
, 
{ 

RM E55K24 

NACA 

RESEARCH MEMORAND UM 

EXPERIMENTAL INVESTIGATION OF TURBINE STATOR-BLADE-

OUTLET BOUNDARY - LAYER CHARACTERISTICS AND A 

COMPARISON WITH THEORETICAL RESULTS 

By Warren J. Whitney, Warner L. Stewart, and James W. Miser 

Lewis Flight Propulsion Laboratory 
Cleveland, Ohio 

NATIONAL ADVISORY COMMITTEE 
FOR AERONAUTICS 

WASHINGTON 

March 16, 1956 
Declassified June 20, 1957 



,..; 
I 
~ o 

NACA RM E55K24 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

EXPERIMENTAL INVESTIGATION OF TURBINE STATOR - BLADE-OUTLET BOUNDARY-

LAYER CHARACTERISTICS AND A COMPARISON WITH THEORETICAL RESULTS 

By Warren J. Whitney} Warner L. Stewart} and James W. Miser 

SUMMARY 

The boundary-layer characteristics at the mean radius immediately 
downstream of a typical turbine stator blade have been investigated ex­
perimentally over a range of blade- outlet critical-velocity ratio from 
0 . 8 to 1 .16 . The total boundary- layer momentum thickness for the blade 
and the individual thicknesses obtained for the suction and pressure 
surfaces are compared with the values calculated from the turbulent­
boundary-layer theory . In addition} the boundary- layer form factors} 
pressure factors} and energy factors obtained in the investigation for 
the blade and for the two surfaces individu~lly are compared herein 
with those obtained from a simple-power- law velocity profile having an 
exponent of 1/7. 

The theoretical values of boundary-layer momentum thickness were 
in reasonably close agreement with the experimental values, the theo­
retical values being slightly lower over the range of critical-velocity 
ratio . The trend of the theoretical curve of momentum thickness as a 
function of critical-velocity ratio was similar to that of the experi­
mental results . This fact verified to some extent the effect of Reynolds 
and Mach numbers that was assumed in the theoretical method . The blade­
outlet boundary- layer form factors } pressure factors} and energy factors 
for the blade and for the two surfaces could be satisfactorily approxi­
mated by a simple-power-law velocity profile having an exponent of 1/7. 

INTRODUCTION 

One of the prime objectives of the turbine research program being 
conducted at the NACA Lewis laboratory is a better understanding of the 
fundamental nature of the flow and the sources of loss encountered in 
turbomachine blade rows . An understanding of this type would enable 
the designer to use sound aerodynamic concepts} rather than empirical 
guides} for selecting such per tinent design features as turni ng angle} 
relative Mach number } solidity} and reacti on for a given blading de­
sign . A reasonably accurate estimate of the blade- outlet boundary-layer 
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characteristics ) for instance ) would serve as a basis for predetermin­
ing the mass - flow and loss coefficients for a blading design. 

The boundary- layer characteri sti cs of airfoils at low Mach numbers 
have been investigated in the past ) and a considerable amount of this 
low- speed data is available (e . g .) refs . 1 and 2) . Little high- speed 
data is available) however ) and not much work has been done toward pre­
dicting boundary- layer characteristics for blading in the field of high 
flow velocities where the incompressible-flow solutions are inade~uate. 
In reference 3 the basic boundary- layer parameters are described for 
compressible flow in terms of conventional nondimensional flow param­
eters . It is shown in reference 3 that compressibility has considerable 
effect on the pressure parameter and pressure loss in the boundary layer 
at high velociti es . I t is also shown (ref. 3) that blade losses depend 
primarily on the boundary- layer momentum thickness. 

Therefore) it was of interest to determine experimentally the 
blade- outlet boundary- layer characteristics for a typical turbine stator­
blade row in the compressible - flow velocity range. Total-pressure sur ­
veys were made at the mean radius immediately downstream of the stator­
blade trailing edge over a range of critical- velocity ratio from 0 .8 to 
1.4 . The boundary- layer parameters were calculated by integrating mass 
flow and velocity from the total-pressure profiles . This report pre­
sents the boundary- layer characteristics obtained from the surveys . In 
addition) the boundary- layer momentum thicknesses are compared to those 
calculated from turbulent -boundary- layer theory . 

