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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

FLUTTER INVESTIGATION AT LOW SPEED 

OF A 4oO SWEPACK WING WITH PYLON-MOUNTED STORES, TESTED 

AS A SE}'IISPAN-CANTILEVER WING AND AS A FULL-SPAN WING ON 

A TOWED AIRPLANE MODEL 

By Albert P. Martina 

Wind-tunnel flutter investigations at Mach numbers up to 0.30 have 
been conducted on a 400 sweptback wing having pylon-mounted stores located 
at 73.5 percent of the seinispan. The investigations were conducted on a 
semispan-cantilever wing with root fixed and with the full-span wing 
mounted on an autopilot-controlled model of a fighter-type airplane flown 
on the end of a towline. The store loadings were varied from 55 to 
88 percent of the wing-panel weight, and the store pitch inertias were 
varied from 66 to 181 percent of the wing-panel pitch inertia. Most of 
the data were obtained with the store centers of gravity located at 
15 percent of the local wing chord. 

Flutter in the fixed-root cases was of the limited-amplitude, 
bending-torsion type with the torsion component predominant. The flutter 
speeds dropped sharply with increased store-to-wing inertia ratios. An 
increase in the store loadings from 66 to 88 percent of the wing weight 
increased the flutter speeds as much as 36 percent for a given store-to-
wing inertia ratio. 

Tunnel airspeed limitations prevented the attainment of flutter in 
the towed-model tests, although three configurations reached varying 
degrees of low damping behavior. Symmetrical bending-torsion response 
modes were indicated for one 66-percent loading case while two 88-percent 
loading cases exhibited the development of antisynimetrical bending-torsion 
modes. The marked differences between the fixed-root flutter velocities 
and the towed-model behavior indicated that the effects of body freedoms 
were quite large for certain loadings. For one 88-percent loading, the 
towed-model flutter velocity was at least 147 percent of the fixed-root 
velocity.
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INTRODUCTION 

The National Advisory Committee for Aeronautics recognizes the need 
for the development of wind-tunnel flutter-test techniques which allow 
body freedoms and which have possibilities of being used in the transonic 
regime. One such technique is the towed-airplane-model test technique in 
which all the degrees of freedom except longitudinal translation are pro-
vided and the stability and control is supplied by an autopilot. 

Exploratory tests utilizing the towed-model technique were reported 
in reference 1 for an essentially rigid model having a flexible 40 0 swept-
back wing that was fluttere'd at various speeds up to 260 feet per second 
by varying the mass parameters of the external stores. The results of the 
tests of reference 1 appeared promising enough to justify the continua-
tion of the development of the technique, inasmuch as the electrical power 
failure which caused the nonflutter destruction of the towed model of 
reference 1 was easily remedied. 

Accordingly, a second essentially rigid model with flexible wings was 
subsequently built with the capability of being tested in the Langley 
16-foot transonic tunnel so that, among other things, autopilot response 
could be determined at speeds of the order of 600 feet per second. The 
general aerodynamic design of the second model was quite similar to that 
employed in reference 1 and utilized a wing that was somewhat stiffer to 
increase the wing flutter speed. 

The present report presents the results of preliminary check-out 
tests that were made in the Langley 19-foot pressure tunnel up to a maxi-
mum velocity of the order of 350 feet per second. In order to develop 
wing flutter within the tunnel speed range, it was necessary to test 
heavier store loadings than those employed in the tests of reference 1. 
In essence, therefore, this report extends the investigation of refer-
ence 1 into a heavier store loading range. Store loadings varying from 
55 to 88 percent of the wing panel weight were briefly investigated. 
Most of the data are from cantilever flutter tests. The results of 
several towed-model tests are also included. The tests were conducted 
at atmospheric pressure at Mach and Reynolds numbers ranging from 0.20 

to 0.30 and 2.2 to 3.0 x 10 61 respectively. 

