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By Joseph M. Hallissy, Jr., and Louis Kudlacik 

SUMMARY 

An investigation has been conducted in the Langley 16-foot transonic 
tunnel on a model of a swept-wing fighter airplane to determine: 

(a) Store and pylon loads and the effect of the store installation 
on drag and stability 

(b) Horizontal-tail loads at sideslip angles of 00 and 50 

(c) The extent of drag-rise reductions possible by enlarging the 
fuselage afterbody to improve the cross-sectional-area progression 

The investigation covered Mach numbers from 0.80 to 1.03, angles of 
a t tack to 170 , and sideslip angles of 00 and ±5°. The wing had 400 

sweepback, an aspect ratio of 3.43, a taper ratio of 0.578, and NACA 64A010 
airfoil sections perpendicular to the quarter chord. 

The store and pylon installation increased the drag coefficient 
25 to 50 percent throughout the test Mach number range and decreased the 
directional stability as much as 20 percent. The side load on the store 
varied markedly with sideslip angle but little with angle of attack. On 
the pylon the side load was dependent on both sideslip angle and angle 
of attack. At the lower Mach numbers and higher test angles of attack, 
the horizontal-tail asymmetric bending moments became severe in the side­
slip condition. Because of the influence of the downwash field, the dis­
t ribution of load on the horizontal tail was such that relatively large 
hinge moments could exist for small total tail loads. The afterbody 
modifications decreased the transonic drag coefficient up to 0.01, but 
caused increases in the drag coefficient at Mach numbers below 0.92. 
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INTRODUCTION 

Of frequent concern to the designer of military aircraft are the 
following two problems: 

(a) What are the aerodynamic penalties and loads associated with 
the installation of large external stores? 

(b) What horizontal- tail loads will be encountered within the oper­
ating range of the airplane? 

Although information on problem (a) is becoming more available as the 
results of various stores research programs are reported, information 
in the transonic speed range is still limited. Some store force and 
moment data at these speeds are given in reference 1; however, only a 
few data are available giving detailed load distribution on the store. 
Reference 2, for example, gives some data from flight measurements on a 
finene ss - ratio - 5 store at moderately high subsonic speeds. 

The total horizontal- tail loads for an airplane can be estimated 
and are usually determined in developmental wind-tunnel testing. The 
span load distributions, however, are less frequently resolved. Due to 
the flow field in which the horizontal-tail surfaces operate, their span 
l oadings may be of unusual shape . For some recent designs with all­
movable swept tail surfaces this has resulted in some unexpectedly large 
hinge moments even for small total tail loads. An additional problem 
arising from flow field irregularities may be large asymmetric tail loading 
in sideslip . For some types of attachment (as to a thin vertical fin) 
the resulting root bending moment could be a critical design condition. 

In a recent test program completed in the Langley 16-foot transonic 
tunnel a swept -wing fighter model was ins trumented for both force and 
pressure measurements so that some detailed information on these problems 
could be obtained . This report presents these results and also the results 
of an effort to reduce the transonic drag rise (at Mach number 1.0) by 
enlarging the fuselage afterbody so as to improve the cross-sectional-
area progression of the model . 

The tests covered Mach numbers from 0.80 to 1.03, angles of attack 
to 170 , and angles of sideslip of 00 and ±5°. 

SYMBOLS 

The mode l for ces and moments are presented using the stability axis 
system. (See fig . 1 . ) The origin is a point in the plane of symmetry 
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opposite 0 . 21c and located 0.0103c below the fuselage center line. (See 
fig . 2 . ) 

Store forces and moments are pr esented using a body axis system with 
the x - axis along the store center line and the origin at 50 percent of 
the store length. 

Cy 

Cn~ 

The symbols used are defined as follows: 

lift coefficient, Lift 
Ci"S 

drag coefficient, ~sg 

pitching-moment coefficient, 

rolling-moment coefficient, 

yawing-moment coefficient, 

lateral- force coefficient, 

Pitching moment 
gSc 

Rolling moment 
qSb 

Yawing moment 
gSb 

Lateral force 
gS . 

dC l --- X 57.3, average value over the sideslip range 
d(3 
dCn d~ x 57·3, average value over the sideslip range 

dCy 
d(3 X 57·3, average value over the sideslip range 

store normal- force coefficient, 

store lateral- force coefficient, 

Normal force 
gnR2 

Lateral force 
gn:R2 

store pitching- moment coefficient, Pitching moment 
qnR2 zs 

store yawing- moment coefficient, Yawing moment 
gnR2 Z. s 

store section normal- force coefficient, 
Normal for ce per foot of length 

gr 
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store section lateral-force coefficient, 
Lateral force per foot of length 