APPARATUS AND PROCEDURE 

The test installation consisted of an annular cascade of turbine 
stator blades with the turbine rotor removed. The stator blading used 
in this investigation was a typi cal free -vortex straight- back design 
having a turning angle of 6~ at the mean. radius . The tip diameter was 
14 inches and the hub - tip radius rat i o was 0 . 7 . The mean radius pitch 
was 1 .168 inches and the chord length was 2.068 inches. A sketch show­
ing the stator-blade passages and profiles is shown in figure 1 . Sur­
veys wer e made at various outlet static pressures to cover a range of 
cri tical-velocity ratio from 0 . 8 to 1 .4. The upstream total tempera­
ture and pressure were maintained constant at nominal values of 6000 R 
and 32 i nches of mercury absolute . The survey probe was located axially 
so that the sensing element just cleared the blade trailing edge by a 
few thousandths of an inch . 

The surveys cons i sted of ci rcumferential traverses at the mean 
radius made by a total- pressure probe aligned with the flow angle . The 
hook- type total-pressure probe was made from a single 0 . 020- inch tube 
flattened to a width of 0 . 006 i nch in the tangential direction . 
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The pressure impulse sensed by the probe was converted to milli ­
volts and this signal was plotted as a continuous function of probe po­
sition on an automatic curve tracer . The trace readings reduced to 
total pressures by instrument cali bration were used to integrate the 
mass flow, total pressure) ki neti c energy) and momentum through the 
boundary layer . The stati c pressure was assumed constant along the 
circumferenti al path and was obtained by averaging the values obtained 
at the i nner and outer shrouds . The inner- and outer - shroud static 
pressures were based on the average pressure obtained from four static­
pressure taps located in the centers of stator passages spaced 900 

apart on the shrouds . 

CALCULATI ONS 

Experimental Boundary- Layer Characteri stics 

The total-pressure t r aces are shown in f i gure 2 for the various 
blade- outlet critical- velocity ratios . The blade over-all boundary­
layer parameters, 0tot) ~ot) ~tot ) and *t ot (all symbols are defined 
in appendix A), were obtained for these experimental data by integrat­
ing the velocity) mass flow, and total pressure along a circumferential 
path across one blade pitch using equations (17) of reference 3 . In 
obtaining O~otJ the trailing- edge thickness term ate was omitted 

from the equation because there was no perceptible mass-flow-void part 
of the wake region corresponding to the trailing- edge blockage (fig . 
2) . Although the probe was as close as possible to the trailing edge, 
the rounded trailing- edge shape would permit the boundary- layer fluids 
to flow into the trailing- edge region . The ratio of total momentum 
thickness to chord was obtained from 

etot s cos i3 
c 

(1) 

• * The parameters Htot) Ptot ) and Etot were obtained from 0tot) Btot ) 

S ~ot' and *tot . In order to obtain these quantities for the two sur­
faces individually, a demarcation point D between the suction- and 
pressure- surface boundary- layer regions was arbitrarily selected as the 
minimum total-pressure point (fig . 2) . The suction- surface parameters e:, 0:) ~~, and *~ were obtained by integrating t he same equations 

(eqs . (17) of ref . 3) from uls = 0 to uls = dis . The pressure ­
surface parameters were then obtained from etot = e; + e; and cor-

3 

• responding equations for 5~ot) S~ot' and V:ot - The parameters H, P J 

and E for the two surfaces could then be calculated from these quanti ­
ties since 
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o· 
HS 

