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NACA RM L56FO	 CONFIDENTIAL 

NATIONAL ADVISORY CONMITTEE FOR AERONAUTICS 

RESEARCH 1vORANDU4 

A SIMPLIFIED METHOD FOR APPROXIMATING THE TRANSIENT 

MOTION IN ANGLES OF ATTACK AND SIDESLIP DURING 

A CONSTANT ROLLING MANEUVER 

By Leonard- Sternfield 

The transient motion in angles of attack and sideslip during a con-
stant rolling maneuver has been analyzed. Simplified expressions are 

- presented- for-the- determination of the pertinent modes of motion as well 
as the mod-al coefficient corresponding to each rnôd. -- 	 - - - - --	 - - 

Calculations made Ith and- without the derivatives Cy (side force 

due to sideslip) and CL (lift-curve slope) indicate that although these 

derivatives increase the total damping of the system, they do not markedly 
affect the transient motion.

INTRODUCTION 

Recent flight tests of airplanes designed with their mass concen-
trated primarily in the fuselage have indicated that during a rolling 
maneuver the airplane experiences large uncontrollable motions in angles 
of attack and sideslip (refs. 1 and 2). A . fundamental analysis of this 

pitch-yaw divergence problem, assuming the rolling velocity of the air-
plane is constant, is presented in reference 3. This analysis, concerned 
primarily with the stability of the system, makes, possible the calcula-
tion of the divergence boundaries and the prediction of 'tle range of 
rolling velocities for which the airplane motions will diverge. Analog 
studies of several research airplanes reported in references )4. and 5 

indicate that reference 3 is a helpful guide in a roll-coupling investi-
gation but detailed motion studies based on five degrees of freedom and 
taking account of pilot inputs are essential to the analysis. Also, cal-
culated time histories of the airplane motion indicate that large angles 
of attack and sideslip that are objectionable to a pilot 'and which may 
induce severe loads on the airplane may be encountered for constant 
rolling velocities outside the critical range. 
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2	 C0NFIDEJTIAL	 NACA RM L56F0i-

The purpose of this paper is to extend the analysis of reference 3 
by analyzing the transient motion in angles of attack and sideslip. 
Simplified expressions are presented which permit an accurate and rapid 
estimate of the maximum angles of attack and sideslip for an airplane 
rolling at a constant velocity which should apply to the case of an air-
plane entering a rolling maneuver up to the point of recovery from the 
maneuver. The airplane is assumed to be initially disturbed by an input 
in the side-force eq.uation equal to the product of the rolling velocity 
and trim angle of attack. A comparison is made of the time histories 
obtained by using the simplified and exact expressions (obtained from 
the four degrees of freedom assuming constant rolling velocity) for a 
currently designed swept-wing fighter flying at a Mach number of 0.1 
at an altitude of 32,000 feet.

SNBOLS 

b	 wing span, ft 

C	 wing mean aerodynamic chord, ft 

CL	 lift coefficient, Lift 
qS 

rolling-moment coefficient, Rofling moment 
qSb 

Cm	 pitching-moment coefficient, Pitching moment 
qS 

Yawing moment 
Cn	 yawing-moment coefficient,

qSb 

Ix	 moment of inertia of airplane about principal X-axis, slug-ft2 

ly	 moment of inertia of airplane about principal Y-axis, slug-ft2 

Iz	 moment of inertia of airplane about principal Z-axis, slug-ft2 

L'	 rolling moment, ft-lb 

m	 airplane mass, slugs 
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P	 period, sec	 S 

p0	 steady rolling velocity, radians/sec 

q	 pitching velocity, radians/sec; dynamic pressure, lb/sq ft 

r	 yawing velocity, radians/sec 

S	 wing area, sq ft 

t	 time, sec 

T112	 time to damp to one-half amplitude, sec 

time to double amplitude, sec 

V	 airplane velocity, ft/sec 

y	 -	 sifrcè,lb	 -	 - -	 - -	 - 

a0	 initial angle of attack of airplane principal axis, radians 

incremental change in angle of attack, radians 

13	 angle of sideslip, radians 

a ± 1w	 complex roots of characteristic equation 

real root of characteristic equation 

2 - c13qSb 

-CqS 
=

1Yp02 

Cm
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c-flp

CL 
CLa, = 

C l = - 

2V 

Cm 
Cm

'1.	 qc 

2V 

Cnr - - 

'2V 

Yc - - - I.-

La = qSCj 

qk)L, 

2V	 P 

Ma = qSECm 

_qSc 
Mq 211 Cmq 

= qSbC 

q.Sb2 
Nr 

•2V 
Cnr 

= q.SCy
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EQUATIONS OF MOTION 

In this analysis, assuming constant forward velocity and constant 
rolling velocity, the following linearized equations of motion of an 
airplane referred to the principal axes were used: 

