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RESEARCH MEMORANDUM

MOTION OF A BALLISTIC MISSILE ANGULARLY MISATLIGNED WITH
THE FIIGHT PATH UPON ENTERING THE ATMOSPHERE AND ITS
EFFECT UPON AERODYNAMIC HEATING, AERODYNAMIC
LOADS, AND MISS DISTANCE

By H. Julian Allen
SUMMARY

An analysis is given of the oscillating motion of a ballistic missile
which upon entering the atmosphere is angularly misaligned with respect to
the flight path. The history of the motion for some example missiles is
discussed from the point of view of the effect of the motion on the aero-
dynamic heating and loading. The miss distanhce at the target due to mis-
alignment and to small accidental trim angles‘is treated. The stability
problem is also discussed for the case where the missile is tumbling prior
to atmospheric entry.

INTRODUCTION

It is characteristic of long-range rockets that, becsuse of the low
efficiency of the propulsion system, the weight at take-off is large com-
pared to the final weight after fuel is expended. Typically, a saving of
1l pound in final weight can save of the order of 20 pounds of initial
weight and, as a result, strict attention must B& given i the design of
rockets to keep design safety factors to a minimum. Thus the magnitude
of the factors which principally influence the final weight must be known
with as great accuracy as possible.

Two such factors are the aerodynamic load experienced by the warhead
unit as it descends through the atmosphere, which affects required struc-
tural weight, and the aerodynamic heating experienced in the descent, which
affects required coolant weight. Problems relating to the loading and
heating of missiles during atmospheric entry have, of course, been given
considerable attention, both from a general point of view (e.g., ref, 1)
and in detaill for specific designs. In the usual treatment of the problem,
however, the rather idealized case has been treated wherein the vehicle
enters the atmosphere unyawed or unpitched with respect to the flight path
and without angular velocity. If the vehicle enters the atmosphere in a
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2 CONFIDENTTAL : NACA RM AS56F15

yawed or pitched attitude, it will, during its oscillatory approach to the
earth, be subjected to lateral foreces in addition to the longitudinal
forces due to deceleration., Moreover, the distribution of aerodynamic
heating over the surface for the oscillating vehicle will differ from
that for the vehiele if aligned with the flight path. Thus a question
arises as to what extent the structural weight and the weight of coolant
might be altered by the fact that the rocket upon entering the atmosphere
is angularly misaligned and has angular velocity.

The analysis of reference 2 provides an excellent basis for such a
study. However, the results of that analysis are in a form which is not
convenient for demonstrating the relative importance of the several fac-
tors which are of principal interest to the loading and heating problems.
Tt is the purpose of this paper to re-examine the motion analysis of
reference 2 using some simplifications which were employed in reference 1
in order to indicate more clearly the salient features of the motion
problem and its effect, in turn, on loading and heating.?l

BASIC ASSUMPTIONS

In the analysis to follow it will be assumed that the missile warhead
which enters the atmosphere is rotationally symmetric so the misalignment
angle may be considered as yaw or pitch or any vector combination thereof,
and that the fineness ratio is sufficiently low and the Mach number is
sufficiently high that the pressure distribution is independent of Mach
number for the Mach number range of importance (see ref. 5). Thus, the
rates of change of the respective aerodynamic force and moment coeffi-
cients with o, &, and q are considered to be constants. The basic
assumption of the analysis of reference 2 is retained in the analysis to
follow; namely, that the angular oscillations are small so that the sine
of the angle of oscillation is the angle of oscillation in radians and
the cosine is unity, and the drag coefficient is sensibly the same as it
would be for the nonoscillating missile., In addition, the assumptions
employed in reference 1 are also employed herein; namely, that the accel-
eration of gravity is constant with altitude, the flight path through the
atmosphere is essentially a straight line, and the variation of alr density
is the exponential function

1At the time of the writing of this report, it was discovered that
an analysis (ref. 3) very nearly identical to the analysis given herein
was made by Dr. George Solomon of the Ramo-Wooldridge Corporation which,
unfortunately, has been given only a very limited distribution. However,
the reference 3 analysis ignores the important effect of plunging on the
damping of the motion. This effect is included in this paper. It should
also be noted that an analysis has been made in reference 4, which although
principally aimed at study of other features of the stability problem,
employs a basic approach similar to that of the present report.
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0= poe BY : ()
wherein %o and B are constants and y is the altitude measured from
sea level.

A complete list of symbols is given in Appendix A.
ANATYSTS

If the angular displacements are small, then the differential equation
of angular motion with time as the independent variable may be written

d%q,

P
i £1(t) E% + fo(t)a = 0 (2)

N\

wherein the time-dependent coefficients are given by2

2This formulation is equivalent to equations (12) and (13) in ref-
erence 2 except that in reference 2 the value of C(Cpe has been tacitly
assumed to be zero, which is a Justifiable assumption at high Mach num-
bers. The quantity Cp: is retained in equation (3a) to be consistent
with NACA standard nomenclature (e.g., see ref. 6),.
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f1(t) =
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(3a)

(3p)

4 (CLapVA> cchlupzvazza Cpn PVZAL
om / B

f2(t) = 3% 4Tm o1

where the angle of attack is as indicated in the sketch.

It is convenient, now, to rewrite equation (2) with altitude, ¥,
rather than time, t, as the independent variable. To this end, it is

noted that for the straight flight path assumed (6 = 6y = constant)
g% = -V sin Op (4a)
a® av a
——g = - ——-Ez sin O = V'—z Sin?QE (hb)
at dy dt ' dy
Thus
do. _ da dy _ . da
qt _ay at - U sin G gg (52)
L \2
dZq _ a2 (dy da &%y _ 2. 2, 42 &V . o, duo
—_—c =z = == = Vosin®Oy — + V — s8in“Op — b
at®  agy® \dt dy g2 B ay? dy Bay (50)

so that equation (2) becomes
a3q

o2 + Ta(y) g—; + fa(y)a =0

wherein the altitude~dependent coefficients are
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d_V/dy CreA (Cmq + Cmg)PAT®
V " Zmsin 6y ' 21 sin og

£a(y) - (7a)

Cr,A(dp/ay)  CrAp(av/ay)  CnCr e®A%1%  cp oAt
2m sin 6y~ emV sin Oy  4Im sin®0y 2T sin®6g

faly) = - (7o)

Tt is shown in reference 1 that by use of the same basic assumptions
as have been made in this report, the velocity may be expressed as