s 
( 2a) = e* s 

and 

o· 
~= 

p 
( 2b ) e· p 

For higher supersonic blade- outlet velocities) the indicated free ­
stream total pressure was lower than the inlet total pressure (fig . 2) . 
This effect is most noticeable at the two highest blade - outlet veloci­
t i es ((V/V ) 02= 1 . 24 and 1 . 40). There are two possible reasons for cr ) 
the blade- outlet free - stream total pressure being lower than the inlet 
total pressure at these velocity levels. First) there could have been 
a shock pattern in the blade row downstream of the throat secti on . The 
shocks would have extended across the free - stream flow and lowered the 
free - stream total pressure . Second) the pressure indicated by the probe 
could have been in error because of a detached bow wave ahead of the 
probe sensing element . Applying a normal - shock- loss correction to the 
indicated total pressure resulted in an outlet free - stream total pres ­
sure that was greater than the inlet total pressure . The loss in free ­
stream total pressure was probably due to a combination of the two 
reasons gi ven . I f any significant loss occurred in the free - stream 
flow) the development of reference 3 is not valid; and the evaluation 
of the boundary-layer characteri stics would become extremely complex) 
even if the true total-pressure profile at the blade outlet were known . 
Therefore ) no attempt was made to evaluate the boundary- layer character­
istics at the two highest blade- outlet velocities because it was be ­
lieved that the accuracy of these quantities would be highly questi on­
able and) therefore) of little value . 

Theoretical Boundary-Layer Characteristics 

The boundary-layer form factor H) energy factor E) and pressure 
factor P can be computed for a simple-power - law velocity profi l e . 
These t hree factors ar e functions of the blade - out l et cri tical-velocity 
r ati o ( V/Vcr~O 2 and the simple -power - law-velocity - pr ofi l e exponent n. 

) 

The theor etical val ues of H) p) and E were computed for n = 1/7 by 
usi ng equations (B12)) (B13) ) and (B14) of r eference 3 . The quantities 
H) P, and E ar e independent of the physical boundar y - layer thickness ; 
however) they do ser ve to i ndicate whether the boundar y-layer properties 
can be approximated by a simpl e -power-law velocity profile. 

• 

• 
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Momentum Thickness Obtained from Turbulent- Boundary-Layer Theory 

I n order to calculate the theoretical values of the boundary­
layer thickness ) it was necessary to estimate the velocity dis tribution 
around the blade by applying the stream- filament theory (ref . 4) to the 
blade mean section. The velocity distributions were determined for 
blade- outlet criti cal-velocity ratios of 0 . 5) 0 . 75) 1 .00) and 1 . 46 
(limiting l oading). For the case of stator limiting l oading) the 
suction- surface velocity downstream of the throat was obtained by the 
method of characteristics with no shock losses assumed . I sentropic 
flow through the stator was assumed in all cases . The veloci ty dis ­
tributions are shown in figure 3 . The turbulent-boundary- layer thick­
nesses wer e computed by using the fol l owing relations : 

~ dx = 

POVO 0 . 246 ( 
2y 

2g ( 0 . 268 0 . 678Hinc) 
Re e 10 

(3) 

(4) 

EQuation (3) is the Karman momentum eQuation of reference 5 . EQuation 
(4) is an empirical eQuation for the wall shearing stress from refer­
ence 6 . Since this relation was developed for incompressible flow ) the 
substitution Hinc = ( 2n + 1) is used herein (ref. 3) . This substitu-
tion assumes) in effect) that the boundary layer has a simple - power ­
l aw velocity profile . Reference' 7 shows that compressibility has an 
effect on wall shearing stress and skin-friction coefficient. The 
correlating relation is given by 

Cfr)inc == 

where 

(5) 

The factor K was included in the empirical shearing- stress eQuation . 
When this relation was substituted in the momentum eQuati on (eQ. (3))) 
the resulting equati on (appendix B) was integrable as follows : 
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0 . 231 Ix [_( _~v_t(_V_)=-=(l +:-=,H)]'7-=-l _' 26--:-8 (~}.l )_0 ._268_ K_dx 
~ Vcr ° Vcr ° pV ° 

100 . 678( 2n + 1 ) 

0 . 7886 

[
I- p V ) ( V ) 1 +H 
\ p I Vcr ° Vcr ° x 

The form factor H i s the compressible -flow form factor. I n order to 
complete the solution for eX ) it was neces sary to e stimate the values 

of H and n by an approxi mate method . The exponent n was obtained 
from the equation 

1/14 
l i n = 2 . 6 ReO x 

) 

(7) 

from reference 8) where ReO x is the free - s tream Reynolds number based 
) 

on surface length at any particular poi nt . The value of H could then 
be determined from table III of referenc e 8 ) from the critical- velocity 
ratio and the value of lin . The use of this relation between nand 
H assumes in effect that the boundary layer has a simple - power - l aw 
veloci ty profile . The value of e was obt ained by graphically inte­
grating the right- hand s i de of equation (6) . 

