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RESEARCH ME1ORAN]1JM 

THEORETICAL DETERMINATION OF WATER LOADS ON PITCHING 


HULLS AND SHOCK-MOUNTED HYDRO-SKIS 


By Emanuel Schnitzer 

A quasi-steady theory is developed, for the unsteady plane motion of 
seaplanes with high length-beam ratios and. of shock-mounted hydra-skis 
impacting on a water surface while undergoing pitching rotation. This 
theory is based on a dynamic-camber equivalent in which a pitching flat 
plate immersed in a stream is replaced instantaneously by a stationary 
cambered airfoil for which similar fluid particle trajectories exist at 
the boundary. Since experimental hydrodmamic data were unavailable for 
verification of the proposed theory, comparisons are made with classical 
two- and. three-dimensional linearized airfoil theory for steady and 
unsteady submerged motion and. with a more approximate method that neg-
lects the rotational effect on the pressure distribution. The agreement 
with the two-dimensional unsteady oscillating airfoil theory is not very 
good because of the presence of a large unsteady circulation term but 
the three-dimensional comparisons, which include, in addition, some 
oscillating airfoildata of aspect ratio 2, indicate fair agreement. The 
effect of rotation on the longitudinal pressure distribution for upward 
pitching is seen to broaden the stagnation peak and decrease the instan-
taneous ratio of maximum to average pressure, whereas , downward pitching 
is seen to yield the opposite result. From the comparison with the more 
approximate method that neglects rotational effects on the pressure dis-
tribution, it is deduced that the effects of rotation might be important 
f or some practical narrow-hull impacts but the more approximate theory 
could be used for the trimming shock-mounted hydra-ski cases considered. 
The loads predicted by the proposed theory for the trimming shock-mounted 
hydra-ski are less than those f or the fixed-trim hydra-ski. The proposed 
theory might also be usef'ul f or calculations for a low-aspect-ratio 
pitching hydrofoil. Applications of a cambered airfoil theory to the 
determination of water-pressure distributions on hulls with pulled up 
bows are indicated. Appendixes containing exact solutions for the pres-
sure distribution, load, and moment on a cambered airfoil immersed in a 
stream at a finite angle of attack are included. Step-by-step computa-
tional procedures with data-sheet headings for application of the proposed 
theory to seaplane hulls with high length-beam ratios and shock-mounted 
hydra-skis impacting on a water surface and involving rotation in pitch 
are also given in an appendix.
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INTRODUCTION 

This paper is concerned principally with the theoretical determina-
tion of the bydrodynamic loads and motions experienced by shock-mounted 
hydro-ski--ecjuipped aircraft, seaplanes with high length-beam ratios, and. 
other relatively narrow bodies undergoing unsteady planing motion on a 
water surface and involving pitching rotation. Although a water-impact 
theory for the freely trimming wide float has been developed, it is not 
believed that such a theory can be extended to cover the narrow-body case. 
Also, although much information is available for the oscillating airfoil 
covering a fairly complete range of aspect ratios from 0 to , most of 
these theories are only applicable for small oscillations at small angles 
of attack. They are further restricted to deeply immersed bodies, whereas 
a hydro-ski or seaplane may have only the lower surface wetted. Another 
limitation to the use of the oscillating airfoil theory for unsteady 
planing on water arises because the wing-chord is constant, whereas the 
liydro-ski or flying-boat-hull wetted length is continually changing. 
Modifications of such airfoil theory to cover the hydrodynaniic case have 
been made by Glauert and Perring (ref. 1) . to take into account the stir-
face of discontinuity and by Sedov (ref. 2) to include variable body 
shape and a changing wetted length. 

In order to apply Sedov's method to nonharmonic motions such as 
water impacts, Fourier series solutions may be made. Such solutions are 
allowable since linearizing assumptions have been incorporated in the 
derivation. Since, however, hydro-skis operate, at relatively high angles 
of attack, it is possible that such linearizations may not lead to reason-
able approximations for actual operating conditions. This is one of the 
main reasons that these methods were not utilized in the present paper. 

• In order to obtain solutions to the unsteady planing problem appli-
cable for practical angles of attack, an approximate dynamic-camber theory 
has been developed instead for the pressure distribution on pitching 
bodies during water impact. The purposes of this paper are to present 
this theory, to corroborate its accuracy insofar as possible, and to apply 
this theory and a more approximate version thereof to solving trimming 
hull and hydro-ski impact problems. The proposed dynamic-camber theory 
is based on the premise that a pitching flat plate deeply immersed in a 
stream may be replaced instantaneously by a stationary cambered airfoil 
for which similar flow particle trajectories exist at the boundary. It 
is believed allowable to apply this type of airfoil theory, where the 
entire foil is deeply immersed, to the hydrodynamic case where only the 
lower surface may be immersed in fluid, on the basis of Herbert Wagner's 
demonstration (ref. 3) that the longitudinal pressure distribution on 
the underside of a wing is very similar to that on the underside of a 
planing plate. The classical cambered airfoil theory is extended herein 
to include high angles of attack and finite cambers, which, when inter-
preted in terms of the pitching flat plate, are equivalent to appreciable 
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angular velocities at high trims. This equivalence comes from the quasi-
steady adjustment of the airfoil camber at each instant to conform approx-
imately to the instantaneous path lines of the particles moving along the 
rotating flat plate. Aspect-ratio corrections are applied to modify the 
pressure distributions for three-dimensional flow about the cambered 
airfoil. 

In this paper an approximate theory for unsteady motion with rota-
tion in pitch is first developed and compared with other theories and 
experimental data for oscillating wings. The load and motion equations 
for pitching hulls and hydro-skis are then developed and presented along 
with solutions for a few example cases. Several appendixes which are 
utilized in connection with the development of the theory and which pre-
sent computational procedures for making solutions of pitching-hull and 
shock-mounted hydro-ski problems are included. 