Pitching:

(la) 

\I	 /	 ly.	 Iy 
Yawing: 

- -	 -	 -	 -	 .	 (Ix_ IY	 =	
r	 -	 - - -(ib) - - - 

1z 

Y-force:

Y3
(ic) 

Z-force: 

By sett	 q = qe t, r r0eAt, 

in the equations written in determinant 
stability equation	 S 

AA+BA5+CA2^

(id) 
mV

=	 eAt,. and	 = ()0et 

form ?.. must be a root of the 

(2) 
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where

A= 1 

B= ---+ 
I	 ly mV niV 

- (I)( - Iy\ fi - 

Ix) 2 N

	 N13 Mq N'	 Y13 Nr Y13 Mq - 
_______ _______ - — ^ - + — - + p02 + - - + 

1z )	 'y 1z 'y 1z	 mV I	 mV 

Lct Nr LM	 LaY13 

mV 'z mV Iy• mVrnV 

D= (^\p2	 ^^^^a^ 

	

\\IZ IY)	 ly Iz ly 'z ly Iz mV ly Iz mV I mV ly mV 

L.	 +	 +	 -_IY(IZ_-_IX2 - (IX IY'(IZ_-_Ix')2 

mV mV I, mV mV ly mV \ I / \ ly J	 mV \ Iz / \ ly J 

E = - 
(IX_-_IY(IZ_-_IX	

-	
-_Iy2	 (IZ_-_I2 + 

Iz J \ ly J	 ly Iz J	 .Iz\ ly J 

Lj' IZ	 ly Iz ly Iz mV ly 'z mV ly Iz mV mV 

La (IX - Iy (IZ - IX 2 
—	 i	 it	 1PO 
mVmV\ Iz	 'y /
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In reference 3, C	 and Cy were assumed to be equal to zero 

which corresponds to the case of the center of gravity moving in a 
straight line. In this analysis the case of Ci = Cy= 0 is considered 

(referred to as case (a)) as well as the case where the values of C 

and	 are finite (referred to as case (b)). 

ANALYSIS AND DISCUSSION 

Divergence Boundaries 

The conditions necessary for the system described by equations (la) 
to (ld) to be stable are that the coefficients.of the characteristic equa-
tion (eq. 2) must be positive and that Routh t s discriminant, BCD - AD2 - 
B2E, be greater than zero. It can be sliown from an examination of the 
characteristic equation of this system, that, for aircraft designed with 

- -- positive—static -stability -and-where each -one of --the- danip-i-ng--derivat-i-ves - 

Cnr, Cmq CLa and Cy adds damping to the system, the oscillatory 

modes will be stable for all values of the steady rolling velocity. Thus, 
the only type of instability that could be encountered is an aperiodic 
mode which occurs when the constant term of the characteristic equation, 
the E coefficient, is negative. As shown in reference 3, divergence 
boundaries, obtained by setting E 0, can be plotted as a function of 
the squares of the natural frequencies in pitch and yaw nondimensionalized 
to the square of the rolling velocity, 	 2 and	 2, respectively. 