I t has been assumed) her ein ) that the flow at the mean radius s ec­
tion is essentiall y two- dimensional ) or that there is no appreciable 
radial flow of the boundary- layer fluids . This assumption was substan­
tiated to some extent by a low- speed smoke - flow test that was made on 
thi s blade channel . In the low- speed visual flow test there was no 
perceptible radial transfer of the boundary-layer fluids . I t was be­
lieved that the transition from a laminar to a turbulent boundary layer 
occurr ed early on the blade surfaces because of the high inlet turbu­
lence intensity) which was measured as 7 percent . In calculations of 
the theoretical values of boundary- layer momentum thickness) the bound­
ary layer was assumed turbulent from the forward stagnation point . 

RESULTS AND DISCUSSION 

The boundary- layer characteristics occurring at the mean section 
of the s tator blade were obtained from the experimental informati on in 
the manner described in the CALCULATIONS secti on . This information in­
cluded the blade over-all characteri sti cs as well as the characteris ­
t ics occurring on each surface . 
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Over-All Characteristics 

Momentum loss. - In figure 4 the ratio of total momentum thickness 
to chord (etot/C) 2 is presented as a function of the blade-outlet 
critical-velocity ratio (V/Vcr)O 2 ' The values of (etot/C)2 decreased 

) 

as the velocity increased . This trend is believed to result largely 
from the Reynolds and Mach number effects on the skin-friction coeffi­
cient as is discussed later in this section . 

7 

Form and loss factors. - The three boundary - layer factors Htot l 

Etot ) and Ptot were also obtained over the range of velocities covered 

in this investigation . These factors are related to the momentum thick­
ness parameter e and are measures of flow blockage) kinetic-energy 
loss) and total-pressure loss ) respectively (ref. 3) . A comparison of 
these factors with those obtained for a velocity- profile exponent of 
1/7 is made in figure 5 . The experimental values of Etot) Ptot ) and 

Etot conformed closely with the theoretical factors for n = 1/ 7 over 
the velocity range studied . Thus it appears that for this blade row) 
the average form factor and the loss factors can be approximated by a 
simple-power- law velocity profile having an exponent of 1/7. 

Blade- Surface Characteristics 

Momentum loss. - The boundary- layer characteristics were also ob­
tained on each surface of the stator blade using the minimum total­
pressure point on the traces as the demarcation point between the two 
surfaces (fig. 2). The ratio of momentum thickness to chord as com­
puted for the two surfaces is shown in figure 6 as a function of the 
blade- outlet critical- velocity ratio (V/Vcr)O 2' On the suction sur-

I 

face) a general reduction in (8s /c) occurs with increasing velocity. 

On the pressure surface) a more gradual reduction in (ep/c) occurs) ex­

cept for the point at critical-velocity ratio of 1 . 16 . Thus the trends 
of momentum loss obtained for the two blade surfaces are similar to 
that obtained for the blade . I t can be seen from figure 6 that the mo-

l 
mentum loss for the suction surface is approximately 2 to 22 times as 

great as the loss for the pressure surface. 

Form and l oss factors . - The form factors) energy factors ) and pres ­
sure factors are shown for the two surfaces in figure 7. I ncluded on the 
figure are the curves of H) E) and P for a simple - power-law ve l ocity 
profi l e having an exponent of 1/7 . These form and energy factors ob­
tained experimentally ar e closely approximated by the values obtained from 
a simpl e -power-law ve locity profile having an exponent of 1/7 over 
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the velocity range . The pressure factor obtained for the pressure sur­
face agrees closely with the n = 1/ 7 exponent curve. The pressure 
factors obtained on the suction surface approach an exponent of 1/5 at 
the high velocities . However ) this deviation is not large) the maximum 
deviation being of the order of 6 percent . It is therefore believed 
that the simple power- law velocity profile having an exponent of 1/7 can 
be used to approxi mate the parameters H) p) and E with only a slight 
error for the two surfaces as well as for the blade as a whole . 

