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By R. A. Signorelli, F. B. Garrett, and J. W. Weeton 

SUMMARY 

An investigation was conducted to study the effect of short-time 
overtemperature heat treatments at temperatures between 15500 and 
23500 F on the turbojet engine performance of 3-816 buckets. Overtem-
perature heat-treated and standard Air Force stock buckets were run in 
a J33-9 turbojet engine for cycles comprising 15 minutes at rated speed 
and 5 minutes at idle speed. The results indicated that none of the 
overtemperature heat treatments adversely affected bucket life. Differ-
ences in the as-overtemperatured microstructures and in bucket creep 
rate suggested that stress-rupture strength was changed by the over-
temperature heat treatment. Bucket life was not reduced, because fac-
tors other than stress rupture influenced failure. 

INTRODUCTION 

Turbojet engines are frequently overtemperatured, or overheated 
during service operation. Overtemperaturing may occur under either of 
two basically different conditions: during starting (hot starts) or 
during flight. Bucket stresses are low during hot starts because engine 
speed is low. Any metallurgical change occurring in a bucket under hot-
start conditions could therefore be largely attributed to temperature 
effects. However, during overtemperature in flight, stresses are high 
because of high engine speed; creep and strain-aging also affect the 
buckets. 

Severe overtemperature conditions during service operation of 
aircraft cause warpage, cracking, and even melting of buckets. In most 
cases, bucket exposure to overtemperature is not revealed by inspection 
of buckets during overhauls, and usually is not recorded by pilots. 
Cracked or warped nozzle vanes sometimes indicate overtemperature oper-
ation of the engine. Where overtemperature is suspected to have occurred, 
it has been the practice to study the microstructure of representative 
buckets. Metallographic studies have been conducted by the U. S. Air 
Force and by bucket manufacturers for some time. Spheroidization and 
solution of carbides, particularly grain-boundary carbides, are the chief 
microstructural evidences of overtemperature.
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The detection of turbine buckets in danger of imminent failure has 
been a basic problem. The effects of overtemperature operation make the 
problem more acute, because a few minutes at overtemperature may dras-
tically reduce bucket life. There are, however, no quantitative data 
on the effect of overtemperature operation on bucket life. 

This investigation Is one of several being conducted at the Lewis 
laboratory to obtain a better understanding of the overtemperature prob-
lem. It was conducted to determine the effects of short-time overtem-
perature heat treatments upon engine performance of S-816 buckets. 

Buckets taken at random from standard Air Force stock were given a 
15-minute overtemperature heat treatment at various temperatures between 
15500 and 23500 F. This temperature range extends from a low over-aging 
temperature to a eutectic melting temperature. All buckets used were 
new, and the effects of the treatments are considered the result of tem-
perature alone. 

The buckets were run In a 333-9 turbojet engine operated over 
cycles of 15 minutes at rated speed and 5 minutes at idle speed with a 
bucket temperature of 15000 F.

MATERIALS 

Standard Air Force stock J33-9 buckets of forged S-816 (AMS 5765A) 
were used. The nominal chemical composition of S-816 is as follows: 

Element C Co Cr Ni Mo W Cb Fe Mn 

Weight, 
percent

0.4 43.7 
(bal)

20 20 4 4 4 2.8 1.0

The Air Force stock buckets included as a standard for comparison 
were installed in the engine as they came from stock; others were first 
given the overtemperature heat treatment. 	 I 

PROCEDURE


Heat Treatment  

All buckets used had been given the following heat treatment during 
manufacture: solution treatment, 1 hour at 2150 0 F, followed by a water 
quench; aging treatment, 16 hours at 14000 F, followed by air cooling. 
(See AMS 5765A.) The overtemperature heat treatments were performed at 
the Lewis laboratory. Seven groups of six buckets each, were heat-
treated for 15 minutes in an argon atmosphere at a temperature of 
15500 , 17000, 18000 , 19000 , 20000 , 21500 , or 23500 F, and air-cooled. 
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This temperature range extends from 500 above the normal operating tem-
perature of the bucket to a temperature at which incipient eutectic melt-
ing is possible for alloy S-816. Overtemperatured buckets were inspected 
for surface defects using post-emulsifying Zyglo and were found to be 
sound.