_ko By .
V=vVge Z (8a)
where
CDpOA
Ko = Bm sin bg (6b)
Hence
av/dy pko -
e g o o
and from equation (1)
dp -3 .
Ty = “Beoe By (8d)

Thus equations (7a) and (7b) become, upon setting the square of the radius
of gyration as 02 = I/m,

o (Cmg + Cmg)1®7 _
faly) = 2m szi O [CD Y = o2 e PV (92)
Pt | Ol ; -py, 0o [ Cchlula] -2By
fa(y) =5 smz@E[‘ —o+ C1$ sin GE]E e [ e sl

‘ (9v)
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a2 - - -
E§+2kle Y%—;’+<k2eY+k3e 2Y>a,=0

wherein the constants are

)
kg

poht

- 4Ypm sin Og

o

Cmg, 2

kp = —5
2 " op2m

2.
QOZA

- kpPm2sin26y

ks_

[o0 - e + ‘C“*%,:*x"md’@?]
(_ v e eE>
[0 - eaer@) ]

. 2 2
sin GE o

1

(10a)

(10b)

(10c)

In order to find a solution for the differential equation (10b) let

kle_Y
a = ne
so that
da kle~Y dn -Y kle_Y
~ - — "~ ke e M
ay ay
and
- -y -Y
32q, ekleYdZn oo Y ke dn (k -Y kqe 5
—_— = —_— - e e - + e e
ay2 ay2 * iy * *

Substitution in equation (10b) then yields
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d?n

=+ [(k.2 + ke ¥ 4 (ks - klz)e'zY]n -0 (12)A

The rigorous solution of this equation is not necessary since the
term

(ks - k;2)e ¥

is, for the type of missiles to be considered later, small compared to
(kz + kp)e ™

particularly at the higher altitudes which are of principal concern., If
the square term is omitted, the solution of equation (12) is known (see,
e.8., ref. T)

, , X - I
= 01J0<2Jk2 T Ky e 2>+ 02Y0<2~/k2 Y kKie ° (13)

where C; and C, are constants of integration and, in accordance with
Watson's notation (ref. 8), the functions Jg and Y, are the zero order
Bessel functions of the first and second kind, respectively.

Combining equations (10a), (11), and (13) gives finally

By

By B
ClJ(<2‘\l kz + kl e 2 ) + C2Y0<2~’ ko + kl e 2 (l)-l-)

ke

If it is specified that on entering the atmosphere (y —> «) the
missile is misaligned by the angle e but has no angular veloecity, then

Cl = (LE
(15a)

Co = O
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" and equation (14) can be written

@ .k e NETE e (15b)

In the cases of usual interest the quantity ko 1is very much larger than
k3, as will be shown later, so that one may use the approximation

-By

[ 8 kle —E—
a = © J0<2J?2 e 2 (15¢)

For large values of the argument, the approximation

ke_By € - B
e ' cos<# -2Jks e 2 (154)
G] —
oF By
e

can be used, and the maximum or envelope value is thus

a ) e
% = (15)

n ks e

In Appendix B are derived expressions for the angular velocity and
angular acceleration as well as their maximum values during any cyecle of
oscillation. The approximate maximum angular velocity per cycle is (see

eq. (B5c))

" ko) -By
a(a/ag) T N> By kl-——>e
[__aéfg_] = 1{2 BVpsin Ope ‘e 2 (}5f)

while the maximum angular acceleration per cycle is
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3
a2 (a/ag) * kéz o o . - 3By (kl—ko)e_By
e R T (158

From equation (15d) it can be found that one cycle of oscillation
takes place during the altitude change

- 21( «
By
BNkz e Z
The frequency of oscillation is thus
By
o = B.[kg e 2 Vsin Om
2xn

and using the velocity from equation (8a) one has

pVgNkosin oy _ X0 BV _ By
= e e e (16)

W

The frequency 1is maximum at the altitude

Y =% 1n ko (17a)

which, as shown in reference 1, is the altitude at which the deceleration
due to drag is maximum and the velocity is

- i .
Vi=e 2V;=0.61 v (170)
The meximum frequency is

_1
ko /BVpe Zsin o6p
Uy = W1 = /ﬁ( — > (17c)
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and the corresponding amplitude is from equation (15e)

N ky
ko v
&), 7= e
1 fi;
"k

For later use it is of importance to note that in the analysis of
reference 1 it is shown that for turbulent flow the altitude for which
the average heat-transfer rate is a maximum is

2 =% m@- ko> (18a)

when

Vo = e

(1

Vg = 0.72 Vg (18p)

The corresponding frequency is

1

: -1
_ ,ka BVge sin 6$>
Wo 3]_{0 Py ( 18e )

and the corresponding amplitude is

~

21{1

(G@) =l (164)

S
3ko

On the other hand, for laminar flow (which, it is expected, should
be applicable at least for the stagnation point on the missile nose), the
altitude for maximum heating rate is then

Vs =-f3—“ 1n(3ko) (19a)
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when
-1
Vs =e ® Vg% 0.85 Vg (19b)
and
BVpe sin 6
wg = |22 ( 2 £ (19¢)
3ko 25
and
X1
a * Sko
(a— S ——— (194)
x| =2
3ko

From a loads point of view it 1is of wvalue to note that from equa-
tion (15g) the altitude for which the maximum angular acceleration
occurs is

Vs =% znl:% (ko - kl)] (20a)

and that the maximum acceleration is

<}
* * =
a2 (a/o a2 (a/o k. 4 .3
{_____.( o) =[ ( /EE)] " [ Sko e * g2vg%sin®0;  (20b)
a2 4. at®?  d, W ko~ k1)
Also the normal force experienced is
N = = Cy avZpA ~ (21a)
2 "Ny

and substitution from equations (1), (8a), and (15e¢) gives, for the maximum
norpal force per cycle

2 3 -
* CNGG'EDOVE A e - Z Bye(kl- ko)e By
2Jm/k2 '

CONFIDENTTAT
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This force is a maximum at y, and has the value

Cry,ogooVE A [ 3 . -‘3}
* - *= L 4
Npax = Na T (ke kl)] e (21c)

o Jx k2

Jw

Finally, it is of interest to determine the order of magnitude of
the drift due to e from the course the missile would have had if aligned
with the flight path. If n is defined as the distance normal to the
straight line trajectory (that the missile would have if ap  were zero) 5
the lateral acceleration is

