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RESEARCH MEMORANDUM 

STATIC LATERAL STABILITY AND CONTROL CHARACTERISTICS OF 

A MODEL OF A 450 SWEPT-WING FIGHTER AIRPLANE 

WITH VARIOUS VERTICAL TAILS AT MACH NUMBERS 

OF l.4l, l . 6l, AND 2.0l 

By M. Leroy Spearman and Ross B. Robinson 

SUMMARY 

An investigation has b een made in the Langley 4- by 4- foot super
sonic pressure tunnel at Mach numbers of 1.41, 1 . 61 , and 2 . 01 of a model 
of a 450 swept -wing fighter airplane. The wing had an aspect ratio 
of 3 .86, a taper ratio of 0 . 262, and NACA 64(06)A007 airfoil sections 

in a streamwise direction . Static lateral stability and control charac
teristics were obtained through an angle - of- attack and sideslip range 
for various combinations of component parts and for the complete model 
with three different vertical tails of varying sizes and aspect ratios . 
The majority of the tests were conducted at a Mach number of 1. 61, and 
only limited sideslip results were obtained at Mach numbers of 1 . 41 
and 2 . 01 . Aileron- and rudder-control characteristics were obtained 
for the complete model at a Mach number of 1 . 61 only . 

The directional stability derivative Cn~ for the complete config

uration progressively decreased with increasing Mach number and angle of 
attack until regions of directional instability occurred . Increasing 
the size of the vertical tail provided increases in Cn~ so that the 

onset of directional instability was delayed to higher Mach numbers or 
angles of attack . 

The lateral and direct i onal control characteristics were essentially 
constant throughout the angle - of- attack and sideslip ranges . 
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INTRODUCTI ON 

A re search program has b een undertaken in the Langley 4- by 4- f oot 
super sonic pressure tunnel to determine t he aerodynamic characteristics 
of a model of a 450 swept -wing fighter airplane in the Mach number range 
f r om 1.41 to 2 . 01 . The static longitudinal stability and control char
act eri stics at Mach numbers of 1 . 41, 1 . 61, and 2.01 are presented in 
r e f erence 1 . Effects of various external store s on the longitudinal 
and later al characteristics at Mach number s of 1. 61 and 2. 01 have b een 
det ermined but the re sults are unpublished. Flight-test r esult s of a 
similar configuration are presented in r ef erence 2 . 

The present paper contains the static lateral and directional sta
bility and control characteristics at Mach numbers of 1.41, 1. 61 and 2.01. 
The Reynolds numbers of t he tests based on the wing mean geometric chord 

varied from 1 . 40 X 106 to 1 .16 X 106 . Results were obtained for the 
model equi pped with three different vertical tails of varying area and 
aspect ratio . 

COEFFI CIENTS AND SYMBOLS 

The lift , drag, and pitching-moment coefficients are referred to the 
stability axis system (fig . l(a)) . The lateral- f orce, yawing-moment, and 
rolling-moment coeffici ents are referred t o the body axis system except 
wher e noted (fi g. l(b) ) . The center of moments of the model was at a 
longitudinal position corresponding to the 37.5-percent station of the 
wing mean geometric chord . The coefficients and symbols are defined as 
follows : 

lift coefficient, -FZ! qS 

longitudi nal - for ce coeffi cient, FX/qS 

pitching-moment coefficient , 

yawing-moment coefficient , 

rolli ng-moment coefficient , 

My 
qSc 



NACA RM L56D05 

Cy lateral-force coefficient} 

force along Z-axis 

Fy 
qS 

force along X-axis (-FX = Drag at ~ = 0 0 ) 