Engine Operation 

The seven groups of overtemperatured buckets and a group of stand-
ard buckets were run in a J33-9 turbojet engine. The operating cycles 
consisted of 15 minutes at rated speed (11,750 rpm) and 5 minutes at 
Idle speed. Bucket stress and temperature were controlled by engine 
speed and exhaust-nozzle opening, respectively, bucket temperature was 
measured with thermocouples installed in two buckets connected to a 
recording device through a slip-ring system. Details of bucket stress, 
bucket temperature, and engine operation are given in references 1 to 3. 

The test was continued until there were enough bucket failures to 
establish the behavior pattern of each group. It was necessary to heat-
treat and test additional buckets in two of the groups because failure 
by damage reduced the effective size of the original group. In the dis-
cussion of bucket life herein, only time at rated speed is considered. 

Bucket Elongation Measurement 

Two buckets of each group except the group heat-treated at 2350 0 F 
(group 7) were scribed near the trailing edge as shown in figure 1 and 
described in reference 4. Bucket elongation measurements were made at 
frequent intervals (after bucket failures or necessary shutdowns) using 
an optical extensometer. 

Macroexamination of Failed Buckets 

A bucket was considered to be failed and was removed from the en-
gine test when complete fracture occurred or when cracks or severe neck-
ing made it apparent that complete fracture was imminent. Failed buck-
ets were examined visually at low magnifications to determine, as nearly 
as possible, the manner in which failure occurred. The failures were 
classified (as in ref. 5) into the following categories: 

(1) Stress rupture: Bucket failures occurred by cracking within 
the airfoil or by fracturing in an irregular, jagged, intercrystalline 
path. In addition to the main fracture, other similarly formed cracks 
sometimes occurred near the origin of the main fracture.



4
	

NACA RN E55L06a 

(2) Fatigue: Cracks progressed from nucleation points, usually at 
or near the leading or trailing edges, in straight paths, which frequent-
ly were smooth, often showed progression lines or concentric rings and 
appeared to be transcrystalline. 

(3) Stress rupture plus fatigue: Bucket failures appeared to be 
caused by a combination of the two preceding mechanisms. The fracture 
surface of buckets in this group consisted of a small area having stress-
rupture characteristics and a larger area having fatigue characteristics. 
A further criterion was that other cracks, which appeared to be stress-
rupture cracks, were present in the area adjacent to the main crack or 
fracture edge. 

(4) Damage: Buckets with severe nicks and dents in the airfoil 
that obviously initiated failure were not considered in the analysis of 
the failure types. 

In all cases where complete fracture occurred buckets failed in 
tension because of the progressive reduction in load-carrying area, so 
that all showed a large area of rough fractured surface. 

Metallurgical Studies 

Microstructural, grain-size, and hardness studies were made of 
airfoil specimens cut from unrun buckets given the overtemperature heat 
treatment.

RESULTS 

Engine Operating Results 

Engine results. - The engine results are presented in figure 2 and 
table I. Buckets overtemperatured in the range of 15500 to 21500 F 
(groups 1 to 6) ran about as long as the standard S-816 group. Buckets 
overtemperatured at 23500 F (group 7) ran longer than the standard group. 
Mean life of the standard buckets, group 8, was 188 hours. Mean life of 
overtemperatured groups 1 to 6 ranged from 175 to 212 hours. Mean life 
of overtemperatured group 7 buckets was at least 336 hours; one bucket 
did not fail in 527 hours. The failures, excluding failure by damage, 
were classified by visual-examination as follows: stress rupture, 9 
percent; stress rupture plus fatigue, 56 percent; and fatigue, 35 
percent.
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Elongation. - Elongation measurements for groups 1 to 6 and the 
standard group are shown in figure 3. Measurements were taken on two 
buckets of each group; data from the bucket with the greater elongation 
of each group was plotted. Only the values for zone 2 are plotted 
because this zone showed the greatest elongation. The final values meas-
ured ranged from 8 to 11 percent, a rather narrow spread of values. The 
narrow spread is in part due to the fact that the final measurements 
take no account of the total ultimate elongations just prior to fracture. 
The rates of elongation may be used to determine the relative stress-
rupture damage resulting from the overtemperature treatments. The rate 
of elongation (creep) increased with increasing temperature for the tem-
peratures ranging from 15500 to 20000 F (groups 1 to 5). The blades 
overtemperatured at 21500 F (group 6) had a creep rate slightly lower 
than that of the 15500 F group. All overtemperature heat-treated groups 
shown had elongation rates appreciably higher than that of the standard 
group.