2 c ot,Vsz
48y gin GE-g'- o) L _Cla_ P (22)
at® dy \dt m . 2m

Use of the relations of equations (1), (8a), and (15¢) gives the lateral
velocity at altitude ¥y

- By
dn _ CI(LG‘EVEQOA <k1 ) o PYy 5 (g_J—— l) dy, (232)

dt 2m sin GE

oo

With the substitution

_Byy
t,=2Jkze 2
then this may be written
By
2dko e 2 kl'% .,
Cc V, ——
dn Lo%EVEFGH : €y
v i o\ 2 ¢,90(6)at,  (23b)

)-l-k.z Bm sin QE

The lateral displacement at y = O is, by similar substitution,
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2 kg 0] k “k"g‘
—_— §2 t 172 2
Cro9m00h [ Aol [ AT /5 st atar (230)

- 2k2B2m SinaeE g

Defining

| )5 ( )gl |
1 8k2 ak
F(ko,k1,kz) "k Z 2 £,J0(t,)ag a8 (2ha)

then

CIaa‘EpoA .
= ———— kq,k 24
232111 SinzeE (ko; 1 2) ( )

The integration of equation (24a) may be performed in the special case for
which k3 = ko = O, for then

2\kz
4 ,
F(O}O:kZ) = El; [ %c'[ §1Jo(§1)d§l
1- 2
=-1-{:-L:2- [ Ji(6)ag = Jo]iz’\ﬁi;) 5%2'

For values of kg and k; other than zero, an analytic solution of equa-
tion (2ka) is not known. However, Dr. William Mersman has determined
values of the function by numerical integration using an IBM 650 type
digital computer. The computational procedure and results are given in
Appendix C. Over the range of variables of interest in this paper,

0< ko £ 10, -80 £ k3 £ 0, 5x10%* < ko < 8x105, the integration indicates
that

F(kO)kl:kZ) = l/ka
within 0.2 percent (see Appendix C, eq. (C20)).
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If the angle ap is considered as a yaw angle then the miss distance
is the lateral or "deflection target error"

€ - F k1 ,k: 25a
(o), = 35Pm sinay T (xorkarke) (252)
while if the angle is considered as a pitch error, then the miss

distance is the longitudinal or "range target error”

c A
- Ia,d'EpO

Thus, in the general case, the area of miss is elliptical with the
major axis in the range direction (except when the missile descent is
vertical when the miss area is circular).

It is useful, for comparison purposes, to find the miss distance which
results from an accidental trim angle, ap. The differential equation (22)
becomes in this case

2 c V=pA
&8 _ .y gin OR __'<?h{> i il (26a)
a2 dt. om
so that
c VoA ko -By,
dn _ Lo TOoVE : -'zr e "1 By
T dya
dt 2m sin QE
or

c VgA _ X0 -BY
d__n _ Iq,mI'pO E <l - e 5 € > (26b)

at koBm sin O

and, in turn,

C "B
n = IQQTDOA <; -e2 %)(iy

kopm sin QE
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which can be shown to give

c
_ Crgopedh _
" 82m sin26g Fa(ko) _ (26c)
wherein
Fi(ky) = il—o [E'l %9 —mé—‘?) -0.577216] (264d)

and Ei(ky/2) is the exponential integral for which tabulated values are

given in reference 9. Values of Fl(ko) have been computed for practical
values of kg and are presented in table I.

If the trim angle is a yaw angle then the miss distance is the
deflection target error

c A
_ “Lg%TPo
(€ch)Z = #%a sin%6y Falko) (27a)

while if the trim angle is a pitch angle then the miss distance is the
range target error

C A
_ VIg%TPo
(ea.T)x " 5m sico0y F1(ko) (27b)

DISCUSSION

Conical Warheads

It is the purpose in the discussion to follow to examine the angular
motion of typical ballistic missile warheads in the atmosphere to ascertain
the importance of this motion to the problems of aerodynamic loading and
heating and miss distance. Conical shapes have been chosen for this study
for the reasons that, first, they are often considered suitable for appli-
cation to warheads and, second, the calculated stability derivatives are
available.

Tobak and Wehrend (ref. 10) have calculated the stability derivatives
for cones of half-angle, 5. Although they give results which are applicable
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from low supersonic speeds (exceeding the Mach number for shock detachment)
to hypersonic speeds, the concern of this paper will be only with the
hypersonic or Newtonian solutions. For arbitrary distance from the cone
apex to the center of gravity, lcg, reference 10 gives the pertinent
derivatives, using the symbols of this report, as

. B
CNa = 2 cos=d
Cx = Cp = 2 sin®d
CLC(, = CNCL - Cp = 2(cos®5 - sin?®bd)

é . . N\ > (282.)

CInq = =-(1 + t@zs)/+ 3 (—?) -2 cosza<——%-g-> ,
I cosaa(z—c—%>
My, 3 1 J

In addition it should be noted that for cones the center of volume is at
31 /h and the square of the ratio of cone length to radius of gyration for
arbitrary center-of-gravity position is (considering the body to be

uniformly solid)
2
1Y 80
<E> 3 (28b)

2
12 tan®s + 3 + 80@%5 - -E)

Validity of the Analysis

Before examining the stability, loading, heating, and miss-distance
problems it is necessary to determine whether the previous analysis is
valid for the conical shapes to be considered. It was noted that the
solution given by equation (15b) applies only in those cases for which in
the differential equation (12) the term

CONFIDENTIAL



NACA RM A56F15 CONFIDENTTAL 17

-2Y
(ks - kiZ)e ™ (298) .
can be neglected in comparison with
(k2 - ky)e™™ (29b)

In Appendix D it is shown that the values of the factor (29a) are,
for practical cases, always very small compared to the values of the
factor (29b) and, in addition, that k»p is, for practical. cases, always
much larger than k; so that the solution of equation (15c) is valid.