SYMBOLS 

• The model axes system was a mutually perpendicular system having its 
origin at the model center of gravity (located in the model plane of sym-
metry) with the X-axis parallel to the fuselage center line and the Y-axis 
normal to the plane of symmetry. 
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El	 flexural rigidity of wing section, lb-in.2 

GJ	 torsional rigidity of wing section, lb-in.2 

moment of inertia of model about respective model axes, Lx, I, I  
lb -in 2 

ly	 polar moment of inertia of external store about an axis 
'	 parallel to Y-axis and which passes through point of 

intersection of spar axis and plane passing through 
store axis parallel to XZ-plane, lb-in.2 

polar moment of inertia of wing panel about an axis which 
is parallel to Y-axis and which passes through panel 
center of gravity (see fig. 2(a)), lb-in. 2 -

'a	 polar moment of inertia of wing section about spar axis, 
lb_in.2/in. 

elevator-position control gearing ratio, 8e/e' 

K0	 roll-autopilot gearing ratio, 

rudder-position control gearing ratio, 

yaw-damper gear ratio, 

M	 Mach number 

R	 Reynolds number 

V	 velocity, fps 

V 	 experimental flutter speed, fps 

W	 weight of model, lb 

WW	
weight of wing panel, lb 

W
S	

weight of external store and pylon, lb 

c	 wing chord parallel to airstream, in. 

c'	 wing chord normal to spar axis, in. 
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wing mean aerodynamic chord, in. 

f	 wing response frequency, cps 

ff	 flutter frequency, cps 

fn	 experimental frequency of vibration of wing in nth natural 
mode, cps 

g	 total damping coefficient, .L log Amplitude at 0 cycles 
e Amplitude at n cycles 

2	 length of wing along spar axis, in. 

Is	 length of external store, in. 

w	 weight of wing section of unit width, lb/in. 

location of model center of gravity measured from leading 
edge of mean aerodynamic chord, positive rearward, in. 

location of external-store center of-gravity measured from 
nose of store, in. 

RS location of external-store center of gravity measured in 
streaniwise plane from nose of wing section at spanwise 
location of store, positive rearward, in. 

location of center of gravity of wing section from leading 
edge of section in a plane normal to spar axis, in. 

y'	 distance along spar axis from model center line, positive 
toward tip, in. 

vertical location of model center of gravity from fuselage 
reference line, positive upwards, in. 

is	 vertical location of external-store center of gravity 
measured from spar axis parallel to Z-axis, positive 
upward, in. 

ba	 total(left plus right) aileron deflection normal to 
aileron hinge axis, positive to produce positive roll, 
radians 

elevator deflection normal to elevator hinge axis, 
positive trailing edge down, radians 
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br	 rudder deflection normal to rudder hinge axis, positive 
trailing edge left, radians 

8'	 angle between a plane parallel to XY-plane and a plane 
normal to XZ-plane and containing the tow rod, radians 

Pf	 density of air at flutter, slugs/cu ft 

0	 angle of roll, radians 

angle between XZ-plane and a plane normal to XY-plane and 
containing the tow rod, radians 

fr	 yawing angular velocity, radians/sec 

angular frequency of vibration in second mode, 
21tf2 , radians/ sec 

2Vf
flutter speed coefficient, referred to wing mean aero-

dynamic chord

MODEL 

The model used in this investigation was constructed in a manner 
which was generally similar to that used in reference 1. The model 
description in the present paper treats the wings in some detail and 
shows improvements and differences of the present model over that of 
reference 1. The model, as in reference 1, was representative of a 
fighter-type airplane although there were some differences in the over-
all mass characteristics. 

Pertinent, dimensions of the wing as mounted on the towed model are 
given in figure 1. The model and store mass characteristics are given in 
tables I, II, and III. The various model configurations are designated 
by a system of numbers which describe the principal mass parameters of 
the stores as described in table I. 

The wing was swept back 1100 at the quarter-chord line, had an aspect 
ratio' of 3.45, a taper ratio of 0.579, and embodied a negative dihedral 
of 3.50. The airfoils were of NACA 6i.AO1O sections normal to the quarter-
chord and had a 7.8-percent streamwise thickness-chord ratio. Each wing 
panelconsisted of an aluminum-alloy spar to which were attached 12 balsa 
egments or "pods" which formed the wing surfaces as shown in figure 2. 
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The wing spar axis had 37.25 0 sweepback and intersected the theoreti-
cal root and tip chords at 11.2 and 38 percent of the respective chords. 
The gaps between pods were aerodynamically sealed by covering the entire 
wing panel with 0.008-inch rubber sheet bonded to the pods with rubber 
cement. The structural properties of the covered-wing panels assembled 
with ailerons are given in figure 3. The bending and torsional rigidities 
were determined from measurements of the spanwise slope and twist distri-
butions of the respective deflection curves obtained from the application 
of known moments to the panels. The drag stiffness on the other hand was 
calculated by the use of simple beam theory. 