'lr 
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net bending-moment coefficient at the horizontal tail attach­

ment, (Right bending moment - Left bending moment) 
St bt 

-122 

horizontal-tail normal-force coefficient, Normal force 
'lSt 

horizontal-tail hinge-moment coefficient referred to the hinge 

axis (see fig. 1), Ringe moment 
2 'lCt bt 

horizontal-tail section normal-force coefficient, 
Normal force per foot of span 

'lCt 

wing section normal- force coefficient, 
Normal force per foot of span 

qc 

pylon section load coefficient, Force per foot of span 
'lCp 

model cross - sectional area, normal to fuselage center line 

wing span 

hor izontal-tail span 

wing local chor d 

average wing chord 

b/2 
mean aerodynamic chord, ~ 10 c2dy 

pylon chord 

horizontal-tail chor d 

& 

.. . 
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it 

If 

It 

ls 

Pb 

Pb 

Po 

q 

R 

r 

S 

St 

x 

xf 

xp 

Xs 

y 

a. 

G.t 

horizontal-tail incidence (angle with respect to fuselage 
center line) 

fuselage length 

tail length, 0.2l c of wing to 0.25 c of horizontal tail 

store length 

base pressure coefficient, 

static pressure at model base 

free-stream static pressure 

free-stream dynamic pressure 

maximum store radius 

local store radius 

wing area 

horizontal-tail area 

streamwise distance from the wing leading edge 

distance from the nose of the fuselage 

streamwise distance from the pylon leading edge 

distance from the nose of the store 

perpendicular distance from the plane of symmetry 

angle of attack, referred to fuselage center line , deg 

section angle of attack of the horizontal tail , 
a. + it - local downwash angle, deg 

sideslip angle, deg 

5 
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MODEL AND INSTRUMENTATION 

Model 

Geometric details and dimensions of the model are given in figure 2. 
The term "basic model" in this report is used to indicate the configura­
tion as shown in figure 2 less pylon and store. Some additional infor­
mation on the location of the store is as follows: the 46.66-percent 
center-line point of the store is located 1.43 maximum store diameters 
directly below the wing quarter-chord point at the O.218-semispan station. 

Figure 3 indicates the various fuselage shape modifications. The 
"original fuselage shape" is included for reference only, since it was 
not one of the configurations tested . (An enlarged afterbody was requ~red 
for the sting mounting.) The original nose inlet is also indicated for 
reference only, since all tests were made with the faired nose section 
installed . Two modifications to the fuselage afterbody shape and one to 
the wing-fuselage juncture were tried in the program to reduce the tran­
sonic drag rise by improving the model cross-sectional-area progression. 
Only the larger of the two afterbody modifications tested, or the "full 
afterbody modification," is indicated in figure 3. This modification was 
intended to provide the most favorable cross-sectional-area distribution, 
as shown in figure 4. The smaller, or "75-percent modification," was 
similar in shape, but had only about three-fourths of the area addition, 
which permitted less abrupt fuselage contours as compared with the full t 

modification. A third modification incorporated the wing-root fillets 
indicated in figures 3 and 4 installed in combination with the full after-
body modification. The purpose of these fillets was to move the point of 
maximum area farther forward, thus increasing the afterbody fineness ratio. 
Photographs of the basic model and of the model with wing-root fillets 
and the full afterbody modification are given in figure 5. 

Instrumentation 

An electric strain-gage balance was mounted within the fuselage for 
force and moment measurement. 

The model was equipped with flush pressure orifices at the locations 
indicated in figure 6. Four chordwise rows of 31 orifices each on the 
left and two rows of 11 orifices each on the right comprised the wing 
pressure instrumentation . The left semispan of the horizontal tail was 
instrumented with three chordwise rows of 16 orifices each. Seventy­
seven pressure - measurihg orifices at eleven stations having 4 to 9 periph­
eral orifices each were installed on the store, while one row of 9 ori­
fices per side was employed on the pylon. 
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Base pressures were measured for all test conditions by two orifices 
located on the sting 0.35 inch inside the fuselage base. 

TESTS 

The investigation was conducted in the Langley 16-foot transonic 
tunnel which has an octagonal slotted test section permitting a contin­
uous variation of speed to a Mach number slightly above 1.0. 