SYMBOLS 

A	 aerodynamic aspect ratio 	 - --

B	 ratio of average pressure in transverse plane to longitudinal 
center-line pressure in plane 

b	 beam of body 

Ccp	 center-of-pressure coefficient relative to step, FNAb 

L 
CL	 three-dimensional lift coefficient, 

L/b 
section lift coefficient, 	

cii

M	 ______ 
Cm	 three-dimensional moment coefficient,	 or 

ScU2	 - 

M/b	 M/b 
cm	 section moment coefficient, cY 

or 

CN	 three-dimensional hydrodynamic-force coefficient, 
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eN	 section byodmamic-force coefficient, FN/b 
?wbU 

w C	 beam loading coefficient, pgb15 

c	 wing chord 

D	 aerodynamic drag force, positive in aft direction 

d	 damping exponent 

E	 distance along ski between pivot and step or along hull between 
center of gravity and step measured parallel to keel, positive 
when measured aft (see fig. 5) 

F	 force taken positive in upward or aft direction 

f	 function 

G	 damping constant, strut compression 

dniping constant, strut extension 

g	 acceleration due to gravity 

H	 coefficient in Blasius solution 

h	 half height of cambered foil at maximum point (see fig. 2) 

I	 pitching mament of inertia of triimning body 

J	 distance between keel and center of gravity measured normal to 
keel (see fig. 5(a)) 

K	 spring force coefficient 

k	 reduced-frequency parameter, cw/2U 

L	 aerodynamic lift force, positive in upward direction 

1	 length of body below undisturbed water surface (see fig. 5) 

length of body below elevated water surface (see fig. 5) 
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M	 pitching moment, considered positive in a nose-up direction 

P	 distance along hydro-ski between pivot and shock-strut attachment 

p	 fluid pressure 

q	 resultant velocity of fluid,	 + 

R	 radius of cylindrical wing (see fig. 2) 

r	 longitudinal distance between step or trailing edge and center 
of pressure (see fig. 5) 

real part of 

S	 wing plan-form area 

t	 time 

free-stream velocity at infinity for stationary body, and. 

equivalent forward velocity x ^
	

- z for moving body 

u	 velocity of fluid in X-direction 

V	 resultant velocity of impacting body 

v	 velocity of fluid in Y-direction 

W	 weight of aircraft supported by each hydro-ski or hull 

w	 complex potential 

horizontal displacement for determination of equivalent ãamber 

x	 forward displacement of impacting body 

vertical displacement for determination of equivalent camber 

z	 draft or downward displacement of body normal to undisturbed 
water surface 

Z = X + iY 

= x' + iy t , coordinate axes systems for conformal transformationl3 

z = x H + 
yU
	 (see fig. 2)
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inclination of stream flow to chord of airfoil (angle of attack) 

r	 instantaneous circulation 

y	 flight-path angle 

8	 angle defining effective camber, 
2U 

or	 , radians 

velocity of hull or hydro-ski normal to keel, positive downward 

e	 argument of Z" 

approach parameter for free-body landing,	 ' (cos T ^ 

length of float or hydro-ski below undisturbed water surface 
divided by mean beam 

length of float or ski below elevated water surface divided by 
mean beam 

longitudinal distance along hord or keel measured frbm trailing 
edge, positive forward 

p	 mass density of fluid 

T	 trim of ski or hull relative to undisturbed water surface, 
positive in nose-up direction 

phase angle between angle-of-attack vector and lift vector, 
positive when angle-of-attack vector is leading 

ØM	 phase angle between angle-of-attack vector and moment vector,

positive when angle-of-attack vector is leading 

cp(A)	 aspect-ratio correction 

w	 circular frequency of oscillation 

Subscripts: 

a	 at pivot (see fig. 7(b)) 

a'	 at connection point of shock strut to ski (see fig. 7(b)) 

e	 effective value 

g	 gravity
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LE	 about leading edge 

N	 hydro&ynaznic normal 

n	 point number 

0	 at contact 

p	 aerodynamic pitching 

r	 bydrodynamic afterbod.y 

s	 about step 

x	 extrapolated quantity 

a	 derivative with respect to a 

0,1,2,...	 successive terms in a series 

about origin (located below midchord) (see Z-plane in fig. 2) 

maximum value 

00	 infinity 

A bar over a symbol means that the symbol pertains to the mass 
center of the trimming body or to the complex conjugate in appendixes A 
and B. An asterisk denotes that rotational effects have been included. 
Dots over symbols denote the derivatives with respect to time. 

DEVELOPMENT OF TU)3RY FOR UNSTEADY MOTION 


WITH ROTATION IN PTTCH 

Concepts of Approach 

In order to develop an approximate theory for the oblique impact 
or unsteady planing of a relatively narrow pitching body on a water-
surface, the following reasoning was applied. First, for the simplified 
case of oblique impact at fixed trim, it has been shown in previous 
hydrodynamic publications that this case can be replaced at each instant 
by an equivalent planing case for which a similar load distribution 
exists. The criterion for this similarity was found to be that the hori-
zontal velocity U of the forward intersection line of the body with the 
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water surface must be equal for both cases. 
the following sketches: 

Fixed-trim impact

This is demonstrated in 

tan T 

Equivalent planing 

The effects of pitching rotation which are also taken into account 
in the present paper can be divided into two parts. The first part is 
the effect of the rotational velocity in modifying the effective planing 
velocity as illustrated by the following sketches: 

Trimming impact
	

Equivalent planing (first approximating step) 

The second part of the rotational effect is the modification of the longi-
tudinal distribution of load, or pressure caused by the influence of body 
rotation on the flow field. Although this second effect might be handled 
by classical oscillating airfoil theory, the two-dimensional theory does 
not apply for low-aspect-ratio bodies and the available low-aspect-ratio 
theory is not believed to give closed-form solutions. Therefore, a quasi-
steady approximation was developed based on the premise that the effect 
of pitching rotation on a flat plate could be obtained from an instanta-
neously equivalent cambered airfoil planing on a water surface as shown 
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in the following sketches:

.1' 

U__	 2h = f2(U,) 

U = f1(,,T,+) 

Trimming impact	 Equivalent planing (second approximating step) 

The degree of camber 2h in the right' .hand sketch, of course, depends on 
the pitching velocity. 

- - - The development and testing of this dynamic-camber concept is organ-
ized as follows. First, the cambréd form is derived as the- quas-i-steady 
equivalent of the pitching wing. Then, the longitudinal pressure distri-
bution is determined for the entire cambered form in deeply submerged flow 
and for a planing form with only the bottom side wetted. The application 
to water loads on pulled-up bows is indicated in passing. In order to 
verify the pressure distributions, loads and moments are obtained for the 
cambered form undergoing steady motion and are compared with linearized 
theory. The proposed dynamic-camber equations for the pitching wing are 
presented arid tested at the zero-trim end point against classical two-
and three-dimensional linearized airfoil theory for unsteady motion and 
with low-aspect-ratio oscillating airfoil data after incorporating the 
required aspect-ratio corrections into the proposed theory. 

