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NATI ONAL ADVI SORY COMMITTEE FOR AERONAUTI CS 

RESEARCH MEMORANDUM 

FREE-FLIGHT AERODYNAMIC - HEATING DATA TO MACH NUMBER 10.4 

FOR A MODIFI ED VON KARMAN NOSE SHAPE 

By Wi l liam M. Bland) Jr . , and Katherine A. Collie 

SUMMARY 

Aerodynamic-heating data have been obt ained on a modified-fineness 
r atio-5. 0 Von Karman nose shape at free - stream Mach numbers up t o 10.4 with 
a rocket-pr opelled model . Transient skin temperatures were measured at one 
s tation, 26 . 6 inches behi nd the tip of a nose 31 . 6 inches long. A maximum 
skin temperature of 1,6630 R was measured s oon after the maximum Mach number 
wa s obtained. 

During the periods f or which experi mental Stanton numbers were pre 
sent ed , f l ow parameters just outside the b oundary layer at the temperature 
measuring station varied as follows : the l ocal Mach number vari ed in the 
r ange b et ween 0 .8 and 9 .0 and the l ocal Reynolds number varied in t he range 
between 0 .8 X 106 and 35 .5 x 106 . The ratio of skin temperature t o local 
s t ati c t emperature varied between 1 .0 and 3 .6. 

The experimental Stanton numbers agr eed well wi th Van Dri est's turbu
l ent theory whil e the l ocal Reynolds number was high j that is , while the 

l ocal Reynolds number varied in a range above 6 . 8 x 106 . For l ocal Reynolds 

numbers l ess than 3 . 5 x 106 the experi mental Stanton numbers were of the 
magnitude predicted by Van Dri est ' s laminar theory . Transition from turbu
l ent t o l aminar flow at the temperature measuring station, as indicated by 
t he change in t he magnitude of the Stanton number, occurred as the l ocal 

Reynolds number decreased from 6 .8 X 106 to 3 . 5 x 106 at essentially a con
s t ant l ocal Mach number of about 9 .0. 

INTRODUCTI ON 

The problem of aerodynamic heati ng i s currentl y being investigated by 
the Pi lotless Aircraft Research Divi sion of the Langley Aeronautical 
Laboratory wit h techniQues that utilize r ocket-propelled models in f ree 
fl i ght . Result s of s ome recent investigations are presented in ref erence 1 
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for free - stream Mach numbers up to 3.9 and in reference 2 for free-stream 
Mach numbers up to 5.6 . In these investigations, skin temperatures were 
measured at single stations on conical noses and on a parabolic nose. 
Heat - transfer coefficients were obtained from the skin-temperature meas
urements and compared in the form of Stanton number with theoretical 
results. 

In another investigation, first reported in reference 3, skin
temperature measurements were made at free-stream Mach numbers up t o 10.4 
at a single station on a modified-fineness-ratio - 5 Von Karman nose shape. 
These skin- temperature measurements have been presented in the f orm of a 
time history and compared in reference 4 with calculated skin temperatures 
based upon the theories of Van Driest. 

It is the purpose of this paper to present the aerodynamic-heat
transfer results obtained from the skin- temperature data of the test at a 
Mach number of 10.4 of references 3 and 4 in the form of local Stanton 
number. Local Reynolds number, based upon axial distance from nose tip to 

temperature measuri ng station, has a maximum value of 35 .5 x 106 at a free
stream Mach number of 4 .1. The ratio of skin temperature to local static 
temperature just outside the boundary layer at the temperature measuring 
station varied from 1 .0 to 3 . 6 during the test. 

The flIght test was conducted at the Pilotless Aircraft Research 
Station at Wallops Island, Va. 

A 

h 

J 

k 

SYMBOLS 

area, s<l ft 

l ocal skin-friction coefficient 

Stanton number, h 

specific heat of air at constant pressure, Btu/slug_oF 

specific heat of wall material, Btu/lb- oF 

local aerodynamic -heat-transfer coefficient, 
Btu/sec - s<l ft - OF 

mechanical equivalent of heat, 778 ft - lb/Btu 

thermal conductivity of air, Btu- ft/sec - OF- sq ft 
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axial distance from nose tip to temperature measuring station, ft 