Stability

In the equation (15c¢) it is clear that the missile is statically
stable if ko 1is positive and certainly dynamically stable if k, is zero
or less than gero. If k;  is positive, then it is possible for the oscil-
lation amplitude to increase with decreasing altitude. This may be con-
veniently shown from the approximate equation (15e) for the envelope value
of o. Writing this equation in the form

* k.le-By'*"B_y'-
oD

1
a“ ﬂé{ﬁ;ﬂi\\\ &y;;A:;

we find that the derivative of this function with respect to y is zero
when

kle-By = %
or
_ 1
y=3 1n(hky) (31)

Thus if positive k3 1is even as large as 0,25 the incipience of divergence
occurs (at sea level). For larger positive values serious divergence at
the lower altitudes must be anticipated. 1In order to obtain a better grasp
of the nature of these motions it is instructive to examine the behavior
of a missile with some arbitrarily assumed (but practicably realizable)
static stability for several values of kj. For this purpose let it be
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supposed that ks is 10* and that k, has, in turn, the value -10, O,
and +10. The equation (15e) then yields the envelope curve of angular
history shown in figure 1. ‘It is clear that positive values of ki could
promote serious divergence of the amplitude of angular oscillation. If
a missile had a large positive value of k,, as shown, it would almost
certainly tumble at the lower altitudes. Friedrich and Dore (ref., 2) dis-
cussed the possibility of such divergence and noted that these adverse
effects could occur if the missile underwent large reductions in speed
during the descent.:>However, no consideration was given in their report
to the importance of the damping terms. In other words what they con-
sidered, in the language of this report, was that the coefficient kj (as
given by eq. (10c)) was overwhelmingly influenced by the drag coefficient.
ese results of their analysis thus imply that high drag shapes are unsat-
%sfactory for ballistic missile application in spite of their inherent
advantages in the aerodynamic heating problem (see, e.g., ref. 1).

The question of importance is, then, whether or not it is realistic
to ignore the damping terms (CLa) and (Cmq + Cm&) due to plunging and

rotation, respectively, in the determination of sign and magnitude of
k1. To answer this question it is convenient to consider a simple conical
warhead of arbitrary cone half-angle, 8.

To investigate the sign of k; for cones it is sufficient to evaluate
the "dynamic stability" factor

2
Cp - CI(L + (Cmq + Cmo-(')(%)

in equation (10c) by use of the relations of equations (28a) and (28b).
This has been done and the results are presented in figure 2 for several
center-of-gravity positions. (Note that lcg/l = 3/4 is the center of
volume and a most likely position for the center of gravity.) From fig-
ure 2 it is seen that k; must always be negative for conical (and pre-
sumably for near conical) shapes. Thus the inference of reference 2 that
high drag (i.e., large ©) shapes are undesirable from the dynamic
stability viewpoint is unjustified.

Next it is in order to examine the sign of the factor which controls
the static st&bi%ity parameter

Pd L i p

’ ko = ot [c <Z>+c Bsine]
2 2p%m sinZ0p Ta\g2 Lo E

It is shown in Appendix D that the second term in the bracketed eXpreésion
is small compared to the first for practical cases so that it is only
necessary to be assured that Cma is negative to insure stability. In
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2
figure 3 the Newtonian value of CE@(%) (from egs. (28a) and (28b)) is

plotted as a function of & for various values of ch/l, and it is seen

that wvhen & 1is small, care must be exercised to keep the center of gravity
far forward., It should be noted (see ref. 10) that the center of pressure
is independent of Mach number down to the Mach number of shock detachment,
Thus the hypersonic requirement of ch is also the supersonic requirement.

From the preceding discussion, it is apparent that at least from low
supersonic to hypersonic speeds, positive static stability (i.e., positive
k-) can be obtained. Similarly, it can be shown that over the same speed
range dynamic stability is assured (i.e., negative k,;). Now it is impor-
tant to determine the magnitude of the static and dynamic stability which
can be provided. To this end the following digression in the discussion
is in order.

For long-range ballistic missiles the aerodynamic heating problem
must be the principal consideration in design. It has been shown (see
refs. 1 and 11) that, generally, the aerodynamic heating problems are
reduced when the value of ko is increased. On the other hand, if kg
is too large then the speed of descent of the missile becomes low for too
great a part of the final trajectory which increases the vulnerability of
the missile, Thus some compromise is required and this compromise value
of kg tends to be larger the longer the range., A value that will be
considered herein to be a reasonable one for a 3,000- to 5,000-mile range
would be of the order of 5 to 20.

Now, k; (see eqs. (8b) and (10c)) can be written in terms of ko in
the form

_ko ) Cry, Cmg + QQ{)(?:T]
L€ (32)

while for kp, if the Cr B sin 6 part is neglected (see Appendix D), this

parameter becomes
2
ey = - O (c’“a) <l> (320)
2Bl sin 65 \CD/\O

Values of kl/ko and Bl sin QEkg/ko are given in tables IT and III. Since
kl/ko depends upon the location of the center of gravity and the cone
angle while kz/ko depends upon these factors and, in addition, the length
of the missile, it is necessary to consider some examples in order to
determine the magnitudes likely to be realistic for k, and k. Accord-
ingly, let it be assumed that the missile weight is 3,000 pounds, that the
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entrance angle of the trajectory, O, is 300, and that the values of the
atmospheric density relations are those of reference 1 (po'= 0.0034 slugs
per cubic foot, B™* = 22,000 feet). For values of ko equal, in turn,

to 5, 10, and 20 the base diameters, lengths, and volumes of the example
missiles are those given in figures 4(a), 4(b), and 4(e), respectively,

as functions of cone half-angle. For this analysis it is arbitrarily
assumed that the maximum allowable missile length is 30 feet and the mini-
mum allowable volume is 10 cubic feet (corresponding to a high missile
density of 300 pounds per cubic foot). Thus in figures 4 the curves extend
only to the cone half-angles which correspond to these two limits (the
small cone-angle limit corresponds to the maximum allowed length and the
large cone-angle limit to the maximum allowed density). In addition, it
is arbitrarily specified that the center of gravity in each case is at a
distance from the apex (ch) where the local diameter is 2-1/2 feet. The
resulting ratios of 1cg/z are shown in figure 4(d).

With these physical characteristics, the values of k, and ko, are
those of figures 5 and 6. It is seen that the dynamic stability is great-
est for large values of the drag parameter but for small values of the cone
angle, On the other hand, the static stability is generally greatest for
large values of both the drag parameter and cone angle. A notable excep-
tion to this trend of the static stability parameter is the sharp decrease
of ko at the largest angle for the kg = 5 case., This sudden reduction
results from the fact that the center-of-gravity position has rather
closely approached the center of pressure.