For all test conditions six-component force and moment data were 
obtained. For most conditions extensive pressure data were also recorded. 

The Mach numbers were 0.80, 0.90, 0.94, 0.98, l.OO and l.03 for all 
configurations. The angle-of-attack range was _20 to 150, except that 
at the highest two Mach numbers the range was limited by the balance 
capacity. For the basic configuration and the store-on configuration 
tests were made at sideslip angles of ±5° as well as 00 . For one of the 
afterbody modifications tests also were made at a sideslip angle of +50 . 

The test Reynolds number (based on wing mean aerodynamic chord) was 

about 5.0 X 106 . 

ACCURACY AND CORRECTIONS 

The measurement of Mach number in the test region is correct within 
to.002 (see ref. 3) and angles of attack and angles of sideslip presented 
are believed accurate to within ±O.l degree. 

The estimated accuracy of force and moment coefficients is as follows: 

CL . . . . . . . . . . ±O.Ol 

CD (at low lift coefficients) . to.OOl 
CD (at high lift coefficients) . . . . ±0.003 

Cm to.003 
C1. to.OOl 

Cn . . . . ±0.001 

Cy :to. 001 

pt . . . . . . . . . . . . . . . . . . ±0.01 

A wind-stream upflow angle of 0 . 25 degree has been allowe~ for in 
the computation of the data. 
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Lift and drag data have been adjusted to the condition of free-stream 
static pressure at the model base. Base pressure coefficients are pre­
sented for the basic model at it = 00 (fig. 7(d)), the basic model at 
it = - 50 (fig . 8(d)), the basic model with horizontal tail off (fig. 9(d)), 
and for the model with full afterbody modification (fig. ll(d)). No base 
pressure data are presented for the model with store and pylon, since 
these data were essentially the same as figure 7(d). Similarly, no base 
pressure data have been included for the full afterbody modification plus 
wing-root fillets or for the 75-percent modification, since these data 
are essentially the same as figure ll(d). 

No corrections have been applied for sting interference or aero­
elastic effects . Boundary interference effects for a wing-fuselage com­
bination of this size are negligible in this test section up to and 
slightly above Mach number 1 .0. (See ref. 4.) 

RESUDTS AND DISCUSSION 

The basic force data obtained for all configurations are presented 
in figures 7 to 15 and for convenience are tabulated as follows: 

Longitudinal data Data presented Figure 

Basic model, it = 00 a, against CL 7(a) 

CD against CL 7(b) 
Cm against CL 7(c) 
P[) against CL 7(d) 

Basic model, it = -50 a, against CL 8(a) 
CD against CL 8(b) 
Cm against CL 8(c) 
Pb against CL 8(d) 

Basic model, horizontal tail off a, against CL 9(a) 
CD against CL 9(b) 
Cm against CL 9(c) 
Pb against CL 9(d ) 

Model with store and pylon a, against CL 10(a) 
CD against CL lOeb) 
Cm against CL 10(c) 

• 
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Longitudinal data Data presented Figure 

Model with full afterbody a, against CL ll(a) 
modificat ion CD against CL ll(b) 

Cm against CL ll(c) 

Pt against CL ll(d) 

Model with 75-percent afterbody a, against CL 12(a) 
modification CD against CL 12(b) 

Cm against C1 12(c) 

Model with full afterbody modi- a, against CL 13(a) 
fication and wing-root fillets CD against CL 13(b) 

Cm against C1 13(c) 

Sideslip data Data presented Figure 

Basic model Cm against /3 14 
Cr against /3 15 

Cn against /3 15 
Cy against /3 15 

Model with full afterbody Cm against {3 14 
modification Cr against {3 15 

Cn against /3 15 
Cy against /3 15 

Model with store and pylon Cm against /3 14 

Cr against /3 15 
Cn against f3 15 
Cy against /3 15 

Store and Pylon Installation 

Effect on wing loading . - The effects which installing the store and 
pylon had on wing pressures and loading are illustrated in figures 16 
and 17. In general, the pressure coefficients were more negative on 
both the upper and lower surfaces, figure 16 . The lower surface change 
is the greatest, however, especially inboard, so that the l oads are also 
reduced as shown in figure 17 . 
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Effect on airplane forces and moments.- The effects of the store and 
pylon installation on airplane forces and moments are presented in fig­
ures 18 through 23 . The lift- curve slope, as shown in figure 18, was 
reduced by the store installation . The lift coefficient at zero angle 
of attack was also reduced slightly, as can be seen by comparing fig­
ures 7(a) and 10(a). This is at least partially caused by the reduction 
in loading on the right wing . The CD increa se at zero lift caused by 
the store installation, as shown in figure 19 , varies from 25 to 50 per­
cent, being 0 . 0025 at M = 0.80 and 0.016 at M = 1.03. Figure 20 shows 
the maximum lift - drag ratio and the lift coefficient at which it occurs. 
The loss in maximum lift - drag ratio caused by the store ranges from 2.0 
at M = 0 . 80 down to 1 . 0 at higher speeds. At zero lift, no significant 