All the pods were ballasted with lead shot bonded together with a 
plastic binder in cavities drilled within the pods. The ballasting 
masses were constructed in this manner so that, in the event of any wing 
failure, small, disintegrable masses would be introduced into the tunnel 
circuit and reduce the l.kelihood of severe tunnel damage. The spanwise 
variations of the wing mass parameters are given in figure 4. The mass 
parameters of the pods were adjusted experimentally to match closely the 
design values. The section moments of inertia were obtained by experi-
mentally determining the moment of inertia of each of the ballasted 
rubber-covered pods on a bifilar pendulum, adding in the calculated spar 
contributions, and dividing by the pod widths. The overall mass proper-
ties of the entire wing are given in figure 2. An indication of the 
dynamic similarity of the left and right wing panels without stores can 
be obtained from the following table of cantilever frequencies. 

Wing f- fo f 

panel
first first second 

bending torsion bending 

Left 12.62 11.5.3 50.0 

Right 12.70 45.8 52.0

The nodal patterns given in figure 5 were similar within the accuracy of 
measurement. 

The ailerons were mass-balanced and aerodynamically balanced and had 
hinge lines at 0.25 normal chord. The inner ends of the aileron torque 
tubes (see fig. 2) were fixed to self-alining ball bearings which were 
mounted inside either the fuselage or the reflection plane. The aileron 
restraint in the fixed-root tests was sufficiently rigid to prevent aileron 
rotation, whereas the aileron was restrained by the roll gyro in the towed-
model tests. The universal joints at the inboard ends of the ailerons (see 
fig. 2) combined with the self-aiming bearings at the hinge brackets and 
the slip fits between the aileron hinge pins and the inner races of the 
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hinge-bracket bearings allowed the ailerons enough freedom to prevent 
bind for combined bending and twist deflections at the tip of 1 inch and 
60 , respectively. The vibration characteristics of the wing panels in 
the fixed-root and towed-model tests are given in tables IV and V. The 
towed-model frequencies were determined with the model hung vertically 
from the towline with excitation applied at various points depending on 
the mod being sought. The lowest wing fore and aft frequencies were 
obtained for the 88-percent loading conditions and were approximately 
19 cps, well outside the flutter range. All other model components were 
made as rigid as weight limitations would allow. 

In general, the autopilot system of the towed model was identical to 
that of reference 1. A decided improvement in this model over that of 
reference 1 was the ability to change the proportional autopilot linkage 
ratios in flight, so that the towed model could be flown with a minimum 
of large oscillations at all speeds. 

The external stores were mounted on rigid underslung pylons at 73.5-
percent semispan. The store moments of inertia were varied by changing 
the positions of bismuth-tin weights in the forebody and afterbody. The 
store centers of gravity were determined by resting the store successively 
on two sets of knife edges affixed to the store and plotting the interséc-
tion of vertical lines passing through the respective knife edges on a 
store-attached grid by means of an engineer's transit. The store moments 
of inertia were determined by oscillating a store as a compound pendulum 
on a knife edge attached to the pylon mounting pad. An automatic elec-
tronic timer was used to time the oscillations. 

The lowest pylon frequencies were naturally obtained with the 
heaviest or the 88-17-170 store loading. With the pylon clamped rigidly, 
the yaw frequency was approximately 25 cps, and the pitch frequency was 
approximately 44 cps. The side bending frequency was quite high and could 
not be excited with the available equipment. These pylon frequencies were 
only slightly lower with the store mounted on the wing for this loading 
condition; thus it is seen that the pylon frequencies were well outside 
the flutter frequency range. The zero airspeed damping coefficients of 
the wing panels as determined from decay records ranged from 0.02 to 0.03 
in the first two vibration modes fo all of the fixed-root configurations. 