Derivation of Cambered Form as Quasi-Steady Equivalent 


of Pitching Wing 

A simple quasi-steady theory for approximating the flow about a 
pitching two-dimensional flat-plate wing may be derived on the assumption 
that for relatively slow rotation the boundary for the pitching wing may 
be replaced at each instant by a different fixed-cambered boundary for 
which similar particle trajectories exist along the surface. Thus, the 
path lines traced by these particles during any small time interval would 
be similar for both cases. The fixed boundary is then defined by the 
motion of the particles during this small time interval along the flat 
surface of the plate which is rotating at some instantaneous angular 
velocity & in a field of flow having a mean translational velocity U. 
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In order to determine the form of this fixed boundary, figure i( a) which 
shows a sectional view of the rotating plate is introduced. From this 
figure the incremental horizontal distance traversed by a partical moving 
along the surface in the time dt is 

= U dt
	

(i) 

In the same time interval the plate has rotated through the angle dct. 
The approximate downwash velocities of the particle as it moves from the 
point x1 to the point x 1 + dx1 are given respectively by the equations 

=	 -

(2) 

The incremental change in downwash velocity expressed by 	 should be 
identical to that for a particle moving along the hypothetical fixed-
cambered boundary (fig. 1(b)) for which the domwash velocity at 
points x1 and x1 + dx1 are, iespectively, written 

•	 dy 
yl = U

(3) 
l^l=u(^d) 

Therefore, equating the change in downwash d 1 for both the rotating 
plate and the stationary cambered plate and making use of equation (1) 
leads to the expression

= U d	 = -2Uó, dt
	

(1.) 

Equation ( Ii-) can be integrated twice with respect to x1, after again 
making use of equation (1), to yield the shape of the equivalent stationary 
cambered airfoil y1 = f(x1) which is described by the equation 

.2 

=	
- 

xl	

0 
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Equation (5) may be restated in nondimensional form by dividing by the 
half chord c/2

x1a	 (x1 \2
	

(6) 

where, for convenience, &.c/2U is designated 6. A plot of this equa-
tion is shown in figure 1(b) for 	 = 100 and. 6 = 0.1 which are believed 
to be realistic conditions for the trimming high-length-beam-ratIo sea-
plane and for the shock-mounted trimming bydro-ski. If equation (6) is 

evaluated at the points	 = ±1 (the leading and trailing edges of the 

cambered airfoil), it is found that

so that in figure 1(b) the angles & = 	 are seen to define the sta-
tionary cambered form. Therefore 6 = &c/2U can be thought of as an 
effective instantaneous dynamic camber of a flat plate of chord: c rota-
ting at angular velocity & in a stream flowing with velocity U. 

Equation (6) is seen to represent a parabolic arc at an angle of 
attack a to the stream. It will be assumed for convenience that a cir-
cular arc will approximate equations (5) or (6) to a reasonable degree in 
this paper for application to calculations for practical hull or hyd.ro-
ski-equipped seaplanes. This is permitted since the maximum deviation 
between equation (6) and a circular arc drawn through the origin and. end 
points of the example airfoil of figure 1(b) is of the order of 0.00lc. 

Longitudinal Pressure Distribution on Equivalent 


Circular-Arc Airfoil 

In order to make solutions for the trimming plate it is first neces-
sary to obtain the potential solution for the two-dimensional flow about 
the instantaneously equivalent circular-arc airfoil at finite angle of 
attack. This derivation is presented as appendix A and is an extension 
of the exact solution for a circular-arc airfoil at 00 angle of attack 
given in an appendix of reference 1i-. The solution presented herein is 
based on the transformation of the circle in the Z fl -plane (see fig. 2) 
into the off-center circle in the Z'-plane which is then converted into 
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the circular-arc airfoil in the Z-plane by a Joukowski transform. The 
derivation was required since the pressure distribution on the lower sur-
face of the plate must be known and. it is not available from published 
thin airfoil theory. In addition, since large negative pressures are not 
believed to exist . in the region of the forward water line, the concept of 
an effective length or chord Ce which extends from the rear of the air-
foil forward to the point of zero pressure immediately ahead of the stagna-
tion point will be applied. As stated in the introduction, justification 
for utilizing the lower surface pressure from the flow about a completely 
submerged body to represent the flow about a body planing on a surface of 
discontinuity was given by Wagner. This material is presented in figure 211. 
of reference 3 which presents a comparison of the immersed and. planing 
cases up to relatively high trims. The agreement appears exceptional. 

In figure 13 are presented plots of equations (A2 14. ) and. (A26) of 
appendix A showing the variation, with fractional effective chord /ce 

of fluid pressure ratio 	 on the lower surface of two-dimensional 
pu2 

cambered plates. Here	 is defined as the distance from the trailing 
edge measured forward along the chord and the pressure ratio is defined 
as the pressure at a point divided by the stagnation pressure due to the 
forward velocity. A wide range of trims and. cambers are covered in these 
plots. Inspection of these pressure diagrams leads to the following two 
significant points on the behavior of a trimming hull or hydro-ski. Rela-
tive to the fixed-trim body, the effect of rotation which is a function 
of 6 can be observed as a decrease in midchord pressure for downward 
trimming (-.o) which should shift the center of pressure forward, and an 
increase in midchord. pressure for upward trimming (6) which should shift 
the center of pressure aft. The effect of increasing angle of attack is 
to broaden the stagnation peak and decrease the instantaneous ratio of 
maximum pressure to average pressure while a decreasing angle of attack 
yields the opposite result. This effect may be significant for hulls 
having large bottom panels which might be designed stronger to withstand 
higher aveiage pressures during upward pitching or having small bottom 
panels which might have to be stronger to take the high local pressures in 
downward pitching. The effects of rotation on pressure distribution may 
also be derived from classical linearized oscillating wing theory of 
reference 5.

Application of Pressure Distributions on Cambered 

Airfoils to mills or Hyd.ro-skis Having. 