change in longitudinal stability parameter ~Cm is shown by figure 21 
aCL 

for any point in the test Mach number region. The zero lift pitching­
moment coefficient also is unchanged except at Mach numbers 0.98 and 1.00, 
as shown in figure 22 . At these speeds the shock pattern may be strongly 
influenced by the presence of the store. 

The store installation on the right wing resulted in a positive 
change in CL of up to 0 . 01 at zero sideslip, figure 15 . C2~ is gen-

erally mor e negative (positive dihedral effect ) with the store mounted, 
at least for the higher Mach numbers, as is shown in figure 23. Cn at 
zero s ideslip is also generally shifted in the positive direction (fig. 15) 
and the directional stability parameter Cn~ is reduced as much as 

20 percent (fig . 23 ). 

figure 23 . 

A 20-percent increase in Cy~ is also shown in 

store and pylon loads .- None of the actual pressures measured on 
t he s t ore have been included in the report, but the longitudinal distri ­
but ion of load and the total integrated load, both in the normal and 
lateral directions, have been included, figures 24 to 26. Only 77 orifices 
were used to measure pressures on the store and this number is not con­
s idered to be suffiCiently large to obtain a high degree of accuracy of 
t he integrated loads . However , it is believed that the results are good 
qualitatively, and that the proper trends are shown . 

In general , the normal load distribution on the store does not vary 
greatly with any of the test variables, figure 24. The forward 25 or 
30 percent of the stor e supports a negative load due to the negative store 
incidence of ~o relative to the wing . This negative load is main-

t a ined through most of the angle - of- attack range due to the controlling 
eff ect of the wing on the flow in this region . The load on the store 
nose at the highest test angle of attack becomes slightly pos itive . The 
s ect i on of the store bet ween 30 and 60 percent maintains a loading that 
is posit ive due to low pre ssures between t he store and the wing in this 
regi on . Behind the 60 percent station the load is again negative. 

~ I 

, 



NACA RM L56A26 11 

The distribution of side load on the store is characterized by a 
load on the forward 50 percent, shown in figure 24(b), which varies con­
siderably with angle of sideslip ~ generally being positive when ~ 

is -50 and negative when ~ is +50. From this point aft the load is 
less influenced by the test conditions. The load on the central area 
is always in an inboard direction due to the lowered pressure on the 
inboard side of the store. Both normal and side load section data have 
in general the same shape and characteristics as do the section normal 
and side load distributions of reference 2. 

Integrated loads on the store are given in figure 25 as a function 
of angle of attack. At zero angle of sideslip the store side force is 
negative or inboard. The fact that only a small change in store side 
force occurs with angle of attack is in agreement with the supersonic 
data of reference 5 for a similar inboard store location. Large varia­
tions of the store Side-force and yawing-moment coefficients occur with 
sideslip and are shown in figure 26, cross plotted from figure 25. 

A sampling of the pressure distributions obtained at the one pylon 
station is included as figure 27. The integrated section load coefficients 
for the pylon at all test conditions are shown in figure 28 . The loads on 
the pylon are seen to vary appreciably with both angle of attack and side­
slip angle. For the right wing mounting employed, the side force becomes 
more positive (that is, toward the tip) with positive angles of attack 
and negative angles of sideslip. The increase in the load with angle of 
attack is associated with the usual outflow on the lower surface of a 
swept wing. 

Horizontal-Tail Characteristics 

Horizontal-tail loads were obtained by the integration of pressures 
measured on the upper and lower surfaces at the three stations on the 
left semispan. The span load distributions are shown in figure 29. For 
the sideslip case the left semispan data shown are those obtained on the 
left semispan at ~ = +50 . The data shown on the right semispan were 
actually obtained by left semispan measurements at ~ = -50. For the 
unyawed case the left semispan data are plotted on both the left and 
right sides. 