Larger capacity flutter dampers of the type employed in reference 1 
were mounted in the stores for the towed-modeltests for protection 
against divergent flutter.
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INSTRUMENTATION AND APPARATUS 

The setup of a model wing panel for , the fixed-root tests is shown in 
figure 6 and was identical to that employed in reference 1. The towed- 
model setup shown in figure 7 differed from that of reference 1 only in 
that no snubbing wire was used. Electric-pen two-channel recording 
oscillographs operating at low speed and located at the flutter observer's 
station were added for these tests. They were placed in the observer's 
field of view so that he could maintain visual contact with-the model. 
The observer monitored the innermost (0.2 semispan) bending and torsion 
strain-gage outputs.	 - 

TEST PROCEDURE 

The tests were conducted in the Langley 19-foot pressure tunnel at 
atmospheric pressure. The resulting Mach and Reynolds number variation 
with airspeed are presented in figure 8 for the test range. The test pro-
cedure, in general, was identical to that employed in reference 1 in that, 
as the wing damping appeared to decrease, airspeed changes were made in 
progressively smaller increments. Inasmuch as some of the heavy, high 
inertia configurations in the fixed-root tests experienced a wide speed 
range of low damping, and only small increases in the amplitudes of motion 
at flutter, the electric-pen recording oscillographs proved to 'be a very 
dependable means of flutter detection. In no case was the model damaged 
as a result of flutter. 

No corrections to the fixed-root flutter speeds were made for the 
boundary layer on the reflection plane. The small thickness of the 
boundary layer relative to the model span resulted in average velocities 
in the region occupied by the model which were within 1 percent of the 
true velocity as explained in reference 1. 

It was not possible to evaluate the effects on the observed flutter 
speeds of probable differences in turbulence and aileron restraint between 
the fixed-root and the towed-model tests. 

RESULTS AND DISCUSSION 

Fixed-Root Tests 

The flutter characteristics are presented in table IV and in figure 9. 
Flutter in all cases was of the limited-amplitude bending-torsion type with 
the torsion component predominant. The flutter frequencies in most cases 
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were quite near the zero-speed torsion frequencies. Tip amplitudes 
reached during flutter ranged from 1/14 to 1/2 inch in bending and 1 0 to 
20, in torsion. 

Inasmuch as the bending strain gages at the 0.23-semispan station 
indicated either no oscillations or oscillations of very low amplitude 
at the flutter speed, the tunnel velocities were carried somewhat beyond 
the flutter speeds in order to explore this observed behavior. It was 
found that,at the 0.23-semispan station steady periodic oscillations in 
torsion at the flutter frequency usually set in at the flutter speed, 
although in some cases these torsional oscillations did not set in until 
1.07Vf . The bending gage outputs indicated occasional flutter bursts 

of approximately 10 cycles duration. The periodicity of the bursts 
increased with increased tunnel speed until a constant amplitude was 
indicated at speeds ranging from 1.12Vf to 1.22V f . Noticeable increases 
in the oscillation amplitudes occurred concurrently. - Frequencies changed 
slightly and phase angles appeared to remain constant during this period. 
Portions of oscillograns of a typical case are shown in figure 10 for 
velocities of l.00Vf and 1.14Vf. 

The flutter-speed variations with store mass parameters are presented 
in figure 9. In general, the flutter speeds were greatly influenced by 
changes in the store-wing pitch inertia ratios, and decreased linearly 
with increasing store-wing inertia ratios. Moving the store centers of 
gravity forward from 17 percent to 11 percent of the chord or rearward to 
19 percent of the chord had negligible effects on the flutter speeds. A 
similar effect was noted in reference 1 for a 56-percent loading. 
Increasing the store loadings from 66 to 88 percent raised the flutter 
speeds about 70 feet per second which resulted in increases in the flutter 
speeds of from 23 to 36 percent over the store-wing inertia range covered 
in the tests.

Towed-Model Tests 

Prior to the towed-model tests, tunnel turbulence-damping screens had 
been installed for other tests. As a consequence, the tunnel maximum air-
speed for the towed-model tests was nearly 17 percent lower than for the 
fixed-root tests which had been made before the screen installation. As a 
result of this lowered tunnel maximum speed it was felt that only four of 
the fixed-root test configurations might flutter on the towed model within 
the speed range available. 