My pitching moment about Y-axis 

MZ yawing moment about Z- axis 

Mx rolling moment about X- axis 

Fy force along Y-axis 

q dynamic pressure 

S wing area} sq ft 

c wing mean geometric chord 

b wing span 

M Mach number 

a angle of attack of wi ng chord plane} deg 

~ angle of sideslip} deg 

it horizontal-tail incidence angle with respect to fuselage 
reference line} deg 

oaL left aileron deflection} normal to h i nge line} deg 

Or rudder deflection) deg 

Cy 
~ 

H 

directional stability parameter) 

effective dihedral parameter) 

variation of Cy with ~ near ~ 

horizontal tail 

3 
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v vertical tail 

w wing 

B body 

Sub scripts: 

0 , -10 values of it used with H, deg 

S stability axis 

w wing 

v vertical tail 

t horizontal tail 

MODEL AND APPARATUS 

A three-view drawing of the model i s shown in figure 2 . Details of 
the various vertical tails tested are given in figure 3. The geometric 
characteristics of the model are given in table I. 

The wing had 450 of sweepback of the quarter-chord line , an aspect 
ratio of 3.86, a taper ratio of 0 .262 , NACA 64(06)A007 airfoil secti ons 
in a streamwise direction, and had zero twist, incidence, and dihedral. 
The wing chord plane was approximately 0.10 wing semispans below the 
fuselage reference line. The ailerons were of the trailing- edge flap 
type and could be manually deflected on the model . 

Both the horizontal and vertical tails had 450 of sweepback of the 
quarter-chord line and NACA 65A003.5 airfoil sections in a streamwise 
direction. The all-movable horizontal tail was located 0.0258 wing semi
spans below the wing chord plane extended and was manually adjustable. 

Three vertical-tail configurations were investigated: (1) a bas i c 
tail , (2) an extended tip modification, and (3) a 127-percent modifica
tion which had an area about 27 percent greater than that of the basic 
vertical tail. (See fig. 3 and table I.) The rudder could be manually 
deflected . 

Forces and moments were measured by a six-component strain-gage 
balance contained in the sting- supported model . For the tests at 

", 
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M = 1.61 and 2.01, the model was mounted on a remotely controlled rotary 
sting; whereas for the tests at M = 1.41, a manually adjustable sting 
was employed. 

TESTS, CORRECTIONS, AND ACCURACY 

The conditions for the tests were as follows: 

Mach number . • . . 
Stagnation temperature, or 
Stagnation pressure, lb/sq in. 

abs ...... . 
Stagnati on dewpoint, or . 
Reynolds number, based on c 

1.41 1.61 
100 100 

6 6 
- 20 -20 

1.40 X 106 1.34 X 106 

2.01 
100 

6 
-2.5 

1.16 X 106 

Tests were made through the following approximate angle ranges: 

M Variable angle range, deg Constant angle , deg 

1.41 13 ~ -8 to 1.5 a,~.5.1 

a,~ -8 to 16 13 ~ - 4 .8, 0 

1.61 13 ~ -20 to 20 a,~0 

13 ~ 0 to 1.5 a, ~ 4 .1, 8 . 3, 1.5 ·7 
13 ~ 0 to 12 a, ~ 20.9 

2.01 13 ~ o to 20 a,~ 0 
13~ o to 15 a,~ 4.1, 8.2 

The model angle was corrected for the deflection of the balance and 
sting under load. Base pressure was measured in +'he plane of the model 
base. By equating the base pressure to free-stream static pressure, the 
drag values have been adjusted so that the base drag was zero for all 
configurations. 

.5 
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Maximum probable errors in the individual measured quantities are 
as follows: 

M = 1.41 and 1.61 M = 2.01 

CL · · · · · · · · · · · · · · · · · · · · ±0.0044 ±0.0051 

~ · · · · · · · · · · · · · · · · · · · · ±0.0005 iO.oOO? 
Cm · · · · · · · · · · · · · · · · · · · to.001? ±0.0021 
Cn · · · · · · · · · · · · · · · · · · · ±0.0003 ±0.0003 
Cl · · · · · · · · · · · · · · · · · · · · ±0.0002 ±0.0002 

~ · · · · · · · · · · · · · · · · · · · · ±0.0020 ±0.0020 

~, ~, deg · · · · · · · · · · · · · · · · iO.2 iO.2 
it, oaL' deg · · · · · · · · · · · · · · · ±O.l ±O.l 

M · · · · · · · · · · · · · · · · · · · ±0.01 to.015 

RESULTS AND DISCUSSION 

As seen in table II, the basic data are presented in figures 4 
to 11; the summary data, in figures 12 to 18; the aileron~control data, 
in figures 19 to 21; and the rudder-control data, in figures 22 to 24. 