Longitudinally Curved Bows 

As stated previously, figure 3 presents longitudinal pressure distri-
butions which may be directly applied in accordance with dynamic-camber 
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concepts to calculation of loads and. motions of pitching hulls and hydro-
skis with rectangular, flat bottoms. These pressure distributions may 
also be used directly for straight hulls and hydro-skis having curved-up 
bows during fixed-trim impact or pianing on a water surface. In order 
to take into account the effect of aspect ratio for both of these cases 
however, a method which was devised in reference 6 is used. This method 
is described in detail in a subsequent section of this paper. When the 
plots of figure 3 are applied to bows of small upward curvature, the 
entire body may be considered to be curved longitudinally, the wetted 
chord extending from the step to the bow-water-air intersection. For 
large bow curvature, the body may be broken up into two lengths, straight 
and. curved. The wetted chord of the bow arc extends from the forward 
edge of the straight section to the bow-water-air intersection. For this 
case, the overall longitudinal pressure distribution is made up of the 
pressure distribution for the curved section (o finite) for the bow 
region and the distribution for the straight section wherein the whole 
body is assumed to be flat ( = 0). The forward part of the distribution 
for 5 = 0 extending over the curved-bow region is throsm away, the 
distribution for S finite utilized in its place, and suitable fairing 
of the pressure curve at the body inflection point' is employed. The 
normal-force coefficients required in applying the aspect-ratio correction 
may be determined from planing data obtained with the model in question 
or as a very rough approximation from the normal-force coefficients for 
the flat-plate case where the equivalent flat plate might possibly be 
represented by the wetted chord from the step to the bow-water-air inter-
section. The trim of this chord line is the trim used. in obtaining theo-
retical or experimental normal-force coefficients for the flat-plate case. 

Loads and Moments on Cambered Airfoil 

In order to verify partially the theoretical pressure distributions 
for a cambered airfoil in deeply immersed flow as given in appendix A, 
the loads and moments obtained by integration of the pressure equations 
for small trims might be compared with classical linearized thin-airfoil 
theory. Direct integration of the proposed parametric pressure equa-
tions (A21l) and. (A26) in appendix A in order to obtain the loads and 
moments, however, appeared to be inconvenient so the method of Blasius 
(refs. 7 or 8) was used. Appendix B presents this solution. 

The two-dimensional lift coefficient about the circular-arc airfoil 
for finite angles of attack is derived according to the method of Blasius 
in appendix B and is given as equation (Br?'). This equation is repeated. 
here for convenience

L/b 
c 1 = cU = 2t(sin a cos a + cos 2a ' tan 5)	 (8) 
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which, for small angles of attack and. camber, reduces to the linearized 
equation for the thin airfoil (eq. 10.8, ch. II, ref. 9) 

= 2IC(a + i)
	

(9) 

where	 = tan S is a measure of the camber as shown in figure 2 of 

the present paper. The upward trimming-moment coefficient about the 
leading edge for finite trims derived in appendix B as equation (B26) is 

M/b	
it [sin cos 

+ tan 6(1 ^ cos 2 )]	 (10) Cfll,LE 
= . cti2 - -. 2 L coss 

which for small angles reduces to

(11) 

which is the same as the linearized equation for the thin airfoil 
(eq. 10.8, ch. II, ref. 9) except for the minus sign in equation (11) 
which arises from opposite positive moment conventions between this paper 
and reference 9. 

Comparison of Dynamic-Camber Equations With 

o- and Three-Dimensional Unsteady Linearized Airfoil Theory 

It was shown previously that the angular velocity of an airfoil n 
plane motion involving pitching rotation could be expressed as an equiv-

alent dynamic camber defined herein as 6 &c/2U where 6 = tan- 1 

for the equivalent stationary airfoil. If in equation (9) 1	 is con-

sidered according to this dynamic-camber concept and &c/2U is substituted 
in its place, then equation (9) can be considered as a linearized approxi-
mation to the two-dimensional rotational case for a flat plate. Since 
comparisons are to be made in this section with linearized theory where a 
approaches zero, the proposed theory will be altered similarly for this 
comparison with the result that tan 6 approaches 6. Equation (9) can 
therefore be rewritten as follows 

c	 = 2it(a + 6) = 2IC(ct +
	

(12) 
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where the asterisk denotes the added rotational effects. Rotation is 
assumed to occur about the center of the wing chord; hence, lift forces 
due to acceleration of the virtual mass are assumed to be nonexistent. 
The equation for the moment coefficient, on the other hand, should include 
a virtual mass torque which acts in the direction opposing the angular 

acceleration and has the form - 	 (See ref. 7.) Thus the equation 
61.0 

for the two-dimensional moment coefficient about the origin including the 
effects of rotation may be written 

* -	 ic c	 - -- - 
61i.u2 

In this equation the & term drops out because of symmetry about the 
origin or .midchord.. This term appeared as the second term on the right 

side of equation (11) as 

A simple comparison between the linearized dynamic-camber equations 
(eqs. (12) and (i3)) and the linearized theory for the oscillating airfoil 
(ref. 7) can be made for the case of a flat-plate airfoil at 0 angle of 
attack exhibiting small sinusoidal oscillations in attitude while immersed 
in a streaming fluid. For this case the instantaneous angle of attack may 
be expressed

= aet	 (lii.) 

where	 refers to the maximum value, i is the complex imaginary 
indicator R9, a is the circular frequency of oscillation, and t is 
the time. The instantaneous angular velocity and. acceleration are there-
fore, respectively,

=	 = iuxt e(t = iuxt	 (17) 

a =	 = 2a,eWt =	 (16) 

Thus equation (12) may be restated as 

	

c j*=27r(cL +\ 	 1 
2U)

(17) 

= 2oeimt(l + ioc)

(l) 
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and., if cw/2U is designated k, the reduced-frequency parameter of 
reference 5, this equation becomes 

= 2JiTk2 ei(t+taui1	 (18) 

The comparable equation of Theodorsen (ref. 5) is 

C 1	 i(wt^tan- k^kF^2G) 

	

= (2F - kG) 2 + (k + kF + 2G) 2 e	 2FkG	 (19) 

for which the F and G functions have been evaluated and plotted in 
reference 5. (These functions are not defined in the present paper.) 
The amplitude of the lift vector of equation (18) is compared with that 
of equation (19) in figure I . (a) while the phase angles by which the lift 
leads the instantaneous angle of attack are compared in figu.rel(b). 
In figure 1i. (a), considerable disagreement is shown between the proposed 
theory and that of reference . 5 for calculating the magnitude of the lift 
vectors for the infinite-aspect-ratio case. Most of this discrepancy is 
believed to arise from the omission of certain frequency-sensitive circu-
lation terms from equation (18) which are to be found in equation (19). 
The phase angles in figure lI-(b) do not seem to be affected as severely. 