Metallurgical Studies of Buckets 

Microstructure. - Photomicrographs of standard and as-overtemperatured 
S-816 structures are shown in figures 4 to 13. These figures show the 
microstructures produced from the slight over-age at 15500 F to com-
plete solution of grain-boundary precipitates at 21500 and at 23500 F. 
There is indication of slight spheroidization of grain-boundary precip-
itates with the 15500 F treatment. Agglomeration and spheroidization of 
the precipitates increased with increasing temperature from 17000 to 
19000 F. At 20000 F, the precipitates began to dissolve. The 21509 and 
23500 F treatments dissolved all precipitates except the massive, stable 
(Cb, Ta)C. There was evidence of eutectic melting in the specimens heat-
treated at 23500 F, although it is not shown in the photomicrographs. 
The over-etched structures shown in figures 11 and 13 reveal the grain 
boundaries and grain size of the solution-treated structures that were 
not visible when the same specimens were etched normally (figs. 10 and 
12).

Hardness and grain size. - The hardness and grain-size results are 
shown in table II. The overtemperature heat treatments from 1550 0 to 
20000 F produced visible changes in the microstructure, but did not 
change hardness or grain size. Hardness was about Rockwell C-23 to C-25, 
and average ASTM grain size was 6 to 7. The heat treatments at 21500 
and 23300 F reduced hardness to Rockwell B-96, and produced grains 
larger than ASTM 1.

Failure Mechanisms 

If stress rupture were the only mechanism of failure, the buckets 
should run in the engine for 1000 hours. (The 1000-hr life is calculated 
from centrifugal-stress and temperature conditions in bucket airfoils 
and stress-rupture properties of the material.) A detailed description
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of the methods of calculation of expected life and analysis of failure 
mechanisms are presented in reference 4. The mean life of all groups of 
buckets in this investigation was considerably less than 1000 hours. 
This leads to the conclusion that something other than centrifugal stress 
acted to reduce bucket life. It has been shown in reference 6 that vi-
bratory loads superimposed on a mean tensile load can appreciably reduce 
test life. Since fatigue characteristics were observed on the fracture 
surfaces of 91 percent of the buckets and performance of buckets in this 
investigation was much less than 1000 hours, the reduction in life may 
be at least partly attributed to fatigue. 

DISCUSSION OF RESULTS 

Although the overtemperature heat treatments studied covered a wide 
range of temperatures, 15500 to 23500 F, none of the treatments affected 
bucket life adversely. In fact, the performance of buckets overtempera-
tured at 23500 F (group 7) was somewhat superior to that of the other 
groups. 

It must not be concluded, however, that properties of the overtem-
peratured material were not affected. The higher creep rates of some 
of the groups of buckets would indicate that the stress-rupture strength 
of these groups was reduced. Investigations conducted by several man-
ufacturers have shown that overtemperaturing specimens can reduce the 
stress-rupture strength of S-816. For example, figure 14 shows that 
overtemperaturing for 4 hours at temperatures between 18000 and 20000 F 
drastically reduces 15000 F stress-rupture strength (ref. 7). Unpub-
lished data obtained at the Lewis laboratory corroborated some of this 
work; test specimens cut from buckets overtemperatured in service have 

N	 shown decreased stress-rupture strengths. Still further evidence of 
damage to stress-rupture strength has been found at the Engineering 
Research Institute, University of Michigan, where cyclic treatments were 
studied. 

The buckets of this investigation failed primarily by fatigue or by 
a combination of stress-rupture followed by fatigue as was previously 
described. The overtemperature heat treatments given would almost cer-
tainly reduce bucket life in an engine that fails buckets by stress-
rupture alone. 

The reasonable assumption has been made that for alloy S-816, reduc-
tion in creep resistance is evidence of reduction in stress-rupture 
strength (see fig. 3). The higher creep rates for blade groups overtem-
peratured between 15500 and 20000 F indicate that the damage increased 
with increasing temperature. The changes in microstructure correlate 
well with the changes in creep rates; the microstructures of figures 5 
to 9 show increasing spheroidization or agglomeration of precipitates with
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increasing temperature. Depletion of solute atoms from the matrix by 
precipitation and agglomeration of precipitates would be expected to 
decrease creep resistance. 