Static Stability Characteristics 

Directional stability.- The directional stability Cn~ for the basic 

configuration decreases progressively both with increasing angle of attack 
and increasing Mach number until regions of undesirably low stability are 
encountered (see fig. 15). The directional characteristics for the tail
off configuration (fig. 16) are essentially invariant with Mach number and 
angle of attack and indicate a relatively large unstable moment. This 
large unstable moment results primarily from the large fuselage and the 
far-rearward moment center. The far-rearward moment center also results 
in a short tail moment arm and, hence, lessens the ability of the verti
cal tail to provide a stabilizing moment. Consequently, the condition 
exists where a large percentage of the tail contribution is consumed in 
overcoming the instability of the wing-body combination and relatively 
little tail effectiveness is available to provide a stability margin. 
Under such conditions, factors that affect the tail contribution, even 
to a slight degree, begin to assume greater importance. For example, 
the rapid decrease in Cn~ with increasing Mach number for the complete 

configuration is a direct result of the decrease to be expected in the 
vertical-tail lift-curve slope. In addition, as pointed out in refer-
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ence 2, the losses in tail contribution resulting from aeroelasticity 
might be significant for a full-scale airplane. 

7 

Increasing the tail contribution through increases in the tail area 
and aspect ratio, although having little effect on the variations of Cnp 
with Mach number or angle of attack, does increase the magnitude of Cnp 
in such a way that the imminence of directional instability is delayed 
to higher angles of attack or to high Mach numbers. (See figs. 12) 13, 
and 17.) 

The variation of Cn with ~ for the complete model is rather 

nonlinear and does, in fact, indicate a reversal in direction which 
results in the occurrence of unstable yawing moments (fig. 7, for example). 
This trend is influenced to some extent by the increasing instability of 
the wing-body combination and by a nonlinear vertical-tail contribution, 
and occurs even though the tail contribution continues to increasc with 
increasing sideslip. Increasing the tail size does not remove thi n non
linear variation of Cn with ~ but does delay the occurrence of the 

unstable yawing moments to higher angles of sideslip. 

The presence of the horizontal tail provides a slight increase in 
the directional stability at a = 00 either with or without the vertical 
tail (figs. 6 and 10), but at higher angles of attack this effect 
reverses. Negative deflections of the horizontal tail provided an 
increase in the directional stability for the basic configuration at 
M = 1.61 (fig. 9), apparently because of a transmittal of positive 
pressures from the upper surface of the horizontal tail to the windward 
side of the body and vertical tail. The effect of tail deflection is 
evident at M = 2.01 (fig. 10) but to a lesser degree since a smaller 
portion of the body and vertical tail are influenced by the flow field 
of the horizontal tail as the Mach number increases. 

Results from other investigations involving configurations having 
high horizontal tails (ref. 3, for example) indicate an opposite effect 
in that negative deflections of the horizontal tail cause a decrease in 
the directional stability. 

An interesting feature concerning the effects of the axis systcm on 
the interpretation of the data is illustrated in figure 18 where the 
variation of Cn with a for the basic configuration at M = 1.61 is 

~ 
presented for both the stability and the body axis systems. The results 
computed for the stability axis system indicate less deterioration of 
directional stability with increasing angle of attack and, in fact, do 
not indicate any directional instability for the tail-on case, whereas 
the results computed for the body axis system indicate directional insta
bility above a = 160

• This effect results from the tranGfcr of rolling 
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moment into yawing moment for the stability axis system and can cause an 
appreciable difference in Cn at the higher angles of attack if the 

f3 
rolling moments are large and the yawing moments are small . Thus) it is 
possible that some configuration changes that have a large effect on roll 
but little effect on yaw (such as wing dihedral) may) if computed for a 
stability axis system) show an effect on yaw . 

