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SUMMARY 

A study has been made relat i ng local - pr essure fluctuations t o static
pressure di stribut i ons on six two- dimens i onal airfoils. Total-pressure 
fluctuations and the t otal- pressure loss in the wake of an NACA 6)A008 
airfoi l have also been compared . Data wer e obtained for Mach numbers 
between about 0 .59 and 0 .90 , with corr espondi ng Reynolds numbers varying 
f r om about 6 .3 million t o 8 .0 million . 

The results of the s t udy showed tha t certa in r elati onships existed 
between the local- pr essure fluctuations and the static-pressure di stribu
tions on two- dimensional a irfo ils and also bet ween the total-pressure 
fluctuations and t he total - pr es sure l oss i n the wake . 

In general , it appears that the largest fluctuations of pressure 
coeffici ent on an airfoil occurr ed at the l ower Mach numbers due to an 
intermittent bui ldi ng up and dropping of t he pressure peak near t he leading 
edge . Fluctuations of this t ype began and increased rapidly in magnitude 
when the peak stati c pressure stopped decr eas i ng with i ncr eas i ng angle of 
attack . Si nce a t t he lowest test Mach number the pulsations over t he 
entire chord approached t he static pressures on the upper surface at the 
hi ghest test angles of att ack , it i s suggested that the upper - surf ace 
stati c pressure could possibly serve as a r ough estimate of the maximum 
fluctuations at high angles of attack . 

The result s show tha t when a strong normal shock wave was present, 
t he maximum fluct uati ons occurred at t he location of t he shock wave due 
t o its fore - and-aft mot i on , while fluctuat i ons of pressure well ahead of 
and behind the shock wave were considerably less intense . The maximum 
f l uctuations were gener ally approxi mately equal to but could be l ess t han 
t he static- pressure ris e at the shock wave . 
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The .maximum total-pressure fluctuations in the wake occurred where 
the pressure gradients were largest due, apparently , to the vertical move
ment of the wake. The results indicate that the .maximum intensities of 
the pulsations may be approximately equal to the maximum time-average 
total-pressure loss. 

INTRODUCTION 

A study of l ocal-pressure fluctuations on airfoils is of importance 
in determining or understanding the nature of the lift fluctuations which 
buffet a irplanes. In previous investigations , studies have been made on 
two- dimensional airfoils of the effects of airfoil geometry on l ocal 
pressure fluctuations (refs. 1 and 2) and on fluctuations of section normal 
force and pitching moment (refs. 3, 4, and 5). Work has also been done 
to study total- pressure fluctuations in the wakes of airfoils (ref . 6) . 

In reference 3, it was noted that two principal types of pressure 
pulsations were apparent which can be assoc i ated with buffeting : pulsa
tions which arise from intermittent building up and dropping of the 
leading- edge pressure peak, and pulsations which are attributable to shock
wave motion and unsteady air flow following the shock wave . The present 
investigat i on , which was conducted in conjunction with the work reported 
in reference 3, is concerned primarily with a detailed study of the possi
ble relationship between local - pressure fluctuations and static- pressure 
distributi ons and, secondarily, with an analysis of total-pressure fluctu
ations in the wake of an airfoil relative to the t otal-pressure loss. 

p 

SYMBOLS 

P- Po 
time-average static- pressure coefficient, ~ 

critical pressure coefficient 

differential- pressure coefficient between upper and l ower surface 
at the same chordwise station 

coefficient of the fluctuation of differential pressure determined 
from an average of the largest three peak- to- peak measurements 

coefficient of the average change in differential - pressure measure
ments taken between the limits of time which bracket LCn and 
LPd measurements 

cn section normal-force coefficient 
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h 
<10 

M 

c 

h 

p 

<10 

one-half the average of the largest three peak-to- peak fluctua
tions of section nor.mal - force coefficient 

time- average total- pressure coefficient 

average of the largest t hree peak-to- peak fluctuations of total
pressure coefficient 

average of the differences of t otal- pressure coefficient measured 
between limits of time which bracket .maximum 6h/<10 measure
ments 

free - stream Mach number 

airfoil chord 

total-pressure loss in the wake 

local stati c pressure 

free - stream static pressure 

free- stream dynamic pressure 

angle of attack 

APPARATUS AND INSTRUMENTATION 

Wind Tunnel 

The tests were conducted in a two-dimensional channel in the Ames 
16-foot hi gh- speed wind tunnel. A description of the channel , which was 
formed by two walls 18 . 5 inches apart , .may be found in reference 6. Fig
ure 1 shows the channel , a model , and the rake installation . 