Compari son of Experimental and Theoretical Results 

Total momentum loss . - The momentum- thickness - to-chord ratios are 
replotted in figure 8 (a ) as a function of the blade- outlet critical­
velocity ratio . Included in the figure is a dashed line based on the 
theoretical results obtained at (V/ Vcr)O 2 values of 0 . 5) 0 . 75) 1.00) 

) 

and 1 . 46 . As can be seen from the figure) the theoretical curve agrees 
reasonably well with the experimental values over the range of blade­
outlet velocity) the theoreti cal values being slightly lower. 

In obtaining the theoretical value of (Btot/c) at limiting load­

ing) no shock losses were assumed . Actually there would be some shock 
losses extending across the free - stream flow at this velocity level) 
and the shock would thi cken the boundary layer ) as well as negate the 
assumption of isentropic free - stream flow employed . The value of 
(Btot/ c ) at limiting loading was used as a guide in extending the theo-

retical curve from a (V/ V ) 0 2' value of 1 . 0 to 1 .16 . In addition) cr ) 
the theoretical values are affected by the accuracy of obtaining the 
velocity distribution . The velocity distributions were obtained by 
stream f i lament theory) which) at best ) can only be regarded as a good 
approximation . 

The t r end of decreasing ( Btot/ c }2 with increasi ng (vj vcr)O 2 can 
) 

be noted in figure 8 (a) for the theoretical curve . This trend is due 
partly to Reynolds and Mach number effects . From the theoretical equa­
t i on for the boundary- layer momentum thi ckness it can be shown that 
Bjc i s proportional to ( pVc/~) OO . 211 and (TjT f ) g . 368 . The trend of 

the experi mental poi nts was simi lar to that of the theoretical curve 
over the range of outlet veloci ty . Thi s result substantiates to some 
degree the effect of Mach and Reynolds numbers that was assumed in the 
theory . 

Blade- surface momentum loss . - The boundary- layer momentum- thickness­
to- chord rati os obtained on the suction and pressure surfaces are com­
pared in f i gure 8 (b ) with the theoretical values . The agreement between 
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the theoretical and experimental values is reasonably good over the 
range of outlet velocity. The theoretical values ar e similar in trend to 
the experimental points . I t can be seen in figure 8 (b ) that the theo­
retical method also provides a reasonably good esti mation of the break­
down of loss between the two surfaces . 

SUMMARY OF RESULTS 

The blade- outlet boundary- layer characteristics at the mean radius 
of a typical turbine stator blade have been obtained experimentally over 
a range of blade- outlet critical-velocity ratios from 0 . 8 to 1 . 16 . The 
total boundary- layer momentum thickness and the momentum thicknesses 
obtained on each surface were compared with the va lues calcul ated from 
the turbulent -boundary- layer theory . The boundary- layer form ) pressure) 
and energy f a ctors for the blade) as well as for the two surfaces) were 
compared with the values obtained for a simple- power- law velocity pro­
file having an exponent of 1 / 7 . The results were as follows : 

1 . The theoretical values of the boundary- layer momentum thickness 
for the blade and for the two surfaces individually were reasonably 
close to the experimental values) the theoretical values being slightly 
lower . 

2 . The theoretical curve of boundary- layer momentum thickness as 
a function of blade- outlet critical-veloci ty ratio was similar in trend 
to that of the experimental points . This result indicated that the 
boundary- layer thickness was affected by Reynolds and Mach numbers sub ­
stantially in the manner assumed in the theory . 