Effective dihedral.- The variation of C with a for the bas i c 
If3 

configuration is particularly nonlinear at Mach numbers of 1 . 41 and 1. 61 
(fig . 15 ) : it vari es from small negative values t o small positive values 
at low angles of attack and increases to relatively large negative values 
at higher angles of attack . The re sult s at M = 2 . 01 are for only a 
limited angle - of- attack range up t o about 80

) but within this range the 
variation of C

1f3 
with a is fairly linear. 

For Mach numbers of 1 . 41 and 1 . 61) the variation of 

at low angles of attack is generally positive either with or without the 
vertical tail (figs . 15 and 16) ; wher eas for M = 2 . 01 ) the variation i s 
negative. This trend toward negat ive vari at i ons of C

2f3 
with a for 

increasing Mach number is in general agreement with the linear - theory 
prediction for swept wings having supersonic l eading edges (ref. 4) . 

The presence 
increment of C

1f3 
and progressively 

of the vertical tail) of course ) provides a negative 
that progressively i ncrease s as the tail size increases 

decrease s as the Mach number increases (fig . 17) . 

Effects of sideslip on longitudinal characteristics . - The lift J 

longitudinal force) and pitching moment vary only slightly with angle 
of s ideslip for angles of attack up to about 80 (figs . 4) 8 ) and 11). 
At a = 15 .70 and 20 .90 (fig . 8) , however, a rapid positive increase 
of pitching moment with increasing s ideslip indicates the possibility 
of cross coupling of the lateral, directional , and longitudinal mot ions. 
This cross - coupling tendency, combined with the greatly reduced direc
tional stability, mi ght be the source of undesirable stability character
istics at the high angles of attack . 

Lateral and Directional Control 

Aileron characteristics .- The effects of aileron deflection on the 
lateral aerodynamic characteristics at M = 1 . 61 f or the basic conf i g
uration are presented in figure 19 . The aileron remains effective in 
producing roll throughout the angle - of- attack and angle - of - sideslip 
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ranges investigated. The results at a = 00 indicate that defl ection 
of the left aileron provides larger increments of r olling moment and 
smaller increments of yawing moment at po s itive sideslip angl es than at 
negative sideslip angles. This probably occurs because the f low over 
the left wing tends to become more sub sonic at positive s ideslip angl es 
and less sub sonic at negative sideslip angles . The se i ncr ements of 
rolling and yawing moments may also be as sociated with interference 
effects at the tail; however, no aileron deflection t est s were made 
with the tails removed. 

Although the linearity of rolling moment with aileron defle ct i on 
was not determined for deflections above about 100 , it appears t hat 
sufficient rolling power would be available t o neutralize the maximwm 
r olling moments encountered throughout the a and ~ ranges i nvesti
gated with the possible exception of some combinations of a and ~ 

above a ~ 120 where C2 become s large (fig . 15). 
~ 

The aileron effectiveness at ~ = 00 appears to i ncr ease sli shtly 
with increas ing angle of attack (fig. 21). 

Upward deflections of the left ailer on caused a negative yawing
moment increment at low angles of attack, wher eas downward deflections 
caused negative yawing-moment increments at high angles of attack . 
Although these increments were small, they may, under the condi tions of 
initially low directional stability and f or greater aileron def lections , 
assume greater importance. 