The moment coefficient equation about the origin may be derived in 
a similar manner and is stated

(20) 
7ca 0.	 2'\ 

whereas the comparable Theodorsen equation is

/ 
ii U)t+tan1 2	 2 

L/(kG F k22	 (k	
\2	 \\ 

itc	 22 -	 -	 +	
- 
G - --) e
	 2	 8	 (21) 

where as before, the F and. G functions are those which were tabulated 
in reference 5 . The amplitude of the moment vector of equation (20) is 
compared with that of equation (21) in figure l -(c) and the phase angles 
by which the moment leads the instantaneous angle of attack are compared 
in figure li-(d). The disagreement between the moment vectors for the 
infinite-aspect-ratio case is similar in nature and magnitude with that 
of the lift vectors. The dynamic-camber system predicts no phase 
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difference between the moment vector and. instantaneous angle of attack, 
whereas the exact theory shows a lagging phase angle. From these compar-
isons, it is concluded that the proposed theory should be used. with 
caution for pitching bodies of large aspect ratio. 

A better picture is presented for the case of low-aspect-ratio bodies 
which are the primary consideration in this paper. The &ynamic-camber 
lift equation (12) may be further modified to include the effects of 
aspect ratio by assuming that both the term proportional to angle of 
attack and the term proportional to angular velocity of the airfoil are 
affected, in a similar way by three-dimensional flow. On the basis of 
this assumption and utilizing Heimbold's airfoil aspect-ratio correction 
for zero sweep angle (ref s. 10 and 11), equation (18) becomes 

t1*
= 2"	 A	 l + k2 eit+tan_l	 (22) 

2 + \J+ A2) 

-	 Theaspect-ratio correction cp(A) =	 A- is believed to be fairly 
2 ^A2	 - -	 - 

accurate for all aspect ratios greater than 1. Equation (22) is plotted 
in figure li-(a) along with data obtained with an oscillating flat-plate 
airfoil of aspect ratio 2 (ref. 12). The three-dimensional linearized 
theory of reference 13 is also plotted for comparison. The agreement 
seems fair and probably indicates that the particular circulation term 
which was so affected. by frequency for the infinite-span case is probably 
small for the low-aspect-ratio case. •The phase-angle comparison, plotted 
in figure l. (b), also shows in general fair agreement for the low-aspect-
ratio case. 

As regards the pitching moment, the Heimbold aspect-ratio correction 
cannot generally be used since the shape of the longitudinal pressure 
distribution is believed to depend on aspect ratio. Therefore, for the 
moment case, aspect ratio is taken into account as follows: The two-
dimensional'dynamic-camber moment equation (13) may be extended to the 
three-dimensional case by assuming that the instantaneous longitudinal 
pressure distribution for the three-dimensional case is the same as that 
for the two-dimensional case having the same instantaneous section lift 
coefficient even though the trims are different for the two cases. This 
technique was applied to the nonrotating case in reference 6. On this 
basis, the linearized three-dimensional lift coefficient for fixed. atti-
tude may be expressed as

CL = 21cp(A)cL	 (23) 
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where cp(A) may be ileimbold's aspect-ratio correction for aspect ratios 
greater than 1. The desired two-dimensional section lift coefficient is 
obtained by dividing the actual three-dimensional lift coefficient by the 
ratio of the average pressure in a transverse plane to the pressure at 
the intersection of that plane with the longitudinal center line. Since 
reference 6 leaves this question open, a choice of Bobyleff's coefficient 
(refs. lii. and 15) has been mde. Therefore, the desired section lift 
coefficient may be expressed as

2icØ( A )a 
=	 B	 = 2e	

(214.) 

where a.e =	 is the effective two-dimensional angle of attack 

giving the proper longitudinal center-line pressure distribution for the 
three-dimensional case of angle of attack a. The same aspect-ratio 
correction may be used for the a term as was used. for the a term as 
long as the aspect ratio exceeds 1. For the 1ydro-ski case, smaller 
aspect ratios are encountered so that virtual mass terms might be modi-
fied for three dimensions by a more appropriate correction developed by 
Pabst (ref. 16) frcn measurements obtained on oscillating bodies submerged 
in water. 

The moment coefficient about the midchord line for a trimming flat-
plate airfoil having an aspect ratio greater than 1 is therefore obtained 
by applying the above technique to equation (13) 

*	 Bta = 2 - ___ 
614.u2 

=	 -	 (25) 
2 6u2) 

Since the term proportional to a does not appear in the dynamic-
camber moment equation (eq. (13)) because of its symmetrical effect about 
the origin or moment axis, it is omitted here also. It is seen from 
equation (25) that, for the linearized case, the aspect-ratio correction 
may be applied to the section moment equation by direct multiplication 
as was done for the lift coefficient in equation (23). For sinusoidal 
oscillations, equation (25) becomes 

C]Ø(A)(k2)	
(26) 

ltac,.	 2 \ 
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This moment vector is plotted in figure 1. (c) along with the data of 
reference 12 and. the Lawrence and Gerber theory (ref. 13). The agree-
ment also seems fair for the low-aspect-ratio case. The phase-angle 
data plotted in figure li-Cd), however, predicts no phase lag for the 
dynamic-camber equations, whereas the more exact theory and. the data do. 

The above comparisons appear to substantiate use of the dynamic-
camber concept for approximate calculation of forces and. moments on low-
aspect-ratio flat plates undergoing pitching rotation and translation 
while submerged in an infinite fluid. The extension of these concepts 
in the nonlinear form to the case of a pitching body planing on a surface 
of discontinuity is made on the basis of the previously mentioned simi-
larity, demonstrated by Wagner, between the lower surface pressure distri-
butions on the submerged airfoil and the planing plate. It is further 
believed that this concept may be extended to include other body shapes - 
for example, dead rise hulls and. skis - after making suitable modifica-
tions to the design plots presented in a subsequent section of this paper. 