Tail normal force.- The tail normal-force coefficients for incidence 

angles of 00 and -50 are presented in figure 30. These data were obtained 
by the spanwise integration of section load data. There was some concern 
over the accuracy of the resulting tail normal-load values, since there 
were only three pressure orifice stations. Therefore, figure 30 also 
includes (at it = 00 only) tail load data obtained from the tail contri­
bution to pitching moment. The results indicate very good agreement at 
all Mach numbers. It is believed, therefore, that accurate data have 
been obtained using only three semispan stations on the horizontal tail. 
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The reduction in tail normal force at the higher angles of attack 
may be attributed to the rate of change of downwash for a swept wing such 
as is shown, for example, in reference 6. 

The slope of the tail lift with tail incidence as determined from 
the present data for low angles of attack varied from 0.055 to 0.068, 
having the higher values at the highest Mach numbers. 

A comparison of the tail loads at zero sideslip, and 50 sideslip is 
shown in figure 31. For all tested conditions the tail load was more 
positive at sideslip angles, or in a direction to cause a more negative 
pitching moment; the magnitude was of about the proper order to produce 
the pitching-moment coefficient reductions with sideslip shown in fig­
ure 14. 

Asymmetric bending moment.- For the sideslip condition, as shown in 
figure 29, appreciable differences in loads between opposite semispans 
may be encountered. For a horizontal tail mounted o,n a vertical-tail 
surface , as it was on this model, bending-moment differences at the 
attachment may become critical. The load distributions were, therefore, 
integrated for differences in bending- moment coefficients and the results 
are presented in figure 32. For the lower Mach numbers at the highest 
test angle of attack the asymmetric bending moment becomes very large. 
This increase is apparently due to the wing vortex moving to a position 
inboard of the horizontal-tail tip. To show this, comparisons of the 
horizontal-tail span loading have been made with unpublished downwash 
data measured behind a wing-body model having 450 sweep of the quarter 
chord, aspect ratio 4, taper ratio 0.6, and having 6-percent-thick 
sections parallel 'to the stream. This wing is related closely enough 
to the wing of the present tests so that flow field characteristics 
would be similar. The downwash data were measured with pitch head probes 
at four points behind and above the wing corresponding to four locations 
on the tail semispan. These data are shown in figure 33 for Mach num­
bers 0.80 and 0.98 and for angles of attack of 110 and 150 . The downwash 
data are presented as the local angle of attack of the tail, ut. As 

shown in figure 33(a) at M = 0 . 80 the general variation of local angle 
of attack across the span, as measured with probes, is similar to that 
of the tail load distribution shown immediately below in the same figure. 
Note that at the tip the local angle of attack and the load at a = 110 

are both negative, indicating large downwash, while at a = 150 the tip 
angle and load are both positive, indicating greatly reduced downwash. 
The former condition indicates a wing vortex position outside the tail 
tip~ while the latter indicates that at a = 150 the wing vortex has 
moved inside the tail tip. At the bottom of the page (figure 33(a )) 
are shown the span loads obtained for the same angles of attack at 
P = 50 . It can be seen that at 110 some asymmetry in load has developed 
due, apparently, to the right tip moving into the low downwash region 
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outside the wing vortex. At a = 150, however, the asymmetry in load is 
very large because not only is a large part of the right tip outside the 
wing vortex in the low downwash regio~, but the left tip has become com­
pletely unloaded due to having moved inside the vortex. These results 
are typical of Mach numbers 0.80, 0.90, and 0.94. Figure 33(b) indicates 
that for M = 0.98 at a = 150 the wing vortex is still outside the 
tail tip (for ~ = 00 ) and thus at this speed a sideslip angle of 50 does 
not produce the large asymmetry of loading obtained at lower speeds. 
Downwash measurements at higher angles, however, indicate that at a = 170, 
the vortex would be inside the wing tip and the loading would become 
similar to that at a = 150 at lower speeds. 

Tail hinge moments.- Hinge-moment coefficients about the hinge axis 
indicated in figure I have been determined from the pressure data obtained 
at the three orifice stations on the horizontal tail and are presented in 
figure 34. Comparing these data with the tail normal-force data in fig­
ure 30, it will be noticed that the hinge moments are ~uite large for 
some conditions where the normal load is small, and vice versa. This 
results, of course, from the influence of the downwash field on the span 
loading on the tail. 

The slope of the hinge - moment coefficient with tail incidence angle 
has been determined from figure 34 and is shown in figure 35. The rapid 
increase with Mach number is due to the spanwise and rearward center-of­
pressure shift generally associated with transonic speeds. 