The four configurations were each tested to the maximum tunnel speed. 
None of the configurations fluttered although three of the configurations 
reached varying degrees of low damping behavior. The 88-15-104 configura-
tion appeared to have come nearest to flutter. The damping at the maximum 

CONFIDENTIAL



10	 CONFIDENTIAL	 NACA EM L76F14a 

speed for this case was only slightly positive, about one-third of the 
wing structural damping, and decays of the order of 27 to i-O cycles 
duration were recorded. A summary of the behavior observed in the four 
towed-model tests is presented below in the estimated order of decreasing 
proximity to flutter: 

Configuration Vmax, f, Response 
fps cps mode 

88151O4 301.0 <0.01 11.07 P.ntisymmetrical 

88-15-170 317.0 .03 8.55 Antisymmetrical 

66-15-127 319.7 .06 10.82 Symmetricala 

57-15-66 3l5.1. High to 13

aprincipal response; occasionally asymmetrical with bending sym-
metrical and left torsion as much as ±50 0 out of phase with right 
torsion 

b?mplitudes insufficient to determine response frequency with 
any certainty 

Some remarks concerning the towed-model behavior particularly with 
regards to tunnel turbulence, and the determination of the values 

are given in the appendix. 

The towed-model test results are presented in figure 11 so that some 
idea of the trends of the towed-model flutter boundaries may be indicated. 
The fixed-root results have been superposed for reference purposes. 

The differences between the fixed-root boundaries and the towed-model 
results were quite large for certain loadings. For the 66-percent store 
loading where a symmetrical mode was indicated it appeared that the towed-
model flutter boundary at this point was at least 38 percent above the 
fixed-root boundary. For the 88-percent store loadings the towed-model 
flutter boundary was not less than 88 percent of the fixed-root flutter 
boundary at the lowest store-wing inertia ratio and, at the highest wing-
store inertia ratio, was more than 1117 percent of the fixed-root flutter 
speed. The cross-hatched trend was drawn in from considerations of the 
static frequency variations for these store loadings. The development 
of antisymmetric modes was indicated. 
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The higher flutter speed of the towed-model over the,corresponding 
fixed-root case for the 66-percent loading when considered with the 
results of reference 1 for 33- and 76-percent store loadings, appeared 
to be nearly proportional to the increases in the store loadings. The 
increasing effects of body freedoms for the heavier store loadings 
together with the transition from symmetric to antisynunetric modes as 
the store loadings were increased from 66 to 88 percent of the wing-
panel weight illustrates the importance of body freedom simulation. The 
importance of allowing as many body freedoms as practicable has also 
been demonstrated in reference 2 for a model having a greater number of 
structural flexibilities.

SUMMARY OF RESULTS 

Low-speed wind-tunnel flutter investigations of a !.Oo sweptback wing 
equipped with pylon-mounted external stores having various loadings and 
tested as a semispan-cantilever wing with root fixed and as a wing on an 
autopilot-controlled towed airplane model indicated the following results: 

1. Flutter in the fixed-root cases was of the limited-amplitude, 
bending-torsion type with the torsion component predominant. 

2. The fixed-root flutter speeds decreased sharply with increased 
store-wing inertia ratios. The fixed-root flutter speeds increased as 
much as 36 percent with increased store loadings for a given store-to-wing 
inertia ratio. No changes in the flutter speeds resulted for small 
center-of-gravity variations in one case. 

3. No flutter was encountered in the towed-model tests due to tunnel 
airspeed limitations, although three configurations reached varying degrees 
of low damping behavior. Bending-torsion response modes were exhibited, 
symmetrical in a 66-percent loading case and antisymmetrical in two 88-
percent loading cases. 

i-. The marked difference between the trends of the towed-model and the 
fixed-root test results indicated that the effects of body freedoms were 
quite large for certain store loadings. For one 88-percent loading the 
towed-model flutter velocity was at least 147 percent of the fixed-root 
velocity. The effects of body freedoms were greater than the effects found 
in NACA Research Memorandum L54K17. The large magnitudes of the body free-
dom effects plus the changes from symmetric to antisynimetric modes between 
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the 66- and 88-percent loading cases reiterates the need already demon-
strated for adequate body-freedom and aerodynamic simulation in cases of 
this kind. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., June 1, 1956. 
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MUNQ 

MECHANISM OF EXCITATION OF THE TOWED-MODEL WING

PRODUCED BY TUNNEL TURBULENCE 

Wind-tunnel turbulence produced wing excitation both directly and 
indirectly. The direct excitation from tunnel turbulence was of very 
low level and gave indications of the sense Of the wing response modes. 
The wing excitation which resulted indirectly from tunnel turbulence was 
produced by the rapid antisynmietric deflection of the ailerons. The 
aileron excitation was random and appeared to depend mostly on the rate 
of change of tunnel airspeed as discussed later. 