M Mach number 

p static pressure, lb/in. 2 

Pr Prandtl number, ~f.1/k 

Q ~uantity of heat, Btu 

T temperature, oR 

t time from start of test flight, sec 

v velocity, ft/sec 

velocity of s ound, ft/sec 

E emissivity 

viscosity of air, slugs/ft-sec (except as noted) 

p density of skin material, lb/cu ft; dens ity of air, slugs/cu ft 

stefan-Boltzmann constant, 0.4835 X 10-12 , Btu/s~ ft-sec-~4 

T thickness, ft 

Subscripts: 

aw adiabatic wall 

o static free stream 

s radiation shield 

so stagnati on 

v outs i de boundary layer 

w skin 

1,2,3,4 numbers used t o identify different heat ~uantities 
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MODEL, INSTRUMENTATION, AND TEST 

Except for information pertinent to this report, only brief descrip
tions of the model, instrumentation, and test are presented herein; how
ever, more complete descriptions are presented in reference 3. 

Model 

The model, which consisted of a modified-fineness-ratio-5.0 
Von KarmAn nose shape, a fineness-ratio-5.0 cylinder, and a frustum of a 
cone, is shown as a sketch in figure 1 and as a photograph in figure 2: 
The nose was modified at the tip by the addition of a wedge forward of a 
station 2 inches behind the tip of the Von Karman profile. 

The nose of the model was machined from stainless steel hollowed out 
as shown in figure 1. In back of station 7.9, the model had an exterior 
skin fabricated from 0.032-inch-thick Inconel. The exterior of the nose 
had a smoothly polished finish. Instrumentation was housed in the nose 
of the model between stations 9 and 31. A radiation shield made of 
0.032-inch-thick Inconel, which was spaced 0.2 inch from the inside sur
face of the external skin, surrounded the instrumentation to protect it 
from the high external skin temperatures reached during flight. Increases 
to the thermal capacity of the external skin were kept to a minimum. As 
shown in figure 1, the radiation shield joined the external skin at only 
one station (9.5) between stations 7.9 and 31, and there had a minimum of 
physical contact. 

Instrumentation 

Of the six instruments contained in the model, only two were concerned 
directly with the aerodynamic -heating aspects of the test. Both of these 
instruments were used to measure temperatures of the external skin at sta
tion 25 of the Von Karman profile (26.6 inches behind nose tip) and both 
were calibrated in the temperature range ~rom 00 F to 18000 F. One, a 
thermocouple, was inserted in a hole in the external skin and welded in 
place, and the other, a resistance wire, was fastened to the inside of the 
skin with an adhesive. The resistance-wire temperature measuring device 
failed about 34 seconds after the beginning of the flight test. 

Other instrumentation consisted of ground-based radar units for meas
uring model velocity and for obtaining the position of the model in space. 
The velocity measuring unit lost the model at about 28 seconds and for 
times thereafter acceleration and total pressure measured by instruments 
contained within the model were used to calculate velocity as described in 
reference 3. A rawinsonde carried aloft by a balloon provided measurements 
of atmospheric conditions and winds at the time of the flight test. 
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Test 

The desired performance was attained by using a f our - stage propul 
sion system consisting of solid-fuel rocket motors. The model , which 
contained one of the rocket mot ors, and the three booster stages are 
shown in figure 3 as they appeared on the launcher. A portion of the 
trajectory followed by the model is shown in figure 4, and an altitude 
time history is shown in figure 5. 

DATA REDUCTION 

General 

During the flight test of the model, measurements furnished the 
following data, which are basic to the aerodynamic-heating investigation 
as functi ons of flight time: 

1. Flight-path velocity (fig. 5) 

2. Free - stream air denqity, static air pressure, and velocity of 
sound (fig . 6) 

3. Mach number (fig. 7) 

4. Skin temperature (figs. 8 and 9) 

5. Free - stream static air temperature (fig. 9) 

These data were reduced to Stanton number, the nondimensional form 
of the l ocal aerodynamic heat-transfer coefficient} by the following 
procedure . The basic heat - transfer equations as given in reference 5 
and used in this procedure are: 

For convection, 

For radiation (outward), 

dQ2 
dt 
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For radiation (inward), 

Equati on (3) applies to the case of coaxial cylinders and is considered 
to be a good approximation for the coaxial shape used in this 
investigation. 