These divergence boundaries are shown in figure 1 for cases (a) and (b) 
for an airplane whose mass and aerodynamic characteristics are presented 
in table I. The nondimensional pitch and yaw frequencies of the airplane 
described in table I fall along the straight line, with the slope equal 

-C. i - 
to	 -. ., shown in figure 1. Each point on this line corresponds 

Ib	 - 

to a particular value of Po and as P0 increases the point moves along 

the line toward the origin. For case (a), the airplane line intersects 
the divergence boundaries at two points and thus defines the critical 
range of rolling velocities where a divergent mode exists, namely, 

1.86 < p0 < 2.3). For case (b) the airplane line lies in the stable 

region and the motion is therefore stable for all values of 
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Characteristic Modes 

The roots of the characteristic stability equation corresponding to 
the values of Io{ shom in figure 1 are presented in tables II (a) 
and II (b) for cases (a) and (b), respectively. A method of approximating 
the roots of the characteristic equation is presented in the appendix. 
The roots for Po = 0 which correspond to the condition where no coupling 

exists between the lateral and longitudinal modes are also given in the 

-0.693 
T1/2-	

a 
table. If the roots are complex, 7'.. = a ± iw, 

-0.693 
whereas, for a real root A-i, T 1/2 =	 or 

A1

2t 
P = -, and 

U)

0.693 
T2=

A1 

The roots for p = 0, for both cases (a) and (b), indicate that 
the motion consists of two independent oscillatory modes, a longitudinal 
and lateral oscillation with periods of 2.'T'l- seconds and -.o8 seconds, 
respectively. The damping of the oscillation for case (b) is greater 
than that for case (a) because the damping derivatives Cy and CL 

were assumed equal to zero in case (a). The. values of Ti/2 in seconds 

are given in the following table: 

Case

T1/2 

Longitudinal oscillation Lateral oscillation 

(a) 3.3 13.2 

(b) 1.11 9.5

For values of	 other than zero, the lateral variables 13 

and r are coupled with the longitudinal variables a. and q and the 
system now has the characteristic modes shown in table II for each one 
of the variables, 13, r, a., and q. It should be noted that as P01 

increases, the frequency of the high frequency mode continues to increase 
and the damping decreases. However, the frequency of the other oscilla-
tion decreases until IPol reaches approximately l.86 when the oscilla-

tion breaks down into two aperiodic modes. In case (a) at this value 
of IoI' a zero root is obtained and. the unstable region begins. The 
system remains unstable, with one aperiodic divergent mode, until IoI 
becomes equal to 2.33. In case (b), the system is stable although two 
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NACA RM L56F0	 CONFIDENTIAL	 9 

aperiodic modes occur for i.86 <	 < 2. 33. For IoJ > 2.33, the 
oscillation reappears in cases (a) and (b) and the frequency and damping 
increase as jPo increases. 

From the contour lines of constant oscillation frequencies presented 
in reference 3, it appears that, in general, the frequency of one of the 
oscillatory modes will always decrease and probably break down into two 
aperiodic modes as IoI increases. 

Motions in, 13(t) and ii(t) 

Time histories were calculated by the method of Laplace transform 
(ref. 6) of the motions in 13 and Lct for the seveial values of p0 

shown in figure 1. The disturbance acting on the airplane is represented 
by the term p0a0 in the side-force, equation while the airplane is rolling 

-	 in a negative direction. The motions in	
t) 

and	 (t) are presented ---	 -----

in figures 2 and 3 for.cases (a) and (b), respectively. A comparison of 
figures 2 and 3 shows that the inclusion of C 	 and Cy13 modifies the 

•	 motions slightly. Additional time histories were made, and are presented 
in figure 1i, for the same airplane but with the following assumed values 
of the derivatives: C 1n = -0.09, Cri13 = 0.11i-, Cy 13 = CL = 0. For 

p0 = -1.0, the airplane would be located in figure 1 at the point 

= 1.32 and 2 = 

Although the modes of motion involved in the transient behavior of 
the airplane will be stable for points along the airplane line located in 
the stable region, that is, 2.33< Iot 

< 1.86 in case (a) and for all 

values of I Po in case (b), the magnitudes of
	 and 13 developed

during the transient motion may be 'large.. enough to cause severe loads 
on the airplane. For example, in the particular flight condition for 
which the motions were calculated, where aj = 50, the airplane develops 

a sideslip angle of about -8° at p0 = -1.5 and &x is about -20° at 

= -3 .0. These values are reached in about 3 seconds. 