Deflection of the aileron does not appear to alter s i gni f icantly 
the variation of CL' CX' and Cm with ~ for angles of atta ck of 00 

and 8.30 (fig. 20). At a ~ 20.90, negative deflect i on of one a ileron 
appears to re sult in a more rapid increase of Cm wi th ~ than for 

zero deflection. However, opposite deflection of the other ailer on 
should reduce this effect. As expected, deflect ion of t he l eft aileron 
produces slightly greater increments of lift and pitchi ng moment at 
positive sideslip angles than at negative sideslip angles . The d i ffe r
ences in drag increments due to aileron deflection at positive and neg
ative sideslip angles (a = 00 ) were small. 

Rudder characteri stics.- A rudder deflection of 100 for the bas ic 
configuration at M = 1.61 produces an e ssentially constant i ncrement 
of Cn' CI ' and Cy throughout the angle - of-at tack and s i deslip 

ranges (figs. 22 and 24). At an angle of attack of 00 , a rudder deflec
tion of 100 provides a t rimmed s ideslip angle of 20 . The trimmed side 
slip angle s increase with increasing angle of a t tack a s the dire ctional 
stability de creases until the trimmed angles would be come i nfi nite and 
then reverse in sign as the configuration becomes direct i onally unstable. 
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It is apparent that, because of the nonlinear variation of Cn with ~, 

large deflections of the rudder might increase the tendency toward 
yawing divergence. 

A rudder deflection of 100 resulted in small decreases in lift and 
slight positive increases in pitching moments for all angles of attack 
(fig. 23). 

CONCLUSIONS 

An investigation has been made in the Langley 4- by 4-foot super
sonic pressure tunnel at Mach numbers of 1.41, 1.61, and 2.01 to deter
mine the static lateral stability and control characteristics of a model 
of a 450 swept-wing fighter airplane equipped with various vertical tails. 
The results of the investigation indicated the following conclusions: 

1. Because of the loss in vertical-tail lift-curve slope and because 
of the magnitude of the unstable wing-body moment, the directional sta
bility derivative Cn~ for the complete configuration progressively 

decreased with increasing Mach number and increasing angle of attack 
until regions of directional instability occurred. 

2. Increasing the size of the vertical tail provided positive 
increases in Cn so that the onset of directional instability was 

~ 
delayed to higher Mach numbers or higher angles of attack. 

3. The lateral control provided by the ailerons and the directional 
control provided by the rudder at a Mach number of 1.61 were essentially 
constant throu~out the angle-of-attack and sideslip ranges. 

Langley Aeronautical Laboratory, 
National AdviSOry Committee for Aeronautics, 

Langley Field, Va., March 28, 1956. 
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TABLE I 

GEOMETRIC CHARACTERISTICS OF THE MODEL 

Wing: 
Area, sq ft • . 
Span, in. 
Aspect ratio 
Taper ratio • . . . • • 
Mean geometric chord, in. 
Sweep of 0.25c line, deg 
Incidence, deg 
Dihedral, deg . 
Twi st, deg 
Airfoil section . 

Aileron area, sq in. 

Fuselage: 
Lengt h , in. 
Frontal area, sq ft • 

Horizontal tail: 
Area, sq ft • 
Span, in. 
Aspect ratio 

. ... 

1.89 
32 . 41 

3 .86 
0 . 262 

9 · 38 
45 
o 
o 
o 

• NACA 64(06)A007 
· . . . . 13 . 60 

40 . 45 
0 .13 

0 . 48 
15 ·73 

3 . 54 
0 . 302 

4 .88 
45 

• . NACA 65A003 .5 

Taper ratio • ..•• 
Mean geometric chord, in. 
Sweep of 0 .25c line, deg 
Airfoil section • . • . . . 
Tail length, 0 .25c of wing t o 0 .25c of hori zontal 

tail, in. ..•••... 

Vertical tails: 
Area, sq ft • 
Span (exposed), in. 
Aspect ratio • • • • • 
Taper ratio . • 
Sweep of 0.25c line, deg • • 
Airfoil section (all verticals) . 