Consider, now, two extreme cases: first, the kg = 5 missile at maxi-
mum allowed density and second, the ko = 20 missile at maximum allowed
length. The former has least values for both stability parameters and
therefore will oscillate with the largest amplitudes, while the latter has
the largest dynamic stability parameter and has a rather high value for
the static stability parameter and thus should be representative of the
opposite extreme. The angular behavior with altitude for these two mis-
siles has been calculated using equations (15c¢) and (15e) and is shown in
figures (7a) and (7b). The high altitude oscillations of figure 7(a) are
similar to those of (7b) but displaced downward, altitudewise, by about
25,000 feet., This is an effect of the lower static stability parameter
for the ko = 5 missile. At the lower altitudes the ko = 20 missile
oscillations decrease more rapidly by virtue of the larger dynamic stability
parameter, :

Heating

It was pointed out in the Introduction of this report that when the
time rates of aerodynamic heating are largest, it is important that the
oscillation amplitudes be small in order that additional coolant mass will
not be required to protect the vehiecle from excessive local heating. The
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experimental data of reference 12 indicate that, at least for not-too-
small cone angles, maximum oscillation amplitudes of the order of a few
degrees of arc should be permissible with no important adverse effects.

To determine whether or not the oscillations will be important as
regards aerodynamic heating it is again convenient to consider a particular
example. The same 3,000-pound missiles are used in this study. Since the
laminar heating rate always reaches a maximum at a higher altitude than
does the maximum for turbulent heating, it follows that (a/am)* at maximum
heating will be greater in the laminar case. The amplitude ratio at the
altitude for maximum laminar heating rate (calculated using eq. (194)) is
shown for the example missiles in figure 8. It is seen that these values
are so low that no complications of the maximum heating rate problem due
to initial angular misalignment with the flight path, O should be
expected, In figure 9 both the angular amplitude ratio and the ratio of
laminar heating rate to maximum laminar heating rate (see ref. 1) are
plotted as a function of altitude for one particular example (kg =

250), which shows that while the amplitude ratio is very small at the
.altltude for which maximum heating occurs, it may become sufficiently
important at the higher altitudes where the heating rate 1s still fairly
high to require consideration in design.

Loads

To show the degree to which lateral loads due to o are important
it is again useful to consider the example missiles considered earlier.
To evaluate the maximum normal force using equation (2lc) it is necessary
to specify the entrance speed, Vp, and it will be assumed, for the exam-
ples, that the speed is 20,000 feet per second. The maximum normal forces
in terms of missile weight per degree angle misalignment at atmospheric
entrance for the examples are shown in figure 10. While the normal forces
are increased for the longer missiles (due to increased surface area), it
does not appear that they could be too serious in a practical case., A
20° value for ap only promotes a 3g normal acceleration for the long
missiles which is small compared to the deceleration due to drag which
(from the analysis of ref. 1) is 5lg. Moreover, the maximum normal loads
are not additive to the maximum drag loads since, as seen in Tigure 11,
they occur at different altitudes.

Miss Distance

Before considering the actual magnitudes of the miss distances due:
to ap or ap it is well to discuss the accuracy of the analysis of miss
distance given previously. TIn the analysis it is assumed that the velocity
at all points of the trajectory is given by the exponential expression of
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equation (8a) and this expression was, in turn, obtained by neglecting the
effect of gravity. The neglect of the effect of gravity is unimportant in
the evaluation of the velocity-altitude history except when the velocity '
is low and, simultaneously, the deceleration due to drag becomes comparable
to the acceleration of gravity. Then the velocity given by the analysis
falls below that which would actually occur,., In the analysis of miss
distance it should be clear that the miss distance increases rapidly as

the velocity decreases, and, hence, the miss distances given by the
analysis are in error by an amount which increases rapidly with increasing
ko when the decelerations near y = O become of the order of the accel-
eration of gravity. To assure that the deceleration at sea level is not
less than 1lg, it is required (from ref. 1) that

-ko < 2g

kaqe S —
© B VEZB sin QE

For example, for an entrance speed of 20,000 feet per second and for

Op = 30°, the sea level deceleration reaches lg for kg of about 7 (see
ref. 1); hence, the values of F(ko,ki,ks)(see Appendix C) and F(ko)
from table I should not be used, under these conditions, for values of

kop 1in excess of about 7, particularly as ko greatly exceeds this value,.
Thus in the calculations to follow the miss distances for kg = 20 are not
included and, in addition, the reader must note that even for ko = 10 the
estimated miss distances exceed the actual ones.

The range target errors per degree angle misalignment at atmospheric
entrance for the example missiles (Vg = 20,000 ft/sec, 6p = 30°) are shown
in figure 12, The deflection target error, not shown, is simply one-half
the range value. It is seen that, as with the normal force, the miss
distance is greatest for the smallest cone angles, However, the miss dis-
tance is trivial since even for an ap of say 20° the range target error
is but about 20 feet in the worst case.

A serious problem is the miss distance which will result from a trim
angle even slightly different than zero. 1In figure 13 is shown the range
target error per degree of trim angle for the ko of 5 and 10. It is
seen that a trim angle of as little as 0.1° can cause a range error of
many miles., As the cone angle increases then for a given value of kg,
the miss distance diminishes until when the cone half-angle is 45° the
miss distance is zero since the lift-curve slope is then zero (see
eq. (27a)). Except in this special case, however, the miss distance due
to even a slight trim angle is very important. One method for reducing
this miss distance would be to spin the missile about its axis so that
it would follow a corkscrew path during descent., This solution introduces
another difficulty, however, in that care may have to be taken to keep the
- spin rate from approaching the pitching (or yawing) frequency else tumbling
may occur if the missile is not identical as regards aerodynamic and
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inertial characteristics about any radial axis (see ref. 6 or 13).
Unfortunately, the pitching frequency varies from zero to the maximum
value given by equation (16). The maximum frequencies for the example mis-
siles are shown in figure 1%. One obvious way to avoid tumbling resulting
from "roll coupling" would be to spin the missile at a rate which exceeds,
by a good margin, the maximum shown in figure 14, If the spin rates were
the maximum pitch rates, the rim speeds at the base (i.e., at maximum
diameter) would be those shown in figure 15. Since the required spin rate
would have to materially exceed this rate, it is clear that a serious
stress problem due to centrifugal loading might result (especially for
small cone angles). In consequence, a better solution might be to spin
the missile at a rate which is always less than the value of the pitch
frequency at any given altitude, but the difficulty, then, would be one

of assuring that the spin rate could not accidentally approach the pitch
frequency. In the preceding discussion it has been tacitly assumed that
the missile is not identical as regards the aerodynamic and inertial char-
acteristics about any radial axis so that the spin rate must not at any
time match the pitch rate., Since the piteh rate changes rapidly with time
(particularly at the higher altitudes), it is probably not a justifiable
requirement that the spin rate not ever be the pitch rate, particularly
since the asymmetries which exist may be trivial. ©Some further consider-
ation must clearly be given this problem.