The time rate of change of heat contained within the skin is 

dQ4 
dt 

(4) 

The sum of the heat transferred to the skin per unit time as expressed 
by the summation of equations (1), (2), and (3) is equal to the time rate 
of change of heat contained within the skin 

where the minus sign indicates a l oss of heat . Also this expression 
neglects the conduction of heat along the skin and radiation from outside 
sources which are estimated to have a negligible effect. Substituting 
expressions for dQ/dt into equation (5) and solving f or the l ocal 
aerodynami c -heat-transfer coefficient result in the expression 

h 

dTw 
CWPwTw -- + 

dt 

(6) 

The l ocal Stanton number can be obtained by nondimensionalizing the 
l ocal aerodynamic (convective) heat-transfer coefficient thusly 

h 
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Evaluation of Quantities 

The properties of the Inconel skin are known. The variation with 
temperature of the specific heat cw, as shown in figure 10, was obtained 
from reference 6. The density Pw and thickness Tw of the skin are 
known constants, 530 lb/cu ft and 0.00267 foot, respectively. The emis
sivity of nonoxidized Inconel is shown t o vary only slightly from 0.3 
over the test range of temperature in reference 6; therefore, Ew and 
ES were considered to be equal to 0.3 throughout the test. The time 
rate of change of the skin temperature dTw/dt was determined graphically 
from a suitably scaled time history of the measured skin temperature. The 
temperature of the radiation shield, which was not measured during the 
flight test, has been estimated from the unpublished results of some appli
cable static heating tests and has also been calculated by assuming that 
all the heat entering the shield was transferred from the external skin by 
radiation. The estimated and calculated shield temperatures, which are 
believed to be representative of possible shield temperature limits, are 
included in figure 11. No significant change in the inward radiation 
was noted when the different shield temperatures were used in the reduction 
of the heat - transfer data. 

The adiabatic -wall temperature Taw was calculated from the expres
sion f or recovery factor (ref. 7). 

R.F. (8) 

or rearranging 

For laminar flow R.F. was taken as Prl / 2 and for turbulent flow R.F. 
was taken as Prl / 3 as discussed in reference 7, where Prl / 2 and Prl / 3 

were based upon Tw' The variations with temp~rature of prl / 2 , pr l / 3, 
and other thermodynamic properties of air (ref . 8) used in this report are 
shown in figure 12. In order to account for the variation with temperature 
of the specific heat of air, the stagnation temperature was calculated with 
the energy relation 

V 2 
a 

2J 
= rTso c 

JT p o 
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The l ocal temperature Tv and other l ocal flow parameters at the 

temperature measuring station have been obtained from the l ocal t o free
stre am ratios presented in figure 13 . These ratios were calculated f or 
the same basic nose shape used in this test, but with a different nose
tip moQification. In order to simplify the calculations, the (7.50 half
angle) wedge nose - tip modification t o the Von K~~n nose shape of the 
model was replaced by a 100 half-angle cone that faired smoothly into the 
Von Karman nose shape at station 2.7. At supersoni c speeds f or whi ch 
M < 5 . 0 the flow-parameter ratios were based up on pv/Po ratios calcu
lated by the second- order theory of reference 9. For the rest of the 
supersonic speed range included in this test, the flow-parameter ratios 
were calculated by the conical- shock-expansion method of reference 10 . 
No attempt was made to adjust these inviscid fl ow results f or b oundary
layer -displacement thickness . 

Time histories of the stagnation temperature, adiabatic -wall temper
ature, free - stream static temperature, and l ocal static temperature at the 
temperature measuring station are included in figure 9. 

ACCURACY 

The accuracy of the experimental data as reduced t o Stanton numbers 
has been calculated in the manner described in reference 11 . Results of 
the se cal culations are as f ollows: 

Time , sec 
Possib l e percent 

error in eH 

2 t 51 
4 t 24 

a6 tl04 
a8 ±319 

a lO t U4 
a15 u 04 

16 HO 
18 ±4 

21 t25 
~3 t 68 

24 ±l7 
28 ±4 

30 ±5 
34 t 9 
35 ±86 
36 t 41 
38 tl9 

aData not presented at these 
times because of the large calcu
lated error. 
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Examination of these errors and figure 9 shows that the errors in 
Stanton number become very large when the di~~erence between the adiabatic
wall temperature and the wall temperature becomes small ( (Taw - Tw)~O) 
and dTw/dt~O as between 6 and 15 seconds and near 23 seconds. Also, 

the calculated errors become large near 35 seconds when dTw/dt~O . 

RESULTS AND DISCUSSION 

Local flow parameters at the temperature measuring station, Reynolds 
number, the ratio o~ wall temperature to local temperature, and Mach number 
are presented as time histories in figure 14 . 