The mechanism of the aileron excitation can best be explained by 
considering the type of roll autopilot employed in the towed-model tests. 
The roll autopilot consisted of an electrically driven gyro oriented, to 
furnish a reference in roll. The gyro was directly linked to the aileron 
so that the aileron deflections were proportional to the angle of bank of 
the towed model. The gyro was centered by a fast-acting torque motor which 
was energized by the closing of a centering contact on the gimbal of the 
gyro with either of two fixed-centering contacts. Whenever the angle of 
bank of the towed-model was large enough to cause the hinge moments from 
the ailerons to force the roll gyro to precess to the point where the 
centering contacts would close, then the fast-acting torque motor would 
apply a counter-torque to recenter the gyro gimbal between the contacts. 
Since the centering contacts of necessity were required to have a finite 
gap, the recentering of the roll gyro by the torque motor produced small, 
rapid antisyinmetric deflections of the ailerons or pulse as shown by the 
following deflection time history where 5a is the deflection of one 

aileron:

Time, sec 

The value of 5a,max was of the order of 20. The aileron deflection 

frequencies during such a pulse recentering were essentially constant and 
ranged from 2 to 3 times the wing response frequencies. 
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As- previously stated, the occurrence of the aileron pulses depended 
mainly on the rate of change of tunnel airspeed. When tunnel airspeed was 
nearly constant, tunnel turbulence was at a minimum and the towed-model 
rolling oscillations were of small amplitude. Under these circumstances 
the aileron pulses occurred at the lowest rates. On the other hand when 
the tunnel airspeed was being changed, tunnel turbulence was at a maximum 
and the towed-model railing oscillations tended to increase in amplitude. 
The aileron deflections consequently were larger and more frequent pulses 
were experienced, often having rates as high as five times per second. 
Aileron pulses occurring at these latter rates could sustain the model 
wing in an apparent state of flutter not unlike servo-coupled flutter if 
properly phased with the wing motions. The wing oscillations, of course, 
died out as a result of the decreased airstream turbulence accompanying 
the reestablishment of constant tunnel airspeed. 

In the present tests only those periods of nearly constant tunnel 
airspeed were of concern. A portion of an oscillogram taken during such 
a period and following an aileron pulse is shown in figure 12. A single 
aileron pulse was not capable of producing the amplitudes of initial wing 
motions such as those shown in figure 12. A pulse was of sufficient 
strength, however, to amplify significantly or to stop wing motions 
depending on the phase relationship of the aileron pulse to the wing 
motions. Thus when excitation resulted, the aileron pulse provided a 
clear and definite reckoning point from which to assess the damping. 
The minimum values of the damping coefficient previously tabulated were 
determined from the wing decays following such aileron pulses. 

In addition, even though the aileron excitation was a.ntisyrnmetrical, 
it had but small effects on the symmetric response tendencies. The 
records for the behavior of the 66-15-127 configuration indicated that 
the discernible effects of a pulse disappeared rather quickly and the 
wing motions reverted to symmetrical. The few instances where a phase 
angle between the left and right wing torsion signals appeared were 
believed to be due to the phase relations of the pulse to the wing motions. 
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TABLE I. - EXTERNAL-STORE MASS PARAMETERS 

FOR FIXED-ROOT TESTS 

[Au values presented for right-hand store] 

Configuration 
(a)

' Ws/Ww i.2
Iy,5/Iy,w X5/C is/c in/is 

55-15-94 7.58 0.511.7 975 0.94 0.153 0.247 0.4611. 

66-15-106 9.11 .658 1,097 1.06 .152 -.248 .4611. 

66-15-120 9.11 .658 1,238 1.20 .153 -.248 .11.611. 

66-15-136 9.11 .658 1,11.00 1.36 .153 -.248 .4611. 