12 . 07 

B i Extended 127-percent 
as Ct· d ' f . ti 

. • 0 .167 
• . • • 5 .16 

1.10 
• 0 . 428 

45 

~p mo ~ ~ca on 

0 .190 0 . 213 
6 . 62 6 . 66 
1 . 61 1 . 45 

0 . 267 0 . 301 
45 45 

• ..• NACA 65A003.5 

.. 



Figure M V H it, deg 

! B",' o 
On 0 

4 1.41 127-percent On 0 
modification 

Off On 0 

[ Basic On 0 
5 1.41 127-percent On 0 

modi f ication 

1.
61 1 

Basi c On 0 

6 
Basic Off -

Off Off -
Off On 0 

Basic On 0 
EXtended On 0 

tip 
7 1. 61 127-percent On 0 

modificat i on 
Off On 0 
Off Off -

t Mo 

On 0 
EXtended On 0 

8 1. 61 tip 
127-percent On 0 
modification 

1.61 { 
Basic On 0, - 5 , -10 

9 Off On 0, -10 

L _ 

TABLE II.- INDEX OF FIGURES 

Oa, deg 
or ' deg a , deg 

Left Right 

0 0 0 5 .1 
0 0 0 5 .1 

0 0 0 5 .1 

0 0 0 Range 
0 0 0 Range 

0 0 0 0, 8 . 3, 15.7, 20 . 9 
0 0 0 0, 8 . 3, 15 .7, 20 . 9 
0 0 - 0, 8 . 3, 15 . 7, 20 . 9 
0 0 - 0, 8 . 3, 15 .7, 20 . 9 