Models 

Sketches of the section profiles investigated are shown in figure 2. 
The airfoils used were the same as those of r eference 3, and had 2-foot 
chords and approximately 18-1/4-inch spans . Spaces between the models 
and the mounting walls were sealed with felt on one side and with a spring
loaded seal on the other. The models were of rigid construction. ThOSe 
having thickness ratios of 12 percent and 8 percent were wood with steel 
reinforcing, while the thinner models were aluminum . 
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Instrumentation 

The i nstallation of flush- diaphragm- type electrical pressure cell s 
in the models was the same as described in reference 3. The pressure 
cells and related electrical equipment are described in reference 7 . A 
sketch of a typical model showing the arrangement of pressure cells and 
orifices from which time- average static pressures were measured is given 
in figure 3. Thirty cells and static- pressure orifices were distributed 
over both the upper and lower surfaces at 15 chordwise stations . The 
upper - and lower- surface pressure cells were mounted in matched pairs and 
were connected electrically so that only the fluctuations of differential 
pressure were recorded at each station. The reference pressure at the 
back of each pressure cell in the models was the static pressure at the 
adjacent orifice . 

To measure fluctuations of total pressure i n the wake of the NACA 
65A008 a irfoil , a rake of 1/4- inch- diameter pressure cells was constructed . 
The cells were installed in 5/16- inch- diameter tubing with the diaphragms 
recessed approximately 1/16 inch back from the opening . Photographs show
ing details of the rake are presented in figure 4 . Near the center of 
the rake the tubes containing pressure cells were spaced a t intervals 
equal to 2-1/2 percent of the airfoil chord . In addition to the pressure 
cells , open- ended tubes were also installed with a spacing of 0 . 025c for 
measuring the time- average total - pressure loss in the wake . The rake was 
mounted 0 . 75c behind the trailing edge of the a irfoil on a sting support 
which could be adjusted vertically so that the center of the rake could 
be positioned near the center of the wake. The reference pressure for 
the cells in the rake was free- stream total pressure. 

Time- average pressures , that is, the i ndicated static pressures on 
the a irfoils and the total pressures in the wake, were recorded photo
graphically from mercury- in-glass ,manometers . 

Elect r ical responses from each pair of pressure cells in the models 
and from each cell in the r ake were recorded on oscillographs . For the 
pressure cells in the models the amplitude response of the galvanometer 
elements used was flat to about 60 cycles per second, then dropped to 
about 50 percent of that amplitude at 170 cps. The response of the 
elements used for the wake survey was flat to appr oximately 500 cps . 
Although the frequency response of the elements used for the models was 
rather limited, it is believed that it was adequate . Good agreement was 
obtained for the chordwise distribution of pressure fluctuations f or a 
few duplicate tests using the 500 cps elements from the wake survey . 
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PROCEDURE 

Range of Test Var iabl es 

For this investigati on , which was conducted in conjunction with the 
work reported in reference 3, data were analyzed over a Mach number range 
from about 0 .59 to 0 . 90 . The Reynolds number based on the airfoil chord 
varied with increasing Mach number from about 6 .3 million to 8 .0 million. 
The angle- of- attack range was from near 00 to the maximum that was within 
the strength limi ts of each model . 

Reduction of Data 

Static calibrations of each pai r of pressure cells on the models and 
of each cellon the rake were made before and after each run . 

The intensity of the maxi mum fluctuations of pressure on the airfoils 
and of the total pressures i n the wake was comput ed from a record of 
approximately I - second durati on by aver agi ng the three largest measurements 
of peak- to- peak heights on the correspondi ng osci llograph trace (see 
fig. 5) . In addition, to check for poss i ble phase relationships, the 
pressure change was deter mi ned for each t r ace from the average of the 
displacements between the same l i mits of time whi ch bracketed each of the 
three peak- to- peak measurements of the trace for 6cn , or the three peak
to- peak measurements of a trace for 6Pd . For the wake, measurements of 
the pressure change were made between the limits of time which bracketed 
each of the three measurements on a trace for 6h/Qo ' 

Mach numbers were corrected for constriction effects by the methods 
of reference 8 . Since the a i rfoils were symmetr ical , a correction was 
applied to the angl es of attack at each Mach number so that the faired 
normal - force curve passed t hrough cn = 0 at a = O. No other corrections 
were applied to the data . 