Tail incidence for trim was calculated from the pitching-moment data 
(of figs. 7(c) and 8(c» and is shown on the left side of figure 36. 
Using these trim tail incidences and the tail hinge-moment data, Ch 
for trim has been determined and is plotted against angle of attack on 
the right side of figure 36. The average slope of Ch(trim) between 
a = 00 and 40 through the Mach number range is presented in figure 37 
as dCh(trim)/da. The increase of this parameter with Mach number, which 

represents a stiffening of the tail control characteristics, is very 
severe, and would be reflected in a correspondingly increased tail actu­
ator force. The actuator force change, for example, which would be 
re~uired to make an angle-of-attack change of 10 at M = 1.03 is more 
than 40 times as great (allowing for change in ~) as at M = 0.80. 
The large value of dCh(trim)/da at high Mach numbers could be reduced 
by a more rearward position of the hinge line, but this would result in 
an overbalanced tail at lower speeds. 

Effects of "Area-Rule" Modifications 

The modifications tried, which were discussed earlier in the Model 
and Instrumentation Section, all involved the addition of fuselage volume 
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without indentation. The drag results from the basic model data of fig­
ure 7(b) and from the modified model data of figures ll(b), 12(b), and 
13(b) have been cross plotted at two lift coefficients against Mach num­
ber in figure 38 . At zero lift coefficient all modifications reduce the 
drag at Mach numbers greater than 0.92 but all increase the drag for 
lower Mach numbers. A maximum reduction of 0.01 in drag coefficient is 
realized at 0 . 96 Mach number at zero lift coefficient with the full after­
body modification and wing root fillets. Drag reductions become less at 
the highest test Mach numbers and at increased lift coefficients. Of the 
three modifications tried the full modification without fillets appears 
to have generally the best characteristics. Maximum LID values for 
the full afterbody modification without root fillets are shown in fig-
ure 20, and, as would be expected, indicate some improvements at the 
higher speeds but some losses at the lower speeds. 

The effect of the full afterbody modification without root fillets 
on the longitudinal stability parameter OCm/dCL' as shown in figure 21, 
is a small decrease in absolute value through the Mach number range. 
The pitching moment at zero lift, figure 22, is more positive with the 
modified afterbody, which is probably due to the downflow on the hori­
zontal tail caused by the modification. The nose-down pitching-moment 
change with sideslip is usually less for the model with afterbody modi­
fication, figure 14. 

The effective dihedral, CL~' shown in figure 23, becomes more 

positive at the higher speeds and angles of attack for the configuration 
with full afterbody modification, perhaps due to a change of the wing 
shock pattern . The directional stability derivative Cn~ generally 

decreases as much as 10 percent at the lower Mach numbers but no con­
sistent change prevails at the higher speeds, figure 23. It might be 
expected that at high angles of attack the full afterbody modification 
would adversely affect Cn~ through a blanketing effect on the vertical 

tail, but this did not occur in the test angle-of-attack range. 

CONCillSIONS 

The results of a transonic wind-tunnel investigation - which included 
the measurement of loads on a store mounted on a swept-wing fighter con­
figuration, horizontal- tail loads at sideslip angles of 00 and 50, and 
fuselage modifications to improve the cross-sectional-area progression 
of the model - lead to the following conclusions: 

1. A 25 - to 50-percent increase in the minimum drag occurred through­
out the Mach number range with the store installed. 
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2. The directional stability was reduced as much as 20 perceilt when 
the store was installed. 

3. There were large changes in the store side force with sideslip 
angle, but only small changes with angle of attack for the inboard loca­
tion used in these tests. The side force on the pylon, however, varied 
considerably with angle of attack as well as with angle of sideslip. 

4. Because of the influence of the downwash field, the distribution 
of load on the horizontal tail was such that relatively large hinge 
moments could exist for small total tail loads. The slope of the tail 
hinge -moment coefficient at trim with angle of attack increased throughout 
the test Mach number range, the rate of increase being greatest above a 
Mach number of 0.94. 

5. At the lower Mach numbers and higher test angles of attack, the 
horizontal-tail asymmetric bending moments became severe in the sideslip 
condition . 

6. Reductions up to 0.01 in IDllllmum drag coefficient were obtained 
in the transonic range by afterbody enlargement, but all modifications 
increased drag below a Mach number of 0.92. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., January 16, 1956. 
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