• ' In all the motions the high-frequency mode is clearly evident, 
although the amplitude of this mode is relatively small. Hence, the high-
frequency mode modifies the shape of the motion only slightly. Thus, 
for p0 = -1.0, -1.5, -2.5, and -3 .0 , the low-frequency mode is .of primary 

importance in the motions, whereas for o = -i.86, -2.0, and - 2. 33, the 

aperiodic modes are of primary importance. In addition, the analytical 
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10	 CONFIDENTIAL	 NACA EM L56FOit-

expressions for the motions would also contain a constant term which 
represents the steady-state value of 3 and Lii if the system is stable. 
A good approximation to the time history could therefore be expressed in 
general form for Pa = -1.0, -1.5, -2.5, and -3.0 as 

(3(t)	 a(t) 
or	 = K0 ^ K1eatsin(cnt + €)	 S 

aO	 aO 

For p0 = -1.86, -2.0, and -2.33 of case(b), and p 0 = -2.0 of case (a), 

the expression is

or ;t) 
= K0 + K2e7 1t + K5e?\2t	 (Ii-) 

and for P	 -i.86 and -2.53 of case (a), 

(3(t) or &(t) = Kt + K5(eAt 1)	 () 
ao	 a0 

Since the high-frequency mode is omitted from expressions (3), (It-), 

and (5), the values of 
(3(t) 

and &(t) will not satisfy the initial 
ao 

condition of being zero at t = 0. 

• By differentiating expressions (3), ( Ii-), and (5) and setting them 
equal to zero, the maximum values of (3 and i and thetime at which 
they occur could be easily determined. In these calculations, (3 and za 
occurred at about i/It. and. 1/2 of the period, respectively. 

Approximation of the Amplitude Coefficients and Phase Angle 

The amplitude coefficients K0, K1, K2, K3, K4, and K5 , and 

phase angle € in expressions (3), (It-), and(S) can be calculated directly 
by using the Heaviside expansion theorem given on page )-t-5 of reference 6. 
A deta±led examination of the exact expressions for the amplitude coef-
ficients and phase angle indicated that many o .f the terms appearing in 

CONFIDENTIAL
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the expressions had a negligible effect on the resultant magnitudes. 
Thus the following simplified expressions were derived which result in 
good agreement with the exact values. 

In the expressions for 

=	

+	

+ PO	
IX)(IZ; ix)]}

2 2 

K1	 -	
+	 - IX I - IX\l	 1M Nr	 Nr Mq\	 ly - ix Iz - IX 

_______________	

- + u(_a + - + _ + 

(a2 +	 -	 L	 IY	 \ Iz )( 1	
)] 

+ y Iz	 \	 'z 'y,	 'z )( iy 

-	 - u?(-2a +	
+ Mq -	 ixiz__'X 2 

= tan '	
'z 'yJ mV \ 1Z )' 'Y )0 

U)	 -	

^	
(iy_-IX\(IZ 'X 

]	 O\ 
Iz )' 'y 

-	 +	
- '\ /'_-_'x\ f + 

= 1y	 )	 ) ly )	
mV 

K2, K, and K5	
2CA + D 

D	 Iz niV[Iy Iz	 0	 1	 J \ ly 
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a.(t) In the expressions for 

K0 = -	
(i_-	 -	 2 - N(Iz_-_Ix'^ ! 

E \ I	 ,/\ ly J 0	 'z\ ly J ly Iz 

K1 =	 +

C 
€ = tan-i - 

C1 

where

P C2= -
	 (i -	 2	 - ix)(i - Ix)] 

- 2[	 ly	 \ ly 

2a	 02( .+ 

C1 = - C2() -	 \'y Iz 

02[2 - ( +	
+	 -	 -_IX -	 -	 Nr 

K2, K3, and. K5 -
	 Y 'Z	 'Z J\ L1 / IZ\ 1	 ) + I 1z 

?(2c7±D) 

K 
= •P02[(1_-	 -_ix2 -	 -_Ix + 

D	 1z J\ ly J	 Iz 1	 / 'y Iz 
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The C, D, and. E appearing in the preceding expressions are the 
coefficients of the characteristic equation. A comparison of the.rnotions 
obtained by using the exact and simplified coefficients is shown in fig-. 
ures 2 to 1. to be very good. 

Effect of Assuming. P Constant at t = 0 

In general, the rolling velocity builds up exponentially in response 
to an aileron input instead, of being constant at t = 0 as assumed in 
this analysis. In order to determine the effect of the assumption on 
the motions in	 and La, an analog study was conducted assuming the 
rolling velocity rea.çhes its steady-state value exponentially and the 
resultant motions in	 and La were compared. with the motions in 
and. Lxx. obtained on the assumption that Po is constant at t = 0. 