RESULTS AND DISCUSSION 

Local- Pressure Fluctuations on t he Models 

Figures 6 through 11 show the local fluc t uations of pressure and the 
t i me- aver age st atic- pr essure di stributions at var ious Mach numbers and 
angles of attack . Two princi pal types of pressure pulsati ons which are 
associated wi th buffet i ng f or ces are evident as i ndicated in reference 3. 
These are pulsat i ons whi ch arise from intermi ttent building up and dropping 
of the pr essure peak near t he leading edge , and pulsations which are 
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attributable to shock- wave motion and to unsteady air flow following the 
shock wave . The net effect of the local pulsations is the fluctuations 
of normal - force coefficient shown in figure 12, which is reproduced , in 
part, from reference 3. 

Pulsations of the ressure eak near the leadin ed e .- Examination 
of the local- pressure fluctuations figs . shows that the largest 
pulsations occurred near the leading edge at the lower test Mach numbers. 
The angles of attack at which these large pulsations occurred varied with 
the profile . Generally the pulsations occurred at lower angles as the 
leading- edge radius was reduced . It may also be noted at the lower Mach 
numbers that as the highest test angles of attack were reached the pulsa
tion intensities increased to about 50 or 100 percent of the upper - surface 
time- average pressure over most of the airfoil chord. (See figs . 6(a), 
7(a), 8(a) , 8(b ) , 9 (a ), and 10(a).) The fact that the variation of the 
intensities along the chord appears to have become similar t o the varia
tion of the static pressure suggests that the upper - surface static pressure 
could possibly serve as a rough estimate of the maximum fluctuations near 
maximum lift. 

Figure 13 was prepared to determine whether relationships exist 
between the pressure pulsations and the variations of the time- average 
pressures with angle of attack . This figure presents the differential 
pressure fluctuations and the upper - surface static- pressure coefficient 
at each station as a function of angle of attack for one Mach number near 
0 .6 for each a irfoil . Since the variation with angle of attack of static 
pressure on the lower surface was small (see figs . 6 to 11) , the fluctua 
tions of pressure would also have a similar relationship to the variations 
of the local load with positive angle of attack . 

Examination of figure 13 discloses that the pulsations near the lead
ing edge generally began and increased rapidly when the time- average pres 
sure stopped decreasing with increasing angle of attack . The maximum 
local intensities on the NACA 65(06)A004 and 877A008 airfoils reached 
magnitudes which were higher than the measured time- average pressures at 
the same stations . It is interesting to note in figures 13(a), (b) , (c), 
and (e) that after the .maximum intensity was reached the intensities of 
the fluctuations decreased with further increase in angle of attack . Also , 
as previously pointed out in connection with figures 6 to 11, the intensi
ties of the pulsations over the entire a irfoil chord generally approached 
the time- average pressures on the upper surface at the highest test angles 
of attack . 

Figure 13 also shows that the large pulsations near the leading edge 
may have caused disturbances that passed other stations downstream and 
which bore no apparent relationship to the upper - surface time- average 
static pressures at these other stations . For example, for the 65(06)A004 
airfoil (fig . 13(c)) , a rise in intensity took place at ~ = 5 . 70 at ~ 
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stations downstream from 1 .25- percent chord where the time- average pres
Eure was still decreasing with increas i ng angle of attack. 

Pressure pulsations at the shock wave .- In figures 6 through 11 it 
can be seen that at the higher speeds , relationships also existed between 
the pressure pulsations and the time- average pressures. The most signifi
cant pulsations at the higher speeds occurred at the locations of the shock 
waves, while the pulsations ahead of and behind the shock waves were con
siderably less intense . Typical examples are shown in figures 6(d), 7(e), 
8(f), 9(e) , 10(e) , and ll(e) . For some conditions where the shock waves 
occurred at different stations on both upper and lower surfaces, large 
fluctuations usually occurred at both stations (see figs. 6(e), 9(e), 
and 10(f)) • 

Since it is considered that the pr imary pulsations at a shock wave 
were due to its fore - and-aft motion and the consequent shifting of the 
pressure rise , it can be noted, as in figures 6(d) , 7(e) , 8(g) , 9(e), 
10(f), and ll(e) , that when the limits of the pressure rise were well 
defined and the shock wave crossed a pressure cell , the maximum pressure 
fluctuations were approximately equal to the time- average static- pressure 
rise. When the shock wave was between pressure cells and did not cross 
one (such as in figs. 6 (b) , 9 (d) , and 10(e)), the maximum fluctuation 
intensity on the airfoil may not have been measured . l It also appears 
from the results that, for the type of pressure distribution shown in 
figures 7(c) and 8(d) , the maximum fluctuations may have actually been 
smaller than the static- pressure rise through the shack wave, although 
the pressure- cell spacing may account for part of the lower measured maxi
mum fluctuations . Where these lower maximum fluctuations occurred the 
pressure distributions are generally characterized by a large expansion 
at the leading edge followed by a compression region ahead of the primary 
shock wave. 