The 21500 and 23500 F treatments, however, are solution treatments 
rather than over-aging treatments, as indicated in figures 10 to 13. 
Precipitation of minor phases during engine operation probably strength-
ened the materials so treated and increased creep resistance. The elon-
gation curves of figure 3 for the 21500 F treatment buckets are in 
agreement with this. Unfortunately, elongation data for the 2350 0 F 
treatment buckets were not obtained. 

It may be speculated that the increased degree of solution treat-
ment occurring at 23500 F not only increased creep strength of the 
material, as would be expected from reference B Y but also fatigue resis-
tance. No improvement was noted in the performance of the buckets given 
the 21500 F "solution" overtemperature treatment; possibly because 
strength was not increased sufficiently. Scatter in lives of groups 
1 to 6 obscured any differences in performance. 

SUMMARY OF RESULTS 

This investigation was conducted to study the effect: of short-time 
overtemperature heat treatments at temperatures between 15500 and 23500 F 
on turbojet engine performance of S-816 buckets. The treatments were 
intended to simulate hot-start conditions. Buckets given the different 
overtemperature treatments were run in a J33-9 turbojet engine under 
cyclic conditions along with standard Air Force buckets. 

The results obtained are as follows: 

1. None of the overtemperature heat treatments, which covered the 
temperature range from 1550 0 to 23500 F, adversely affected bucket life. 
Mean life of bucket groups overtemperatured between 15509 and 2150 0 F 
ranged from 175 to 212 hours; mean life of buckets 6vert6mperatured. at 
23500 Fwas above 336 hours. Air Force buckets selected;from stock, run 
as a standard for comparison, had a mean life of 187 hours. 

2. Drastic differences were found in the as-overtemperatured micro-
structures and in bucket creep rate during the engine test. These dif-
ferences suggest that bucket stress-rupture properties wre changed by 
the overtemperature treatments. Actual bucket life was not reduced, 
however, because factors other than stress-rupture influenced failure.
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CONCLUDING REMARKS 

The significance of the present investigation lies in the fact 
that overtemperature without stress appears to have reduced stress-
rupture strength, but did not reduce bucket performance.. 

The mechanism of turbine-bucket failure in different engine types 
must be considered before overtemperature studies have general signifi-
cance. This investigation was conducted in a high-stress engine, which 
has a greater tendency to fail buckets in stress-rupture than would a 
low-stress engine. In spite of this, 91 percent of bucket failures 
showed evidence of fatigue. 

It appears that additional studies of overtemperatured buckets 
should be made in engines that have even greater tendencies toward pro-
ducing fatigue or thermal-stress failures in buckets. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics

Cleveland, Ohio, December 7, 1955 
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TABLE I. - RESULTS OF ENGINE OPERATION 

Group Overtemperature Failure Failure type Height above Location of fall- Mean 
heat treatment time, base, ure with respect life, 

following hr in. to edges hr 
standard 

heat treatment: 
15 min at 

°F-

1550 33.4 Damage l Leading 

99.5 Fatigue
47

Leading 

108.0 Damage l Leading 

161.9 Stress rupture plus fatigue 2- Trailing 

181.8 Stress rupture plus fatigue 21 Leading 

186.1 Stress rupture plus fatigue 3 Leading 

192.7 Stress rupture plus fatigue 21 Trailing 

214.6 Damage 2;j Leading 

237.0 Damage 2-;j Leading 

254.6 Fatigue 1 9. Trailing
181.8 

2 1700 80.1 Fatigue 2 Trailing 

109.2 Stress rupture plus fatigue 3 Leading 

214.4 Damage 2 Leading 

217.5 Stress rupture plus fatigue 2 1 j Leading 

217.5 Stress rupture plus fatigue 2 Leading 

297.5 Damage 2 Leading
189.4 

3 1800 86.2 Damage 2- Leading 

100.7 Fatigue l Trailing 

120.5 Damage 3 Leading 

147.5 Stress rupture plus fatigue l Trailing 

199.9 Stress rupture plus fatigue 2 Leading 

251.5 Stress rupture plus fatigue 2j Leading

174.9 

4 1900 89.5 Stress rupture 2 Trailing 

133.6 Fatigue 2 Leading 

157.5 Stress rupture plus fatigue 2 Leading 

217.1 Stress rupture 23 Trailing 

172.5 Stress rupture plus fatigue 2 Leading 

347.6 Damage 1 Leading

186.3 

5 2000 157.2 Fatigue 2j Leading 

187.9 Stress rupture plus fatigue 2- Leading 

196.3 Damage 2j Leading 

205.2 Stress rupture 2j Leading 

215.3 Stress rupture plus fatigue 2 Leading

192.
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TABLE 3. - Concluded. RESULTS OF ENGINE OPERATION 