Equations (la) to (id) were used in the analog study and, in addition, a 

L' 
simplified roll equation

	

	 - .-.- p = L' was introducei. This equation
Ix. 

- states that p reaches its steady-state value, POi according to the 

expression p = po(eAt - i). In general, the resultant motions obtained 

in the analogy study were very similar to the motions shown in figures 2 
and. 3. The only significant difference noted was that different peak 

values of

	

	 and 1. were encountered.. Table III presents a comparison
ao 

between the maximum values of 	 and .P.. obtained. from the analog study 
a0	 ao 

and. from figures 2 and 3for Po = -1.0, -.1.5, and -3 . 0. It is seen from 
the values presented in table III that higher maximum values occur for 

= -1.0 and. -1.5 for the condition of constant p0 at t. = 0 whereas 

the opposite is true for P0 = -3 .0. These results can be explained by 

the fact that, during the first several seconds of the transient motion, 
the average value of P0 in the analog study is smaller than under the 
assumption of cOnstant p0 . Hence in the analog study, for p0 = -1.0 

and -1.5 the airplane may be considered to be located farther away 
from the stability boundary, but for Po = - 3 .-0 the airplane is located 

closer to the stability boundary. 

Calculations of Motions for an Airplane Performing a 360° Roll 

The analysis presented thus far is applicable to the condition of the 
airplane performing a continuous rolling motion. Of particular interest 
are the motions of the airplane when the pilot performs a 360° roll. These 
motions can be approximated by first determing the values of 3, r, a., 
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and q at the time the airplane has rolled through 3600; that is, at 

t =	 At this value of t, the constant rolling velocity is returned to 
p0 

p0 = 0 and the motion originally described by four degrees of freedom is 

now separable into its lateral and longitudinal values, the former repre-
sented by the yawing and sideslipping equations and the latter represented 
by the pitching-moment and normal-force equations. Thus, the values of 13, 
r, a, and q at t =	 are the initial conditions required to calculate 

p0 

the motions subsequent to t = -. The values of 13 and a can be deter-
p0 

mined from equatiOns (3), (!), or (5) . From equations 1(c) and 1(d), the 
following equations are obtained:

(6) 

and

(7)  

A good approximation of r and. q at t =

	

	 is obtained by neglecting 
p0 

the terms	 and & in equations (6) and. (7) . The following table com-

pares the values of r and q at t = 	 for p0 = -1.5, -1.7 ) and -3.0

when 13 and & are included in equations (6) and. (7) and. then deleted 
from equations (6) and (7).

p0

and & included and.	 &	 deleted 

r q r q 

-1.5 -0.20 0.20 -0.19 0.19 

-1.7 -.12 .33 -.l .32 

.25 .30 .29

C0NFIDENThL 
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Effect of Gravity Terms on the 13 and &t Motions 

The effect of the gravity components which would appear in the Y-force 
(eq. (ic)) and Z-force (eq. (id)) equations have been neglected in this 
analysis. In order to determine the effectof the gravity terms on the f3 
and &t motions, an analog study was conducted using equations (ic) and 
(id) with the gravity terms included and. then deleted from the equations. 
The airplane was assumed to be performing a 5600 roll for rolling veloc-
ities of P = -1.5, -1.7, and -.O. A comparison of the maximum values 

of 13 and & obtained with and without the gravity terms is presented in 

table IV. The two values given for 

respond to the maximum values of

Ii2 
-, that is, - and -, cor-
a0	 ao	 aO 

obtained during the initial part 

of the transient motion (o = constant) and during the recovery part of 

the motion	 = o), respectively. The comparison shows that with the 

gravity terms included the maximum values of 13 are about 2° greater 
and the maxirnUin values of L increase by about 1° for an initial a -- - - 

of 5°.

CONCLUDING RHS4P3KS 

From the analysis presented in this paper it appears that the tran-
sient motion in angles of attack and sideslip during a constant rolling 
maneuver consists chiefly of either an oscillatory mode or two aperiodic 
modes. Approximate expressions are derived for the determination of these 
modes as well as the modal coefficient corresponding to each mode. Inclu-
sion of the derivatives Cy13 (side force due to sideslip) and CL (iit_ 

curve slope) increases the total damping of the system but does not 
markedly affect the transient motions. 