LOAD AND MOTION EQUATIONS FOR BODIES UNDERGOING UNSTEADY 

PLkNING WITh ROTATION IN PITCH 

General Considerations 

In order to determine the loads and motions of bodies undergoing 
combined rotation and translation through a water surface, the concept 
of an equivalent or effective planing velocity established in reference 17 
is applied and extended to include rotational effects. This velocity U 
is derived with the aid of figure 5 from which it may be observed that 
the horizontal velocity of the keel-level water-intersection point rela-
tive to the step due to rotation is defined as

1+ 
Effective forward. velocity = - . 	 (27) 

sin T 

The water rise is neglected in this calculation for simplicity since its 
effect is only noticed for short bodies as shown in reference 17 but it 
is included in computations of wetted area and aspect ratio as in refer-
ence 18. The effective forward velocity of an impacting body relative 
to the undisturbed water from translational motions is 

Effective forward velocity = +

	

	 (28) 
tanT 

The effective forward velocity of the keel-level water-intersection point 
is obtained through the sunmiation in the horizontal direction of the 

COIF IDENTIAL
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effective velocities derived from the rotational motion plus the effec-
tive velocities derived from the translational motions. Therefore, if 
equations (27) and (28) are combined, with the equation 1 = z/sin T the 
effective planing velocity U of the keel-level water-intersection point 
with the step as a reference point is obtained as 

____ zs+ __ l+ 
U =	

+ tan '1' - sin2T - sin i-	
(29) 

where	 is defined as the downward velocity of the hull or hyd.ro-ski 

directed norinalto the keel. The instantaneous velocity in combination 
with the instantaneous values of the dynamic camber 8, the trim T and 
the wetted length-beam ratio determine the load and load distribution on 
the impacting body including rotational effects. 

The wetted-length—beam ratio 	 is determined by the substitution 
into figure 6 of 7 defined as the ratio of the length from step to 
keel-level water intersection to the beam. This plot is reproduced from 
reference 18 where it was constructed from the results of a planing-data 
analysis yielding the variation of the bow water rise for a rectangular 
flat plate. 

The instantaneous two-dimensional hyd.rodynamic normal-force coeffi-
F */b 

dent CN* = N	 is obtained for each value of instantaneous trim 

and dynamic camber 8 = 2U by graphical integration of the lower-

surface pressure distributions of figure 5. (The expression ce in this 
figure is replaced by 7b for the hydrodynamic case.) The resulting 
plot is presented as figure 7(a). The three-dimensional instantaneous 
hydrodynamic normal-force coefficient CN* is Obtained through the use 

of the three-dimensional correction plotted in figure 8 which was derived 
from experimental high-speed planing data (ref. 19). For the endpoints 
of	 = 0 and	 = , the theoretical solutions given in references 20 

and 18, respectively, are plotted, in figure 8 so that values of lift 
coefficient between the endpoints and the experimental length-beam ratios 
can be estimated. Since the same aspect-ratio correction is applied to 
the rotational component of the force as to the translational component 
as in equation (22), CN* may be substituted for CN in the use of 
figure 8. Therefore, the cN* for any trim may be found on the 

= 0 curve and CN* is the value on the appropriate ? curve at 

the same trim. (Refer to line of long-dashes in fig. 8.) 
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In order to determine the center-of-pressure coefficient about the 
step C	 from which the instantaneous pitching moment is obtained, use


is made of the effective trim concept mentioned. in the previous section. 
This effective trim Te is obtained by substitution of the longitudinal-
center-line normal-force coefficient CN*/B into figure 8. The trim at 
which this value intersects the	 = 0 line is the effective two-

dimensional trim. (Refer to line of short dashes in fig. 8.) This trim 
Te in combination with the value of 	 previously selected may then be 


substituted into figure 7(b) to obtain the three-dimensional dynamic-
camber center-of-pressure coefficient 

_____ =	 (30) cp	 * 
FN b7	 CN* 

Figure 7(b) was also obtained from graphical integration of the pressure 
distributions of figure 3. 

The effects of linear and angular acceleration of the virtual mass 
are neglected inthis analysis since these terms are believed to be small 
for the quasi-steady, low-aspect-ratio case under consideration. The 
angular acceleration term is thought to be of the same order of magnitude 
as the term for the linear acceleration of the virtual mass normal to the 
keel, which was shown to be small for narrow bodies in reference 18. 

Load and Motion Equations for Free-to-Trim Body 

Impacting on a Water Surface 

The complete load and motion time histories for a freely trimming 
body impacting through a water surface may be determined by means of 
step-by-step methods of calculation. Since the instantaneous hydrodynamic 
force and moment may be computed approximately for any set of instanta-
neous conditions by means of the dynamic-camber analysis in the previous 
section entitled "General Considerations," it is necessary only to relate 
this force and moment to the dynamics of the body to obtain the incremental 
changes in accelerations, velocities, and drafts. The entire time histo-
ries can then be synthesized from these incremental steps. 

The required load and. motion equations may be. set up with the aid of 
figure 5(a). The Iiydrodynamic force is assumed to be directed normal to 
the keel since viscous forces are usually small in bydródynainic impact or 
high-speed planing. The force equation in the normal direction is therefore 

	

EFFN +L_WcosT=_	 (31) 
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If the aerodynamic lift L, which is taken normal to the keel, is assumed 

to be equal to the normal component of the weight, L - W COS T is equal 
to zero and these terms are eliminated from equation (31). The force 
equation for the direction parallel to the keel is omitted since for 
practical trims all forces in this direction are negligible. 

The upward trimming moment about the center of gravity is 

EM=FN(r_E ) 4p +Mr_ IT	 (32) 

Although the moment Mr arising from the bydrod.ynainic force on the 

afterbody is unknown at this writing, it is included to remind the reader 
that it is an extremely important term in many practical impacts and. can 
only be neglected for portions of the impact where the moment contributed 
by the afterbody is negligible. If the aerodynamic lift is assumed to be 
colinear with the normal component of the weight force (aerodynamic moment 
equals zero), then M goes to zero and this term is eliminated from 

equation (32). 