Group Overtemperature Failure Failure type Height above Location of fail- Mean 

heat treatment time, base, ure with respect life, 

following hr in to edges hr 

standard 
heat treatment: 

15 min at 
OF -

6 2150 71.0 Damage 4 Leading 

80.3 Damage 21LU Leading 

92.8 Damage 4 Leading 

158.7 Fatigue 4 Trailing 

160.3 Stress rupture plus fatigue 4 Trailing 

197.6 Damage 4 Leading 

197.8 Fatigue 4 Trailing 

208.1 Stress rupture plus fatigue 2 Trailing 

214.6 Damage 3, Leading 

235.8 Stress rupture plus fatigue 2fg Leading 

262.2 Damage 4 Leading 

270.9 Damage 4 Leading

211.8 

7 2350 61.0 Fatigue 4 Trailing 

351.9 Fatigue 4 Trailing 

403.2 Damage 4 Leading 

527.2 Not failed
335.8 

Standard 30.1 Damage 4 Trailing ce 

stock for 49.8 Stress rupture 21 Trailing 
comparison

52.7 Fatigue Trailing 

75.1 Fatigue 4 Trailing 

84.5 Fatigue 3, Leading 

85.3 Fatigue 4 Trailing 

132.8 Stress rupture plus fatigue 2 Leading 

151.3 Stress rupture plus fatigue 3 Leading 

162.2 Stress rupture plus fatigue 3 Leading 

190.8 Stress rupture plus fatigue 3 Leading 

208.8 Stress rupture plus fatigue 4- Leading 

221.8 Damage 4- Leading 

253.0 Damage 2 Leading 

258.6 Fatigue 2 Trailing 

264.5 Stress rupture plus fatigue 4- Leading 

298.6 Damage 4- Leading 

340.5 Stress rupture plus fatigue 24. Leading 

356.8 Damage 24 Leading
187.5
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TABLE II. - AS-BEAT-TREATED HARDNESS AND GRAIN SIZE 

Bucket Rockwell hardness  ASTM grain size 
group

BA Converted Smallest Largest Average 

RC RB 

1 63 25 - - 8 4 6 
2 62 23 -- 8 4 7 
3 62 23 -- 8 4 7 
4 63 25 - - 8 4 6 

5 63 25 - - 8 5 7 
6 59 -- 96 8 >1 4 
7 59 -- 96 7 >1 3 

Standard 63 1	 26 1	 -- 8 1	 6 1	 7

allardness is an average of five or more readings
measured on Rockwell-A scale and converted. 
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Figure 1. - Location of scribe marks on concave side of buckets for use 
in measuring elongation.
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Figure 7. - Microstructure of S-816 after 15 minutes at 18000 F. Etchant, 25 percent 

aqua regia plus 75 percent glycerol.
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Figure 9. - Microstructure of 3-816 after 15 minutes at 20000 F.	 Etchant, 25 percent 
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Figure 11. - Microstructure (over etched to emphasize grain boundaries) of 5-816 after 15 minutes at 21500 F. Etchant, 10 percent hydrochloric acid.



24
	

NkCA RM E55LO6a 

3 

0 0 
0

1 
•	 •• .	 ••

00 

! •	 ,.'•	 . 

•	 -•.	 •.	 0 

•	
•

6	 •	 o 
0	 •	 .

•

C, 

. 

•	 0
• 

. 
o	 •	 0	

,	 •:	 O? 
0	 .	

0 

• ••	 • •Q 
0	 .	 0	 0 

GO 0 0 a	 •	 0 0 

0	
0 

0 

0	 0•

. 

•

o	

•	 0%	 0 
o.	 0 

O.D •t0.
0 

•	
•

•

£

0	 Q 

•'3	
0	 •	 0 0 

0

6,

• 
•	 0	 • Ov 

• 

•

• 
0	 0

°'

• 

01 	 • 

Oo,	 •	 0 • 

b - •	 •0 •	 o 

(a) X250. 

0c

Q 

49 

o

: 10	 0

00 0 

0 Oe

0	
0 C-40557 

(b) xi000. 

Figure 12. - Microstructure of S-816 after 15 minutes at 23500 F. Etchant, 25 percent 
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