The sole input considered in this paper is the term p 0a0 (the 

product of rolling velocity and trim angle of attack) in the side-fórce 
equation. A similar analysis should be conducted for unit yawing moment 
and pitching moment inputs. With this information, the motion in angles 
of attack and sideslip due to pilot-applied rudder and elevator could be 
calculated. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., May 22, 1956. 
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APPENDIX 

MEHOD OF APPROXIMATING TUE ROOTS OF THE CUARACTERISTIC EQUATION 

The fourth-degree characteristic equation A7 + BA + CA 2 + IDA + 

E = 0 may be factored into two quadratic equations (A2 + a1A + b1) 

(A + a2A + b2) = 0 where

A=1 

-	 B=a1+a2 

C = b + b2 + a1a2 

D = a2b1 + a1b2 

E=b1b2 

- : An examination of the quadratic equations from which the exact roots 
presented in tables 11(a) and 11(b) were obtained indicated that b1>> b2 

and. that a1 and a2 are of the same order of magnitude and. much smaller 

than b1. Thus, one may write 

A=1 

B=a1+a2 

CONFIDENTIAL	 -
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The solution of these equations yields 

BC - D 
-	 a1= 

b 1 = C 

D a = - 
-	 C 

E 
b2 = - 

C 

-- - - -The-rootsof	 + aj7-i-b1=O -approximate the highfrequency - - -- - 

mode whereas the roots of	 + a2? + b2 = 0 approximate the remaining 

two roots of primary importance in the motion calculations presented 
herein. A comparison between the exact roots and the approximate roots 
presented in tables 11(a) and 11(b) indicate that the agreement is 
excellent.

CONFIDENTIAL
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TABLE I 

MASS MID AEIRODYNANIC CHARACEIRISTICS OF AIRPLANE 

m,slugs	 ............................ 75 
IX,S1Uft2	 ........................... 10,976 

ly,	 slug-ft2	 ........................... 57,100 

1z '	 slug-ft2	 .......................... 6)i,975 

C 1,	 per	 radian	 ......................... -3.5 

Cma,	 per	 radian	 .......................... -0.36 

C,perradian	 .......................... 0.057 

Cy,	 per	 radian	 ......................... -0.28 

CL, per radian 

C 1 ,	 per radian	 .......................... -0.255 

V,	 ft/sec	 ............................. 691 
5,	 sq	 ft	 ..................... 377 
E,	 ft	 •	 ............................ 
b,	 ft	 ................................. 36.6 

q,	 lb/sq	 ft	 .............	 .............. 197
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TABLE IV 

COMPARISON OF MAXIMUM VALUES OF - AND - 
a0 

p0

Gravity terms included Gravity terms deleted 

13 1 13 
aO aO 

-1.5 -1.8 -0.50 0.90 -1. -0.30 0.90 

-1.7 -2.5 -.60 1.3 -2.1 -.O 1.2 

-3 .0 -3.0 1.5 -2.7 -2.2 i.6
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Figure 1.- Boundaries in the	 2,	 2 plane which define regions of 

aperiodic divergence for example airplane. 
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(b) p0 = -1.5.

Figure 2.- Continued. 
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(c) p0 = -1.86. 

Figure 2.- Continued. 
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(d) p0 = -2.0.

Figure 2.- Continued. 
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t, sec 

(e) p0 = -2.33. 

Figure 2.- Continued. 
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(r) p0 = -2.5.

Figure 2.- Continued. 
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(a) p0 = -1.0. 

Figure 3.- Time histories of	 and Al/a.0 for case b. 
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(b) p0 = -1.7.

Figure 3.- Continued. 
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(c) p0 = -1.86. 

Figure 3.- Continued.
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(d) p0 = -2.0.

Figure 5.- Continued. 
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(e) p0 = -2.33. 

Figure 3 . - Continued. 
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(g) p0 = -15.0.

Figure 3.- Concluded. 
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Figure Ii.- Time histories of 13/ao and	 for C = -0.09 and 

Cri = O.11I and	 = -1.0. 
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