66-11-123 9.11 .658 1,268 1.23 .106 -.254 .440 

66-19-123 9.11 .658 1,275 1.23 .1911 -.240 .485 

78-15-181 10.81 .781 1,867 1.81 .150 -.249 .11.62 

88-15-111 12.18 .879 1,147 1.11 .152 -.250 .11.63 

88-15-144 12.18 .879 1,11.92 1.11.11. .152 -.250 .463 

88-15-163 12.111. .877 1,682 1.63 .151 -.250 .11.63

aStore configurations are designated as follows: The first number 
represents W5/W, the second number represents i5/c, and the third 

number represents Iy/Iy. 
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TABLE III. - TOWED-MODEL MASS PARAMETERS 

Store conflgurtion W 
lb

/c Ep 'X' 
lb-in.2 

88-15_lo11 1O4.9 0.292 -0.122 25,390 22,700 46,o 

88-17-170 1O4.9 .292 -.122 27,390 2,O80 47,720 

66-17-127 98.8 .276 -.105 21,490 23,OO 42,810 

57-15-66 96.3 .268 -.o98 19,860 21,690 39,84O 

Without stores 8O.4 .212 1 -.044 9,640 19,680 27,910
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TABLE IV. - FLUTTER CHARACTERISTICS OF RIGHT MODEL WING 

PANEL FROM FIXED-ROOT TESTS 

Store 
configuration

Flutter characteristics Wing characteristics
(zero speed) 

Vf, ff, 2V Pf, ±,i, f2, . .2 fps cps a2E slugs/cu-ft cps cps 1/ 
(a.) (b)  

55_15-94 298.0 11.20 5.o4 O.002484 8.93 11.211 0.792 

66-15-106 291.5 10.61 5.11 .002315 8.37 10.83 .773 

66-15-120 27.5 9.78 4.47 .002312 8.31 10.52 .790 

66-15-136 208.5 9.7 3.96 .002379 8.18 10.00 .818 

66-11-123 236.0 10.19 4.33 .0021189 8.15 10.35 .780 

66 -19-123 239.0 10.22 11..37 .00214.74 8.48 10.38 .816 

78-15-181 176.5 8.54 3.93 .002117 7.27 8.57 .811.8 

88-15-111 337.0 10.20 6.27 .002258 7.72 10.67 .723 

88-1-11114. 269.3 8.84 5.79 .	 .002334 7.64 9.49 .8o 

88-15-163 215.0 8.85 4.62 .002382 7.63 .	 9.00 .850

apredot1y first bending mode. 
bPredominantly first torsion mode. 
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2.99	
Indicates strain4gagè stations 
(bending and torsion) 

Pod mounting screws 
/ 

io.!o	 7 
/	 - Cavities in balsa pods 

filled with lead shot 
(typical)

Entire wing covered with 0.008 rubber  Mounting	 --"	 sheet cemented to balsa to seal 0.04 '	 /	 "'/  
butt	 gaps between pods I ,	 ,'

Typical
Store pylon 

'S/ S\'S 	
/	 unting pad Model

	

	 mO / 'N'
 

Aileron	 / torque tube  

Universal joint'  Coupling	 I	 4	 //	 '01 

Aileron hingel	 / brackets	
I

Aileron spar 

(a) Overall assembly. Weight 13.87 pounds neglecting mounting butt; lon-
gitudinal center of gravity 22.87 inches aft of nose of root chord; 
Iy,w = 1,033 lb-in. 2 . All dimensions in inches. 

Figure 2.- Construction details of model wing panels.

1.40 
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(a) Bending rigidity. 

-	 (b) Torsional rigidity. 

5 

4 
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El
2 
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0	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I 
0	 .1	 .2 .3	 .4	 5 .6	 .7	 .8	 .9	 0

Distance along spar axis, y'Z 

(c) Drag stiffness.

Figure 3.- Structural characteristics of the. model wing panels. 
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.4. 

.4 
i0 ,/c, 

.3 

3
	 ox/s 

(a) Section centers of gravity. 

.6 

.5 

.4 
W, lb/in. 

.3 

.2 

.1 

0

(b) Weight distribution. 

o	 .1	 2	 .3	 .4	 .5	 .6	 .7	 .8 . .9	 •tO 
Distance along spar axis, y'iZ 

(c) Section weight moments of inertia about spar axis. 

Figure 4, Mass parameters of model wing panels. 
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Figure 6.- Fixed-root flutter-test setup in the Langley 19-foot pressure 
tunnel. 
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Figure 8.- Reynolds and Mach number variations of tests. 
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