Effect of Initial Tumbling

In the discussion to this point it has been assumed that the missile
enters the atmosphere misaligned by an arbitrary but fixed angle with
respect to the flight path. When the missile is actually tumbling before
entering the atmosphere, then the analysis given previously cannot be used
since the equation of motion is restricted to small-angle considerations.
(That the analysis is inadmissible is reflected in the fact that if, in

By
equation (13), Co has a value which is not zero, then CZYO<%~/k2+k1 e éﬁ)

becomes infinite if y is infinite.) In spite of this deficiency, some
general remarks can be made about the effect of initial tumbling., It is
clear at the outset that the missile must have but one possible trim
attitude if initial tumbling occurs. If not, it could descend at some
attitude for which no adequate protection for aerodynamic heating and
loading had been provided. Furthermore it is a requirement that it must
be righted to about the correct attitude at an altitude which is suffi-
ciently high that the angular motions will become small by the time the
heating and loading are intense, One obvious way which might assure that
these conditions will be met would be to leave the empty fuel and oxidizer
tankage connected to the warhead until the missile has entered the atmos-
phere sufficiently far to adequately correct the attitude, and then release
of the tank could be permitted.
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CONCLUSIONS

From an analysis of the motion of a ballistic missile initially mis-
aligned with respect to the flight path prior to the entry into the
atmosphere, it is concluded that it is possible to:

1. Provide a continuously damped oscillation history with descent
through the atmosphere.

2. Keep the oscillations to a smell amplitude when at altitudes for
which aerodynamic heating and loading are severe,

3. Prevent excessively large loads due to the oséillating motion.

Moreover, while the miss distance at the target due to the initial
misalignment angle is trivial, the error that can occur due to the trim
angle being even slightly different than zero can be very large and its
effect must be minimized in some manner. ‘

Since tumbling may occur prior to entry into the atmosphere the mis-
sile must have only one trim attitude and must be brought near this attitude
before the missile has progressed too far down through the atmosphere,

Ames Aeronautical ILaboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., June 15, 1956
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APPENDIX A

SYMBOLS

constant (See Appendix C, egs. (C2).)

reference area for coefficient evaluation (base area
for cones)

constant (See Appendix C, egs. (C2).)
constant (See Appendix C, egs. (C2).)

constants of integration

drag coefficient

rate of change of 1ift coefficient with angle of

L -
attack, <?E— '
Baj>
a=>0

rate of change of moment coefficient with angle of
C
attack, <?13{>
79 >0

change of moment coefficient with time rate of change
ACm -

a(& l)
Vs, >0

rate of change of moment coefficient with angular
3C

) q.%>
q-=>0

rate of change of normal-force coefficient with angle
3y
g, > 0

of angle of attack,

“veloelity,

of attack,

axial=force coefficient

CONFIDENTIAL



26 CONFIDENTTAIL, NACA RM A56F15

d diameter of body base

e Naperian base

£1(t),£2(t) : functions of time

faly) ,fa(y) functions of altitude

Fi(ko) l function used in evaluating of "miss distance™ due

to  ap (See table I.)

F(ko,k1,ka) function used in evaluation of "miss distance" due
to ap (See Appendix C.)

g acceleration due to gravity

h integer (See Appendix C.)

T mass moment of inertia

Io,1,2,... integrals (See Appendix C.)

Jo( ) Bessel function of the first kind of zero order

dq 2 B,00.,T s( ) Bessel function of the first kind of order 1,2,3,...,r,s

ko the "drag" parameter (See eq. (8b).)

kq the "dynamic stability" parameter (see eq. (10c).)

ko the "static stability" parameter (See eq. (10c).)

kg the "cross-products” parameter (See eq. (10c).)

1 body length and reference length fofr moment coefficient
evaluation

ch distance from body bow to center of gravity

L cross-wind force

m missile mass

n distance normal to the trajéctory the missile would

have if 1t were angularly aligned with flight path
and without angular velocity

N normal force (force perpendicular to the axis of
revolution)
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Pl,z,s,...,r,s( )
a

T

€3]

o,1,2,...,r,s( )

o)

NSNS N 0 D +§

=
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functions (See Appendix C.)
angular velocity

integer (See Appendix C.)

integer (See Appendix C.)
functions (See Appendix C.)

time

speed at arbitrary altitude

speed on entry to the atmosphere
along range distance

altitude

dimensionless altitude, By

Bessel function of second kind of zero order
across range distance

angle of attack

angle of attack on entry to the atmosphere
angle of trim

density exponential (See eq. (1).)
half-angle of cone

deflecéion target error due to ap
range target error due to U
deflection target error due to A
range target error due to am
altitude variable (See eg. (23b).)

angle-of-attack function (See eq. (11).)
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O angle between flight path and earth's surface that
missile has on entering the atmosphere
0 air density
Po air density at sea level
c radius of gyration
g an arbitrary variable (See Appendix B.)
w oscillation frequency
Superscripts
( )* maximum value of the bracketed parameter which occurs

in any particular cycle of oseillation

Subscripts

()

Except for the parameters C, £, F, and k:
N .