The effective forward. velocity of the keel—level-water intersection 
in space may be obtained in a manner similar to that used in deriving 
equation (29) by vectorially adding the effective forward velocity due to 
translation of the center of gravity to the effective forward velocity 
due to rotation of the hull about the center of gravity. The resulting 
equation is

z)	 (33) 
SinT 

where	 is obtained from integration of equation (31) and i from 
integration of equation (32). 

The draft of the step z 5 is obtained from the vector addition of 

the vertical displacement of the center of gravity and the vertical dis-
placement of the step relative to the center of gravity and. may be 
expressed as

z5 = + E(sin T - Sin Tç) ^ J(cOS T - cos T)	 (3') 

where the subscript 0 denotes the instant of contact between the water 
and the hull. A suggested step-by-step computational procedure for 
obtaining the load and motion time histories which utilizes the above 
equations is given in appendix C. 
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Load and. Motion Equations for a Thmnuriing Hydro-Ski Mounted 


on a Shock Strut and Impacting on a Water Surface 

The trimming shock-mounted hydro-ski case is handled in a maimer 
similar to that for the free-to-trim body. The equations of motion are 
derived with the aid. of figure 5(b). The summation of forces on the 
hydro-ski normal to its keel, if the mass and inertia of the ski can be 
neglected, is

EF = FN - Fa - Fal = 0
	

(35) 

where the forces Fa and. Fat are considered positive when they are 
acting upward on the fuselage. The summation of the forces on the fuse-
lage normal to the hydro-ski keel is 

= (L - W)cos T ^ Fa + Fa t = -	 = -	 (36) 

where the assumption is made that the aircraft fuselage does not trim 
during the impact, and where Fa is the normal force applied. at the 
pivot and. Fa t is the axial force applied by the shock strut which is 

assumed to be alined normal to the keel for convenience. The fixed-trim 
assumption has been borne out by experiments with hydro-ski equipped air-
planes which showed little trim change of the fuselage during the immersed. 
phase of any given impact. 

The, shock-strut reaction Fa t for the general shock strut with the 
hydro-ski pivot in front as in figure 5(b) involving damping force propor-
tional to some power of the telescoping velocity and some arbitrary form 
of springing is

Fat = K[P(TO - T)] + GIP+I d 	 (37a) 

for strut compression and 

Fa t =	 - Ta,)] - G tIpI d 	 (yb) 

for strut extension where K is the spring force function which, in 
general, may depend on P(T - To.) and in the linear spring case reduces 

to the ordinary spring constant, G and G' are the damping coeffi-
cients, and d is the damping exponent. For the case of the hyd.ro-ski 
pivot behind the shock strut, G is replaced by -G and -G t is 
replaced. by G t . The value of P is negative for this aft location of 
the byd.ro-ski pivot.
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The upward trimming moment on the byd.ro-ski about the pivot (a) may 
-	 be expressed-as

EMa=FN(r_E)+FatP=IaT=O	 (38) 

This sum is equal to zero since the inertia of the Iiydro-ski was assumed 
to be negligible. The moment on the fuselage must be equal to zero since 
the fuselage does not trim even though fuselage inertia is finite. The 
fuselage moment equation is not given here since it would serve no useful 
purpose in view of the fixed-trim qualification. 

The effective forward velocity of the keel—level-water intersection 
in space given previously as equation (29) becomes in terms of the-motions 
about the pivot point (a) 

	

Ua+ 
Za ^(E-l)+	 (39) tenT	 SinT 

The draft of the step is determined by vector addition of the vertical 
displacement of the pivot and the vertical displacement of the step rela-
tive to the pivot and is expressed as 

	

= Za + E(sin 7 - sin To)	 (11.0) 

The velocity of the point a (and. the airplane) may be found from inte-
gration of equation (36) and. the angular velocity and. displacement may be 
obtained by integration of equation (38). 

DISCUSSION OF SAMPLE SOLUTIONS 

In order to demonstrate the application of the dynamic-camber theory 
to unsteady planing problems, several sample solutions have been made for 
chine-.immersed impacts. These solutions have then been compared with 
further simplified theoretical solutions for which the effect of pitching 
rotation on the pressure distribution was ignored by setting 8 = 0 which 
for low trims is similar to the theory of reference 21. (When 8 is set 
equal to zero for a pitching flat plate impacting through or planing on a 
water surface, the instantaneous pressure distribution on this plate is 
assumed in this paper to be the same as that for a similar plate steadily 
planing on a water surface at the same conditions of trim and draft at the 
forward velocity i which is equal to the effective forward velocity U 
of the body undergoing unsteady motion. Thus, the theory for 8 = 0 is 
termed herein as the effective forward velocity theory.) Comparisons were 
also made with still further simplified fixed-trim solutions (-? = a) from 
reference 18 in order to demonstrate the effect on the liydrod.ynamic 
behavior of ignoring the trimming terms. 
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For simplicity, it has been assumed in the sample solutions that 
both hull forebod.y and. ski bottoms are rectangular flat plates, that the 
aerodynamic lift is equal to, opposite, and colinear with the weight, 
and. that the hull afterbody does not contact the water. A computation by 
the proposed methods for an actual impact does not have to be restricted 
to such a high degree if estimates of aerodynamic forces, afterbody water 
loads, and conversion factors for cross-sectional shapes other than the 
flat plate are available from theory or experiment. 

Free-to-Trim Hull 

Time-history solutions are presented in figures 9(a) and 9(b) for 
freely trimming, narrow hulls, restrained in yaw, roll, and. lateral 
motions, impacting on a water surface. (See fig. 5(a).) The solutions 
for the vertical and trimming motions for a moderate beam loading C 	 2, 

where C = W	 are plotted in figure 9(a) with the contact conditions 
pgb3 

listed under run I in table I. For this case it is evident from fig-
ure 9(a) that the dynamic-camber solution does not differ greatly from 
the solution for 8 = 0 insofar as vertical acceleration of the aircraft 
is concerned but does give somewhat different rebound velocities (t at 
emergence from the water) and draft histories. The trimming velocity at 
rebound is also somewhat modified. Comparison with the fixed-trim theory 
indicates, as expected, large errors in trimming motion through use of the 
fixed-trim assumption but shows f or this case that vertical accelerations 
of the center of gravity can be fairly closely estimated by the fixed-
trim theory, whereas rebound velocity and draft history show some disagree-
ment with trimming-theory results. Some of these results are more or less 
what would have been expected from a short extrapolation of the theoret-
ical and experimental results for a nonchine-immersed, trimming float 
(ref. 22) into the moderately chine-immersed region. In this reference 
also, the effect of trimming in modifying the vertical center-of-gravity 
accelerations is shown to be small. 