3 . The boundary- layer form factor) pressure factor) and energy 
factor for the two surfaces) as well as the average values for the blade) 
could be satisfactorily approximated by a simple -power - law velocity 
profile having an exponent of 1 / 7 . 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland) Ohio ) November 25) 1955 
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APPENDIX A 

SYMBOLS 

Cfr skin- friction coefficient) dimensionless 

c blade chord) ft 

D demarcation point on total- pressure traces (fig . 2 ) 

d distance from boundary of total-pressure trace to demarcation 
point D) ft 

E 

g 

H 

K 

n 

energy factor) Vi / e; E = Vi* / e * 

acceleration due to gravity) 32 . 17 ft/sec 2 

f f t s::. / e,· H -_ s::.*/e* orm ac or) u u 

incompres sible-flow form factor for simple power- law velocity 
profi le ) 2n + 1 

[
- I f. V ) 2l 0.467 

compressibility correction factor) 1 - ~ + l\V
cr 

oj 

exponent used to describe simple boundary-layer veloci ty profile ; 
(V/vO) = (Y/Of)n 

P pressure factor ) ~/e; P = ~*/e * 

p pressure) Ib/ sq ft 

Re Reynolds number 

Ree Reynolds number based on boundary-layer momentum thickness 

s blade spacing or pitch) f t 

T temperature ) ~ 

t blade trailing- edge thickness ) ft 

u di stance along circumferential path) ft 
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V gas velocity) ft/sec 

x distance along blade surface measured from forward stagnation 
point) ft 

y distance normal to blade surface) ft 

~ blade - outlet flow angle measured from axial direction, deg 

y 

5 

e 

e* 

ratio of specific heats 

boundary- layer displacement thickness ) ft 

full boundary-layer thickness) ft 

ratio of projection of trailing- edge thickness along circum­
ferential path to blade pitch) t/ ( s cos ~ ) 

displacement-thickness parameter) 5/ ( s cos ~ ) 

boundary-layer momentum thickness) ft 

momentum-thickness parameterl ) el (s cos ~ ) 

~ gas viscosity ) Ib/( ft) ( sec) 

s boundary-layer pressure thickness) ft 

s* pressure-thickness parameter) s/(s cos ~ ) 

p gas density) Ib/cu ft 

~ wall shearing stress ) Ib/sq ft 

W boundary-layer energy thickness ) ft 

w* energy- thickness parameter) W/(s cos ~) 

Subscripts: 

c compressible flow 

cr conditions at Mach number of 1 . 0 

11 

lRelations among the various momentum- thickness parameters etot ) 

eS ) ep ) e:ot ) e~ ) and e; are shown schematically in figure 2. The r e ­

lations among the various forms of the other thickness parameters 5) 
W, and s used herein are s imilar. 
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inc incompressible flow 

p pressure surface 

s suction surface 

tot sum of pressure- and suction- surface ~uantities 

x r efer r i ng to any par t i cular value of x 

o condi tions at free stream outside boundary layer 

1 blade - i nlet 

2 blade- outlet 

Superscripts : 

total state 
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APPENDIX B 

INTEGRATION OF THEORETICAL BOUNDARY - LAYER MOMENTUM-THICKNESS EQUATION 

Combining the two equations for ~ ( eqs . ( 3) and (4 ) ) and includ­
ing the compressibility factor K give the following equation: 

After multiplication by dx, and substitution of He for 0, equation 
(Bl) may be written as 

13 

[ 

2 
0. 123POVO 

100.678(2n+l) (

p V e)-0.268 J 
o ° K dx 
~O 

(B2) 

Multiplying equation (B2) by VM and [ Povb2+H) eJO . 268 yields 

or 

r, v( 2+H)elO. 268 rV( 2+H)e dp /2+H)de (2 H) e V(l+H)dV]­
~O ° :J L ° ° + Po ° + + Po ° ° -

° ° (jl) K d.x 
{

0.123 [ P V( 2+H ) 1.268 0 . 268 } 

100 . 678 2n+l \PV ° (B3a) 

{

0 . 123 rpov~2+H) J 1.268(J:..)0 . 268 } 

[ 
(2+H) 1 0 . 268 r (2+H) ] ~ pV ° 

PoVo eJ d LPOVO e = 100. 678 ( 2n+l) K dx 

(B3b) 

This equation is now integrable as follows : 

1 r. (2+H) J1. 268 _ rx 0 .123 r, (2+H)J 1.268( ~ ) 0 . 268 
1 . 268L:0VO e x - Jo lOO . 678 ( 2n+l ) ~OVO pV 0 K·d.x 

(B4 ) 
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r ( 2+H)ll. 268 ~ )O . 268 
~OVO J (PV 0 