(), value of the bracketed parameter at altitude for
maximum deceleration

max maximum value of the bracketed parameter

( )2 value of the bracketed parameter at altitude for
maximum turbulent heat-transfer rate

( )3 value of the bracketed parameter at altitude for
maximum laminar heat-transfer rate

( )4 value of the bracketed parameter at altitude for
meximum normal force
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APPENDIX B
DETERMINATION OF ANGULAR VELOCITY AND ANGUIAR ACCELERATION

Tt is the purpose in this appendix to derive the expressions for the
angular veloecity and acceleration from equation (15b) which gives the
angular displacement as a function of altitude. Noting that

d3o(¥)
dy

a
= -J1(¥) 'dle‘r

then differentiation of equation (15b) yields

d - By , _ By
—(—OLZ-O-LE)— = -k;Be Byek:"e JC<2 JEo + ki e 2}> +

dy

By

-By] _ By _B .
-g K1® [2 Jko + k5 e 2 J1<2 Jko + ky e TY)] (B1)
and further noting that
4 _ ay
% ¥ (¥)] = ¥3o(v) P

then

- By
2

-By i |
Bzekle (klze 2By _ koe B.Y> Jo<2 Jks + k5 e -

a3 (afog)
dy= -

- 3By k e‘By - EX
282ki ks + K1 e 2 e ¥ Jil2Jks + ki e 2 (B2)

IJ:sing équations (5a), (8a), and (B1)
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APPENDIX C
NUMERICAL INTEGRATION METHOD FOR THE INTEGRAL F(ko,k;,ks)

The following method for the numerical solution of the funetion
F(ko,ky,ks) was devised by Dr. William Mersman of Ames Aeronautical
Laboratory. The integral to be evaluated is, from equation (2ka),

a b2
o taie) = [ S Totedar (o)
o)
where
a=2Jk
b = ko/8kg } (c2)
c = e ko - k;L>/1Lk2
J
and
C __cg 2
IO(C-,C) =f € 1 glJO(gl)d'Cl (c3)
(o
By reference 8, page 45,
6y () = Ez_ [cf“Jm(gl)] , r=01.2,. .. (c4
1 ,

Introducing

4
Ix(¢,c) sf e’°§12glr+lJr(gl)dgl , r=0,1,2,. .. (C5)

(o]

an integration by parts gives the recursion formula
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-ct2, r+1 ¢ -ct. .2, r+e
Ip(g,e) = e £ Tpya(6) + 2¢ e P g, Jr+1(§1)
(o}

That is,
Ir((_;:.c) = e—c§2§r+lJr+1.(§) + 201r+1(§:c) > T = 0:]—:2 (c6)

If this equation is multiplied by (2¢)* ° and then summed on r
from s +to infinity, the following series representation is obtained

_nF2
IIS(C)C) =€ CC §S+l Z (2c§)hJS+h+1(§) (C7)
h=0

for any s = 0,1,2,. . ., the series being convergent provided that
|2et| < |.

In particular, then, setting s = O gives

Io(t,e) = e—cgzc }; (ECC)th+1(C)
h=o0

and substitution in equation (Cl) gives

kzF(kO,kl:kZ) = Z Ss(a)b:c) : | (c8)
8=0
- where
a 2
sg(a,b,e) = (_2c)sf e~ (e-p)¢ t57s,.1(8)at , s =0,1,2,. . . (c9)

(0]

the series is convergent if |2ca| < |.
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Consider, first, the term s =0

a
So(a,b)c) =f e—(c—b)CZJl(g)dg

(o]

By reference 8, page 18, J3({) = -dJo(¢)/dt. Hence integration by parts
gives -

Aoah)a2
o (c-b)a

a
So(a,b,c) = J5(0) - Jo(a) - 2(c-'b)f e-(c_b)§2CJo(§)d§

o
Referring to equation (C3), this is, since Jg(0) =1,

- e-(c-b)a2

So(a,b,e) =1 Jo(a) - 2(e-b)Ip(a,c-b) - (c10)

~

To obtain a recursion formula for the general S5g, substitute in
equation (C9) the equation

T, (£) =-2§ 3g(8) - 35, (¢)

from reference 8, page 45. This gives immediately
s
Sg(a,b,c) = hessg_,(a,b,e) - (2¢)°14.,(a,c-b) , s=1,2,3,. . . (C11)

Thus, equations (C8), (C10), and (Cll) reduce the problem to cne of com-
puting the sequence Ig(a,c-b), s = 0,1,2,. . . .

For computing purposes, it is desirable to introduce slowly varying
quantities. The following substitution turns out to be convenient

-b)a2
e+(c b)a:

Pr.(a,e-b) = Ip(a,e-b) /™1  r=0,1,2,, .. (c12)

The computing problem is then summarized by the following formulae:
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Pg(a,e-b) = z [Ea(c-b)]hJs+h+l(a) (c13)
h=0 , ’

for any s = 0,1,2,. ¢« & o«
Pr(a,e-b) = Jpyq(8) + 2a(e-b)Pp,q(a,e-b) , r =0,1,2,. .. (Cl%)

_ e-(c—b)a?

SO(a)ch) =1 [Jo(a) + Za(c—b)Po(a,C—b)] (015)

Sg(a,b,c) = hesSg_ 4 (a,b,e) - (2ca)se-(c_b)a?Pé_l(a,c—b) , 8 =1,2,3,. .
(c16)
kEF(kO:klok2) = z Ss(a:b;c) (c8)
§=0

The order in which the computations are to be performed is dictated
by the following inequalities, each of which is obvious from the corre-
sponding integral definition, under the following general assumptions

P20, ¢20, ¢cb20

2ca <1, 2a(e-b) <1

The inequalities'are

1
lPs(a:c'b)l s ——, s = 0,1,2,. .. (c17)
: 1 - 2a(c-b)

a, S
|ss(a,b,c)| £ ——1 (2ac)” , s = 0,1,2 (c18)

From the latter, it can be determined how many terms of the series (C8)
are needed for any desired accuracy, so that (C8) is replaced in
practice by
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K

koF (ko ,ki,k2) = }; Sg(a,b,c) ‘ (c19)
§=0

In the present work K = 20, giving a truncation error of less than 10719,
Once K is chosen, Py 1is obtained from equation (c13) with s = K where
again enough terms are taken to insure the desired accuracy. In the pres-
ent work the computer automatically continued the series (C13) until the

summand [2a(c-b)]hJK}h+l(a) became less than 10™°. Once Px has been

obtained from the series (C13), the recurrence relations (ClLt) are used
to compute Pg_y, Pg-ns. . » P1, Po in that order. Then S, 1is computed

from equation (C15), and 83, Sp,. . ., S¢ in that order from
equation (C16).