0 0 0 0 , 4 .1 , 8 .3, 15 . 7, 20 .9 
0 0 0 0, 4 .1 8 . 3 , 15 .7 

0 0 0 0 , 8 . 3, 15 . 7, 20 . 9 

0 0 - 0, 8 .3 , 15 .7, 20 .9 
0 0 - 0, 8 . 3, 15 .7, 20 .9 

0 0 0 0 , 4 .1 , 8 .3, 15 . 7, 20 .9 
0 0 0 0, 4 .1 , 8 . 3, 15 .7 

0 0 0 0, 8 . 3, 15 . 7, 20 .9 

0 0 0 0, 8 .3, 20 . 9 
0 0 - 0, 8 . 3, 15 . 7, 20 .9 

~, deg Component 

Range Cn' C1' Cy, ~, CX' CL 
Range Cn, C1, Cy, Cm, CX , CL 

Range Cn' C1' Cy, Cm' CX' CL 

- 4 .8 cn, cz, Cy 
- 4 .8 Cn, Cz , Cy 

Range Cn' Cu Cy 
Range Cn' Cu Cy 
Range Cu, CZ' Cy 
Range Cn' Cu Cy 

Range Cu, Cu Cy 
Range Cn' Cu Cy 

Range Cn' CZ' Cy 

Range Cn' Cu Cy 
Range Cn' Cu Cy 

Range CL' Cx , ~ 
Range CL' Cx, Cm 

Range CL' Cx, Cm 

Range Cn, Cz , Cy 
Range Cn' Cu Cy 

Type of data 

Basic data 
Basic data 

Basic data 

Basic data 
Basic data 

Basi c data 
Basic data 
Basi c data 
Basi c data 

Basi c data 
Basic data 

Basic data 

Basic data 
Basic data 

Basic data 
Basic data 

Basic data 

Basic data 
Basi c data 

~ 
!l> 

~ 
~ 

8' 
\J1 

f--' 
V.J 



Figure M V H it, deg 

t'" 
On 0 , -10 

Basic Off ------
10 2 . 01 

Off Of f ------
Off On 0 

11 2 . 01 Bas i c On 0 

12 1. 41 Various On 0 

13 1.61 Var i ous On and off 0 

14 2 .01 Basi c On and of f 0 

15 Var i ous Basic On 0 

16 Vari ous Off Off ------

17 Vari ous Various On and off 0 

18 1.61 Basic , On and off 0 
on and off 

19 1.61 Basic On 0 

20 1.61 Basic On 0 

21 1.61 Basic On 0 

22 1.61 Basic On 0 

23 1.61 Basic On 0 

24 1.61 Basic On 0 

r 

TAOLE II.- INDEX OF FI GURES - Concluded 

Oa, deg 
or' deg 0., deg 

Left Ri ght 

0 0 0 0 , 4 .1, 8.2 

0 0 0 0 , 4 .1 , 8 . 2 

0 0 ----- 0 , 4 .1, 8 . 2 

0 0 ----- 0 , 4 .1 , 8 . 2 

0 0 0 0 , 4 .1, 8 . 2 

0 0 0 Range 

0 0 0 Range 

0 0 0 Range 

0 0 0 Range 

0 0 ----- Range 

0 0 0 0 

0 0 0 Range 

-10 .8 , 0 , 9 . 9 0 0 0 , 8 . 3 , 20 · 9 

-10 .8 , 0 , 9 . 9 0 0 0 , 8 . 3 , 20 .9 

-10 .8 , 0 , 9 . 9 0 0 Range 

0 0 0 , 10 0 , 8.3, 20 . 9 

0 0 0 , 10 0 , 8 . 3 , 20 · 9 

0 0 0 , 10 Range 

II , deg Component 

Range Cn' Cu Cy 
Range Cn' Ct ' Cy 
Range Cn' Ct ' Cy 
Range Cn' Cp Cy 

Range Cl' ex, Cm 

----- Cull ' Ctll ' Cyll 

----- Cnll ' Ct ll ' Cy II 

---- - Cnll ' Ct ll ' Cyll 

- -- - - Cnll ' Ct ll ' Cyll 

----- Cnll ' Ctll ' Cyll 

----- Cnll ' Ctll ' Cyll 

- -- -- Cnll 

Range Cn ' Ct ' Cy 

Range Cl' ex, Cm 

0 Cn' Cu Cy 

Range Cn' Cu Cy 

Range CL' CX' Cm 

0 Cn' Ct ' Cy 

Type of dat a 

Basic dat a 
Bas i c data 
Basic data 
Basi c dat a 

Basic data 

Summary data 

Summary data 

Summary data 

Summary dat a 

Summary data 

Summary data 

Summary data; 
body and stability axes 

Aileron control 

Aileron control 

Aileron control 

Rudder control 

Rudder contr ol 

Rudder control 

I-' 
.J::-

~ » 
~ 
tJ\ 
g 
VI 
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Relative 
wind 

ref line 

Fy 

x 

(a) Stability axis system. 

Figure 1.- Axis systems. Arrows indicate positive directions. 
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Note: 

Aileron area = 13.60 sq in. 

0 .25 Cv ---.,.L..../ 

Fuselage reference line--- - ::;::>.............--

Wing- chord line <:..:: 

1.61 
~------- _23_.7_6_ 24.91 :-l 

0.42 I 
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Figure 2.- Details of model . 
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Planform 
---- - Basic 
- - Extended tip 
---127% 

Area, sq ft 
0 .167 
0.190 
0 .213 

Aspect ratio 
1.10 
/.61 
1.45 

I • // / 2.78 • i 

--- - ----...l--,-
Note: 
Areas and aspect ratios are for panel outboard of 
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sideslip for various angles of attack. Basic tail; it = 0°; M = 1.61. 
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Figure 11.- Variation of lift, longitudinal-force, and pitching-moment 
coefficients with sideslip for various angles of attack. Complete 
model; basic tail; it = 00

; M = 2.01. 
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Figure 12.- Variation of sideslip derivatives with angle of attack. 
M = 1.41; horizontal tail on. 
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Figure 23.- Effects of rudder defl~ction on the variation of lift, longitudinal-force, 
and pitching-moment coefficients in sideslip for various angles of attack. Basic 
tail; it = 00

; M = l.6l. 
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Figure 24.- Effects of angle of attack on rudder-control characteristics. 
Basic tail; ~ = 0°; M = 1.61. 
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