus, rapid , but fair, transitions from rectangular 
to circular sections are indicated . To be consistent with this trend, the 
duct cross section at the lip leading edge should have some corner radii 
at the fixed wall rather than square internal corners . 

Comparison With Other Inlets 

A comparison of the total -pressure recovery Pt
2

/ Pt o obtained in the 
present investigation with the pressure recovery obtained with other 
variable - geometry inlets is made in figure 13. In this figure the curves 
for theoretical normal-shock recovery and theoretical optimum three - shock 
recovery, Pt1/Pto ' from reference 14 are included for comparison . Figure 
13 is not presented to indicate relative over -all performance of variable 
inlets, for both pressure recovery and drag data are required for exact 
net propul sive - force eval uations for given operating conditions, and fur­
ther research is necessary to provide data for such evaluations. 

CONCLUDING REMARKS 

The results of this prefiminary investigation have indicated that the 
variable-area, variabl e - internal - contraction - inlet pressure recovery (e . g . , 
total -pressure ratio of 0 . 89 at a Mach number of 1 . 90) is near that 
obtained with other variable - geometry inlets, even though the optimum 
geometry for maximum pressure recovery could not be obtained with the 
present model because of mechanical limitations. The net propulsive 
force was not evaluated because no drag measurements were made. However, 
since inlets of this type have neither spillage drag nor unsteadiness 
problems, and since the potential improvement appears large, further 
investigation is warranted. 
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The results obtained with the modified inlets indicate that the 
design of these internal -contraction inlets should include three factors. 
These factors are : (a) a gradual fairing of the entrance to the subsonic 
diffuser, (b) an internal shape which is as nearly axially symmetric as 
is consistent with the method of shape variation, and ( c) a uniform rate 
of pressure rise during supersonic compression. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., June 23, 1955 
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