Effect of peak pressure fluctuations on fluctuations of normal-force 
coefficient .- Since the largest fluctuations of pressure generally occurred 
in peaks near the leading edge or at the shock wave, the oscillograph 
records were examined to determine whether there was a consistent influence 
of the intensity at the peaks on the summed fluctuations of normal-force 
coefficient. Figure 14 shows how the average change in differential
pressure coefficient, cPd , varied along the chord for a few selected cases 
which are representative of the variety and extremes of the i nfluences 
that were observed . Where large pressure fluctuations occurred at two 
different stations due to shock waves on both upper and lower surfaces, 
curves are shown for both peaks . Examination of figure 14 shows that the 
influence of the peak local fluctuation on the summed result was incon
sistent. For example , on the NACA 65A012 airfoil (fig . 14(a)) at M = 0 .79 

lThis indicates the importance of pressure- cell spacing for this type 
of instrumentation. Scatter in the measurements of 6cn could result if 
unmeasured fluctuations happened to represent a significant portion of the 
unsteady force . 
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t he maxi mum nor mal - fo r ce f l uctuations wer e due almost ent i r ely to the 
pressure changes whi ch were apparently i n phase with t he shock-wave mot i on . 
On the other hand , for the NACA 65AOo8 air fo il, t he maxi mum nor mal - for ce 
f l uctuations resulted primarily f r om small pr essur e changes a l ong the chor d 
which were not i n phase with the shock- wave mot i on ( f i g . 14(b )) . Where 
a shock wave occurred on both the upper and l ower surfaces ( f i gs . 14 (a ), 
(d ), and ( e )) i t appear s that the pr essure change due to the shock- wave 
mot i on on the upper surface (peak closest to the leadi ng edge ) had the 
larger influence on 6 cn . 

Total - Pr essure Fluctuations in the Wake 
of an NACA 65A008 Ai rfoil 

Fluctuati ons of the tot al pressure and the a verage total - pr essure 
loss i n the wake of the NACA 65A008 a i rfoil are shown i n f i gure 15 . 
Exami nation of f i gure 1 5 shows that there was a tendency towar d the occur
rence of double peaks i n the vari at i on of 6h/qo above and below t he 
extended wi ng- chord plane s i milar to the results shown i n refer ence 6 . 
Where the two peaks wer e clearly measured , they appear ed on each s i de of 
the maximum tot al - pr essure loss i n the regi ons where the total - pr essure 
gradients were large . It is also i nterest i ng to note in figure 15 that 
s i gnifi cant fluctuat i ons of t he total pr essure occurr ed even at the lower 
angles of attack wher e the nor mal - force f l uctuat i ons wer e negligi bl e as 
shown by f i gure 12 . 

Si n e i t i s bel i eved that t he maximum i ntensit ies of 6h/~ wer e 
not always measured and that peaks may have occurr ed between cell stat i ons , 
the need fo r closer pr essure- cell spacing i n the r egi on of the maximum 
total- pr essure gr adients is indi cated . For exampl e , i n f i gures 15(a ) and 
15( d) poss i ble var i ations from the ori ginal fa iring have been sketched 
wit h dashed lines . 

Compar ison of the int ens ities of the double peaks that wer e measured 
and the maxi mum total - pr essure losses i n the wakes suggests that , i n addi 
t i on to showi ng t he relative locations of the peaks , the maxi mum t otal 
pressure may poss i bly serve as a r easonable approxi mation of the maximum 
f l uctuation intensities . If t he wake is fluctuat i ng ver t i cally , reasoni ng 
similar t o that i nvolving the pr essure changes due to shock- wave motion 
may be used . Thus , the maxi mum pr essure f luct uat i ons would occur where 
the pressure gr adi ents are lar gest and , i f the mot i on was suffi c i ent , the 
fluctuations could be appr oxi mately equal to t he maximum t i me- average 
total - pressure l oss . 