K·dx 
100 . 678 (2n+l) 

(B5) 

Raising both sides of equation (B5) to the 1/1 . 268 power and dividing 

numerator and denominator by pI and V( 2+H) gives o cr)O 

0 . 231 

[( 
~V ) (~)( 1+H)1 

P Vcr 0 Vcr 0 

1 . Schlichting) H.: 
Laminar Flows . 

o 
x 

e := 
X 
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Figure 1. - Stator -blade passages and profiles. 



tl) 
I 

i>:::l 
0 

NAeA RM E55K24 17 

-N 
0-

,; 
~ 
~ ., ., 
'" ~ 0-

... 
'" ..., 
0 ..., 
..., 
'" ... ..., 

" 0 , 
'" '0 

'" .... 
"' 

I ':,,1:1;' 
I'll '4 UtI 

I" V': 

.11;:Hdii ::jJiil 

(al Blade- outlet critical- velocity ratio , 
V/Vcr)o,2 ' 0 . 831. 

(b! Blade- outlet critical- velocity ratio, 
V/Vcr )0 , 2 ' 0 . 877 . 

I.::: 
:H! 

'Uil 

I. [" 

= 

I":' , .:,:';";:I!I 
:. '.';.! ::' 

:IIIE I IUlli 
[It i i.y " 

II: 
m;1 L, 

Iii 

~; 

'·1\ 
: \ 

I'!! . \ 

ri 
.. !I 

Iltf 

!ct.' 
' In: 

.• . ill I If! 

. Iill!. Ji . cu: 

(cl Blade- outlet critlc~l - veloclty ratio, 
V/Vcr )0,2' 0.939 . 

~ _ e* 
8 8 

!!. _ e · 
s p 

i- - 5 te 

e 8 + e p - e tot 

---;h"~rt--------'S{/!Z_--- Circum­
ferential 
direction 

~--8 ---~ Axial 
direction 

Sketch of boundary- layer momentum parameters. 

Figure 2 . - Blade - outlet total - pressure traces and sketch showing relations among various momentum ­
thickness parameters . Blade - inlet total pressure l Pi, 31 . 99±O . 03 inches of mercury . 



18 

! 
Blade- inlet t otal ­
pressure l evel, pi • 

Q) ... 
:> 

" Cl 
Q) 

r.. 
c. 

I i~ 
itll I'r;" 

:I~ '" ffllW ;f'"'-\ ~' l'". ,,!! 

'" ' " J:,kj ,-tl'" 

, t' , ~ I I 'ii Iff <iii to: 
I! I' t It[ 1l!l 

it. 

I 
Ii'- KI 

j', Itl I III :j.,1 

.1 III ~' rnt 
,I I fI ,r : ~ i I 

I 

.'iL'" , II :i:! 
/s 

I,," := 
t, ,::1 " iii' 

. ,..; 
,~ '" I 11 .. 

-"-
ii ,it! . ,!II 

c-:- c;: f ,~ ,,' 
I, I!I ifj] I 'til 

.~ I I i~ :l Iii li!1i ' ,I :"'r~. ~ I 'i~ Ii- 'l! mlifll If I ",i' 
(d) Blade- outlet critical - velocity ratio , 

(V/Vcr )o 2, 1 ,04 . 

t F-r4~~-+-+-rrirffiffff~~+*~fu~W-mrrlttmmmffiH 
.-< .., 
:> 

° , 
Q) 

'tl 

'" .-< 

m I--~~~-+-+-r~~~~~+-~~~~~~~ 

(el Blade - outlet critical - velocity ratio, 
V/Vcr )0 , 2 ' 1.15 , 

NACA RM E55K24 

"~~-, 
iPl 

m ~r'i! lifT! 
'TIl I:; :;.1' l"f 
i! it r.', -, ,m 

It tt, 'lEa ~, 14 Hi 
" 

,,!! ',,: 
1:11 It' ~L ,ill '" 

Eft !II ,"!j ,ji'!: 

ffli ill lti m, '" ''!- ':1' If!i 
lIfl flti'J, i ,I' Ir :±t+J ~ j, 

Irw ff fl Ih, 'i1Iit: :, i;f' 
II!" ftl q , " t ' f.! ,: " 