The skin temperatures as measured by a thermocouple and a resistance 
wire at a station 26 . 6 inches behind the nose tip of the model are pre
sented as a function of time in figure 8 . The temperatures measured by the 
two instruments are in very good agreement until shortly before the resist
ance wire failed at 34 seconds . These data show that changes in skin tem
perature were very small and thereby indicate little aerodynamic heating 
until after 16 seconds when acceleration from the second- stage booster 
increased ~light velocity t o beyond about M = 2.0, corresponding t o a 
local Reynolds number at the temperature measuring station of approximately 

20 X 106 . It was during ~e second- stage acceleration that the greatest 
rate of change of skin temperature was attained, 2320 R/sec. The skin 
temperature continued to increase, except f or a short time during the 
coasting period that f ollowed burnout of the second stage, until a maximum 
temperature of 1 ,6630 R (as measured by the thermocouple) was reached soon 
after the maximum Mach number of 10 . 4 was attained. Even though the Mach 
number after the maximum temperature was still very high, the measured 
skin temperature started to decrease because the convective heating at the 
higher altitudes was mor e than offset by the radiation l osses . 

By use of the procedure discussed in the section of this report 
entitled "Data Reduction," the heat - transfer data have been reduced to 
Stanton number and are presented as a time history in figure 15. In this 
figure, it can be seen that the Stanton numbers based upon the thermo
couple measurements and the resistance -wire measurements are i~ fairly 
good agreement . The differences in CH can be attributed mostly t o the 
differences in s l opes of the measured skin temperatures in figure 8. The 
reduced experi mental data have not been presented between 5 and 15 seconds 
and in the neighborhood of 23 seconds because of the extremely large possi
ble errors calculated for these times as previously noted in the section 
entit led "Accuracy." 
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The theories of Van Driest for laminar flow (ref. 12) and for 
turbulent flow (ref. 13) modified as suggested in reference 14 (p. 16) 
have been used to calculate the theoretical values of stanton number for 
cones and flat plates for the My, Rv ' and Tw/Tv conditions of the 

test. The relation C - ·l3c was used f or laminar flow . 
Heone - yJ Hflat plate 

For turbulent flow, cf was determined from the relation 
cone 

cf = cf when Rcone = (R/2)flat plate (ref. 15). Values 
cone flat plate 

of CH were then determined from the relation CH = 0.6cf (ref. 16). 

The experimental values of CH' when compared with theoretical values in 

figure 15 , agreed with the level of turbulent theory to about 32.8 se-c 
onds, at which time the local Mach number had increased to the maximum 
value of 9 .0 and the local Reynolds number had decreased to about 

6 .8 x 106 , which was the l owest value since the earliest part of the 
flight test. After 32.8 seconds the experimental values rapidly decreased 
until at about 34.5 seconds (at which time Mv had decreased to about 8.9 
and Rv had decreased t o about 3.5 x 106 ) they reached a general level 

slightly below the magnitude predicted by laminar theory. During the rest 
of the test, as Mv decreased t o about 8.4 and Rv decreased to about 
0 .8 x 106 , the experimental values of CH fell progressively lower than 

even the laminar flat-plate theory. 

In general, the experi mental values of CH do not agree best with 

either the flat-plate or the conical theory. This was not unexpected 
because the tested nose shape was neither a cone nor a flat plate and 
was of such shape that the pressure varied along its surface. 

CONCLUDING REMARKS 

Aerodynamic-heating data have been obtained at one station, 
26 . 6 inches behind the tip of the nose, on a modified fineness-ratio-5 .0 
Von K~rm&n nose shape at free-stream Mach numbers up to 10.4 with a 
rocket-propelled model. Flow parameters just outside the boundary layer 
at the temperature measuring station varied as follows: the local Mach 
number varied in the range between 0.8 and 9 .0, the local Reynolds num-

ber varied in the range between 0.8 X 106 and 35.5 X 106 . The ratio of 
skin t emperature t o local static air temperature varied between 1.0 
and 3 . 6 . 

The experimental Stanton numbers agreed well 
bulent theory while the l ocal Reynolds number was 

the l ocal Reynolds number varied in a range above 
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Reynolds numbers less than 3 . 5 x 106 the experimental Stanton numbers 
were of the magnitude predicted by Van Driest's laminar theory . Transi 
tion from turbulent to laminar flow at the temperature measuring station, 
as indicated by the change in the magnitude of the Stanton number, 

occurred as the local Reynolds number decreased from 6 .8 X 106 to 3 . 5 X 106 

at essentially a constant local Mach number of about 9 . 0 . 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., April 9, 1956 . 
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Figure 3.- Model and boosters on launcher. 
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