In an effor t to deter mi ne whether the wake was f l uctuat i ng ver t i cally , 
figure 16 was prepar ed to show how t he total pressure was var yi ng at each 
station bet ween the l i mi ts of time for the r eadings of the f l uctuat ions 
at each of t he two peaks . The measurement s i ndi cate onl y the difference 



~ G 

NACA RM A55Jll 9 

in total pressure at two instants of time , with the positive or negative 
signs corresponding to an increase or decrease i n pressure . The fact 
that the va.lues of ohl <io pass through zero does not i ndicat e that the 
pressure was steady, but that at the two instants of t i me selected the 
total pressure r eturned to the same value . Results are presented for 
only the Mach numbers and angles of attack at whi ch the most outstanding 
double peaks were measured . The subscript s i n the symbol legend for the 
two curves showing oh/~ indicate the 6h/~ measurements from which 
the time limi ts were established . 

Figure 16 shows that the pressure changes measured between the limits 
of time established by the two peaks were not in phase with one another . 
Generally , when the pr essure was increas i ng t o its maximum intensity at 
the location of one peak, it was decreas i ng at the location of the other 
peaks , a fact whi ch suggests t hat the i nstantaneous wake was fluctuating 
verticall y . 

CONCLUSIONS 

A study has been made r elating l ocal - pressure fluctuations and time
average pressure distributions on two- di mens i onal airfoils at high subsonic 
speeds . Total - pressure fluctuations and t otal - pressure loss in the wake 
of an NACA 65A008 a irfoil have also been compared . The results of the 
study have indicated that the following r elati onships exi sted for the test 
Mach number r ange of about 0 .59 to 0 .90 . 

1 . In general , the largest fluctuations of pressure 
occurred at the lower Mach numbers due to an i nter mittent 
and dropping of the pressure peak near the leadi ng edge . 
increased rapidly in magni tude when the stat i c pressure on 
face stopped decr easing with increas ing angle of att9ck . 

coefficient 
building up 
They began and 
the upper sur-

2 . Si nce at the lowest test Mach number the pulsations over the 
entire chord approached the stati c pressures on t he upper surface at the 
highest test angles of attack, i t is suggested that t he upper - surface 
static pressure could possibl y serve as a r ough estimate of the maximum 
fluctuations at high angles of attack . 

3. When a strong normal shock wave was present the maximum fluct ua
tions occurred at the l ocation of the shock wave due to its for e- and-aft 
motion , whi le the fluctuat i ons ahead of and behi nd the shock wave were 
considerably l ess intense . 

4. The maximum i nt ensity of the fluctuations at the shock wave was , 
in general , appr oximately equal to the static- pressure rise . The intensity 
of the f l uctuations could be lower than the s t a tic- pr essure rise , however , 
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when the stat ic- pressure di str ibution showed a negative- pressure peak near 
the leading edge with a compression regi on ahead of the shock wave . 

5 . The maximum total - pressure fluctuations in the wake occurred 
where the pressure gradients were largest , due to apparent vertical move
ment of the wake . The results indicate that the maximum intensities of 
t he pulsations may be approximately equal to the maximum time- average 
total- pressure loss . 

Ames Aeronautical Laboratory 
National Advisor y Committee for Aer onautics 

Moffett Field, Calif . , Oct . 11 , 1955 
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Figure 1 .- Views of the two- di mens i onal channel in the 16- foot hi gh- speed wind t unnel showi ng a 
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Figure 2.- Section profiles of the models investigated. 
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Midspan 

MODEL PRESSURE-CELL AND ORIFICE LOCATIONS 
[In percent of model chord ] 

Cell and 65A012 6.5(06)A004 4-per cent 
orif i ce and 2-008 circular 

number 65A008 877A008 arc 
1 1.2.5 1.25 .5 
2 3·7.5 3·75 10 
3 7· 5 7·.5 15 
4 15 15 22 ·5 
5 22 ·5 22 ·5 27· 5 
6 27· 5 27 .5 35 
7 35 35 45 
8 4.5 45 52 ·5 
9 52 ·5 52 ·5 57 ·5 

10 57· 5 57 · .5 62 .5 
11 62 ·5 62 ·5 67.5 
12 67 ·5 67.5 75 
13 75 75 85 
14 8.5 85 90 
15 95 90 95 

13 

Figure 3. - Sketch of a typical model with a table of the pressure
cell and orifice locations for 01/ the models. 
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\a) Pressure- cell installation. A - 17237 

(b) Rake . A-19653 

Figure 4 .- Photographs showing details of the rake and pressure- cell 
installation . 
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22.5 0 _ 

27. 5 0._ 

52.5 0 _ 

57.5 0 _ 

62.5 0 -

67.5 0 _ 

6 5AOl2 
Section 

Oscillograph 2 

NACA 65A012; M,o.79; a , 4 .2 . 

Fi gu re 5 - Sam ple oscillog raph record illustrati ng methods of analyz in g 
measurements . 
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