I ;,jj " ,:iH T I i .. .. , 
Ii' IfIt! 1/ Ir';'; 'I,; " 

,:±in:! ' , :ri, j , " 
k ;.p' I'm }HI " 'i '$1, 

ii!;it)j, 
's, , 

iirffi I:" :' .. '.: 
·'·f I'm fIl:, r " n '[I ill! :ml:iful ! :',' 
, :';/s = 1 

lli1illlimli ' 11tH pit ' lilll 

(flvi~: .), tlet critical- velocity ratiO , 
( 'cr)O~ ' 1. 24. /Pl 

~ 
J "if: !tf itt: ii' 1'1' lli:, .,...;. 

ttl "r" 
r-... ", 

~ ". '-' .,..I \. .,,- F" v , 

, 
Ii It: ,! 

,,!it',; 
,I", I: ;:,i, I:ili,f 

at- ~ 'ii . :t ;fijUi 
Ij .,.;~: I" 'tri~f 

:', ' 

It-HI 
" I ri' 

H • ' iii If 
'I.!! fIi'f, :f I ~ 

:tl 'It !~" 1\111 #! : "i II!!I 

~: id ,f! H "':r 
:'1 " 

I"I!#! ,iI 
'~I~. I .~ ii. II~- 1m: J:!l 

I 
dis I 

u/s = 1 

(~) Blade- outlet critical - velocity ratiO , 
(V/Vcr )0 , 2 ' 1 . 40 , 

Figure 2 , - Conc luded . Blade - outlet total - pressure traces and sketch sho,/ing relation of various 
momentum-thickness parameters . Blade - inlet total pressure , pi, 31 . 99±0 . 03 inches of mercury . 



..\d 
() 

~ 
P 

tf) 
I 

~ 

NACA RM E55K24 19 

. 8 

. 4 

0 0 --.. 
f-< 
() 

Z 
~ 

2 . 0 ....... 
~ 

0 
·M 
+> 
ttl 
f-< 

» 
+> 
·M 1.6 () 
0 
rl 
Q) 

> 
I 

rl 
ttl 
() 

·M 
+> 
oM 1.2 f-< 
() 

~ 
Q) 

f-< 
+> 
CI} 

I 
Q) 
Q) 

. 8 f-< 
~ 

. 4 

o 

Suction surface length 7 
f f f f 

Pressure surface length, I' 

r t--
+ + ........ 

..... -,.-

/ '" ,,-
,,-

/' 

(" - ' 
I 

(a ) Blade -outlet critical -velocity 
ratio, (V /V ) , 0 . 5 . 

cr 0 , 2 

Surface 

--- - Pressure 
Suction 

/'"'0 1 1 
/l--/ / 

/ 

,/ / 
/ 

/ 
/ 

/ 

/ 
/ ,,-

1""'.." 

II 

I 

1 2 3 o 

JJ 

(' 
1...1 

",' 

/ 

/ 
/ 

,,-
.;' .... 

-" 
I 

I 
I 

I 

(b) El ade -outlet critical-velocity 
r atio , (V/V )0 2' 0 .75 . cr , 

r 
V 

1 r-'--

I 
V 

,/ 

lJ 
~ ' 

/ 

/ I 

/ ;' 
/ 

/ 
/ 

/ 
L 

" .;' 
,,-,"-

1 2 
Surface length, in. 

(c) Blade -outlet cri t ical -velocity 
ratio, (V/V )0 2' 1.00. cr , 

(d ) Blade -out l et cri tical-velocity 
ratio, (V/Vcr)O 2) 1. 46 . Limit­
ing loading . ' 

Figure 3 . - Velocity distributions obtained f rom stream fi lament theory for . 
various critical -velocity ratios . 

3 



20 NAeA EM E55K24 

.004 
v 0 

·0 
0 0 

.002 

o . 2 . 4 .6 .8 1.0 1. 2 
Blade -outlet free -stream critical-velocity ratio, (V/V )0 2 cr , 

Figure 4 . - Rati o of total momentum thickness to chord as 
function of blade - outlet free - stream critical-velocity 
ratio at stator mean section. 
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