In the present paper the significant range of parameters is

0L ks 10
-80<k; £0
5x10% < ko < 8x10°
For this range it can be shown that the series (C19) can be truncated at
K = 1 with an error less than 1x10°®, Furthermore, in the expression for
So and S, equations (C15) and (C16), the terms involving the exponential
function are also less than 1x10°®. This gives the simple approximate

formulae

So=l, Sl=)-l-c

and, hence

1
1 5 ko - k3
F(kO:kl:kZ) == 11+ (c20)
ko ko

with an error less than 2x1076/ks.
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APPENDIX D
' ORDER OF MAGNITUDE OF FACTORS AFFECTING STABILITY

In the analysis of this report, a number of simplifying assumptions
were made regarding the relative importance of the several factors which
influence the stability. It is the purpose herein to demonstrate that
three of the assumptions which are of particular importance are, in fact,
Justified. These assumptions are:

(1) In the evaluation of values of ks (eq. (10c))
it is permissible to ignore the CLu contribution
in comparison with the C contribution. (This

assumption is desired but not required.)

(2) In terms involving k, + k;, that k, is
unimportant. (This assumption is desired but not
required.)

(3) That kg - k32 is trivial in comparison with
ko + k; (or, from assumption (2), in comparison with
ko). (This assumption is required to obtain the
solution for the fundamental differential equation of
motion (eq. (12).)

It is to be noted at the outset that %k,;, ks, and k3 can be written
in terms of the drag parameter, kg, in the forms

ky = %9 [l - %I;' + @C-;/G@j{;j] (p1)
k2 = 5 zgn ox [ ( X) <Clo%%m eE] (22)
«-£[3-G0]

The demonstration of the validity of the assumptions (1), (2), and (3)
will be considered in the sections T, IT, and ITIT as follow for conical
shapes.

I. For this demonstration it is necessary to show that
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C
<—C-I—;-> Bl sin 6g

is trivial in comparison with

2
_ Cm (1
QD o

Since the CLm term is larger the larger the value of 1 and sin O,

it will be assumed that the 6 is about (slightly greater than) L45°
and the length is that for a 6-foot diameter base (i.e., 1 = (3/tan 8) ft).

Then (since B~ = 22,000 ft) the comparison of the components is between,
approximately

CIaXlO"‘"‘
CDtan e}

_&'9@2
Cp ]

Assuming ch/l is 0.30, 0.50, and 0.70 then the ratio of the exact value
of ko to the approximate value of kp obtained by ignoring the CL@

and

term is that shown in figure 16. It is seen that the approximation is
excellent except when Cma goes To zero (shown for the ch = 0.70 case).

Of course, in no practical case would Cma be allowed to approach zero.
II. To show that k; 1is trivial in comparison with kp 1t is

necessary to show that
2
Ky L. o (Cmg * Cma’) 1 ,
- 4 ———
Cp Cp °

ko

1
=l

is small compared to

2
kp _ 1 _ Cmg, /7
Ko Pl sin 6z | Cp \O
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Again the quantity k, will be least compared to k; when 1 sin g

is largest; hence, the length and angle assumption of section I is used
so that the comparison will be between

21k (90

and

Assuming ch/l = 0,30, 0.50, and 0,70 then the ratio of the value
ko + ki to the value ks, is that shown in figure 17. It is seen again
that, except vhen Cmm goes to zero, the approximation is excellent.

ITT. TIn this demonstration it is necessary to show that

2
2l k k -
w2 - () Jow

(ks - ky2)e2PY

is trivial compared to

(kg + k;)e™BY

kae'By = k{% e~BY

The test of this assumption is more severe when kg, is largest and ¥y
is minimum, and again, when 1 sin 6 is largest. Using the largest

ko to be expected, say 20, and the length and angle from section I, and
for y = 0, the severe comparison is then between

o - 0® - o] 25 - (2] ]
= - - 222 (30

and
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Assuming lcg/l = 0.30, 0.50, and 0.70, then the ratio of (ke-k,2)/ks
is that shown in figure 18. It is seen again that, except when Cmg,
goes to zero, the approximation is excellent. Moreover since these coef-
ficients enter the differential equation (12) multiplied by e~2BY and

e"BY, respectively, and these exponential values have, at altitude, the
values '

I«Y{; e-2By e”BY

) 1.00 1.00

50,000 | 1.06x10"2 |1.03x10™*
100,000 | 1.12x10"%* | 1.06x1072
150,000 | 1.19x107® | 1.09x10™3
200,000 | 1.25x10"8 |1.12x107%
250,000 | 1.31x107*° | 1.15x10"°

then the integrated influence of the term involving kg - k12 must be
trivial compared to the ky term.
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TABLE I.- ERROR FUNCTION, F,(koy), EQUATION (26d)

éﬁ

Fy (ko)
0.500
571
.659
<173
.921
1.116
1.376
1.728
2.208
2.873
3.800

=W O

O\ o=~ OV

=

Note: The values should not be used when Kk, is such that

i, 2
ke Ko < g

= VEZB sin eE
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Dynamic stability factor, C, QCLa +(Cmq +Cmg ) ( /o )?
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Figure 2.— Dynamic stability factors for conical
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Static stability factor, Gp, (‘:1.?)2
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Figure 3.- Static stability factors for conical missiles.
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(a) Body base diameter.

Figure 4.-Physical characteristics of example missiles.
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(b) Body length.

Figure 4.- Continued.
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(c) Body volume.

Figure 4.- Continued.
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Figure 5.-Dynamic stability parameter for example conical
missiles.
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Figure 6.- Static stability parameter for example conical
missiles.
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Altitude, thousands of feet
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(a) Conical missiie of 10 cubic feet with k, =5

Figure 7.- Altitude variation of oscillations.
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Figure 9.- Laminar heating rate and amplitude ratio as
a function of altitude for ko=5 , §=25°,

CONFIDENTIAL

o7



58

.28

€ .24
[} ]
£
[ g
o
2
E_ .20

-
59
3 =
5 o <

= .l
5 o \
= E
=
) ‘5 \
[+}]
g,,g A2
° s
g e ko =5 \
- .08 \
(&)
s \
- 10
g 04 x
O .
Z 20\\,

0] ' .
0] 10 20 30 40 50

CONFIDENTIAL NACA RM A56F15

Cone half-angle, 3, deg

Figure 10.- Maximum normal-force experienced by example

missiles.
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Figure 1l.- Altitudes for maximum normal force and drag

for example missiles.
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Figure |2.- Range target error per degree initial angular
misalignment for example missiles.
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Figure 13.- Range target error per degree trim angle for
example missiles.
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Figure 14.- Maximum oscillation frequencies for example

missiles.
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Figure |6. - Ratio of exact k,-to - approximate k, for
example of largest probable error as a function of
missile-cone half - angle.
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largest probable error as a function of missile -cone
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