As the beam loading is increased so that deeper immersions with 
larger wetted-length-beam ratio 7 result, the effect of rotation on 

the vertical motions was expected to increase for a given pitching moment 
of inertia since 8 is proportional to ?. This is borne out in the 

solution for a higher beam loading C 	 16, presented in figure 9(b) 

with conditions at contact listed under run II in table I. For this case, 
figure 9(b) shows that the dynamic-camber solution departs still further 
from the solution for 8 = 0 although the difference in the maximum 
vertical acceleration of the center of gravity is not appreciable. The 
fixed-trim solution appears to give satisfactory results for this case 
only as a very crude approximation for the vertical motions after the 
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time of maximum acceleration. As a matter of interest, it might be 
pointed out that, in figures 9(a) and 9(b), the d.y-namic-caznber solution 
falls between the fixed-trim solution and. the solution for 8 = 0. 

From figures 9(a) and 9(b) and the assumption that the dynamic-camber 
theory is valid at least for estimating rotational effects, it might be 
concluded that the proposed theory might be of some value in computing 
flying-boat landing characteristics for the following cases: where the 
shape of the load-time history is significant; where the trimming history 
is significant in determining the initial conditions of subsequent impacts; 
for seaplane pox-poising calculations; or possibly for unsteady, low-aspect-
ratio hydrofoil motions for both the deeply immersed case; and. the case 
where the upper surface of the foil may be unwetted. The possibility 
should not be overlooked also that, for some flying-boat configurations, 
the effect of rotation on the vertical motions might be even more signif-
icant than that indicated in figures 9(a) and 9(b) since the sample cases 
chosen were selected more or less at random and. are not necessarily typi-
cal of the worst cases. Also the effects of afterbody immersion and 
aerodynamic moments on the rotational velocity may increase the rotational 
effects on the pressure distribution. (Note that, for the sample cases 
of runs I and II, the rotational velocity at contact 	 is not very 
large.) A simple criterion for evaluation of the effects of rotation is 
the magnitude of 8 which can be estimated for different hulls and impact 
or planing conditions. 

Trimming Shock-Mounted Hydro-Ski 

Time-history solutions are presented in figures 10(a) and 10(b) for 
water impacts of an aircraft equipped with pivoted bydro-skis with shock-
strut restraint. (See fig. 5(b).) La these solutions, the following 
assumptions are made: the ski mass is negligibly small; the aircraft 
fuselage itself does not trim during the impact; the shock-strut spring 
force is proportional to the telescoping displacement; the damping force 
is proportional to the square of the telescoping velocity; and. the shock-
strut axis remains more or less normal to the bydro-ski keel. 

The solution for a moderately high hydro-ski beam loading (C 	 16) 

with the ski pivot forward of the shock strut is plotted in figure 10(a) 
with conditions at contact listed under run III in the table of initial 
conditions. The forward pivot location type of mounting is covered by 
the more general class of mountings for which the ski trim tends to 
decrease on contact with the water. The difference between the dynamic-
camber solution and the solution for 8 = 0 for the case of figure 10(a) 
is seen to be practically insignificant. It probably would not be fair 
to compare the solutions for the trimming ski with those for the fixed-
trim shock-mounted ski since the attacbment point of the shock strut to 
the ski for the trimming case and the trim selected for the fixed-trim 
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case are believed to be critical. In order to make comparisons between 
these two types of mounting, some rational basis of comparison taking 
into consideration the effects of differences in the large number of 
existing independent variables must first be evolved. As a matter of 
interest, the fixed.-trim solution (same case but with shock strut locked 
in extended position) is presented to indicate the degree of load alle-
viation obtainable for this example case with the shock-mounted trimming 
ski.

In figure 10(b) the solution for run IV in table I which involves 
a very high beam loading (c = 132) and a forward location of the ski 

pivot point is presented. For this case, the departure of the dynamic-
camber solution from the solution for 8 = 0 is slightly greater than 
that for figure 10(a) as would be expected from an examination of the 
component values of 5. The heavier loading of the ski in run IV makes 
for larger 7w which, as for the trimming hull, results in larger values 

of 8. 

Apparently, from figures 10(a) and 10(b) for the trimming hydro-ski 
case with the forward pivot location, the theory for S = 0 may be sub-
stituted for the dynamic-camber theory for time-history calculations at 
least up to the time of maximum acceleration. Coniparison in figure 10(b) 
with the fixed-trim solution (shock strut locked in the extended position) 
again shows the load reduction achieved with the trimming shock-mounted 
ski. For this case, the reduction in maximum load is considerably smaller 
than that for the lighter beam loading case of figure 10(a), whereas the 
ratio between the fixed and trimming times to peak load is greater for 
figure 10(b). For both cases, the rebound velocity is believed to be 
greatly reduced for the trimming mounting. 

A further evaluation of the variation of the quantities making up 8 
indicated that, for those cases where the pivot is behind the shock strut 
or more generally where the ski trim increases on contact, the effect of 
trimming on the vertical motions might be greater. An attempt was made 
to make a numerical solution on an electronic digital computer for this 
case which was unsuccessful due to the choice of the number of significant 
figures used in the computer to describe the design charts in this paper. 
This part of the discussion is therefore included to caution the user of 
this type of computer to make use of an extra number of significant fig-
ures in the description of the design charts for cases with aft pivot 
locations. Although the preliminary work with the electronic digital 
computer indicated that the effect of rotation on the loads and motions 
was considerably increased for this case, further attempts were not made 
to obtain this solution since it was thought at this writing to be of less 
importance than runs III and IV. It is believed that numerical solutions 
for the case of the shock-mounted ski pivoted in the rear should not be 
exceptionally difficult where the right choices of increment size and 
number of significant figures are made. 
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CONC IIJS IONS 

The proposed &ynamic-camber theory has been derived primarily for 
the analytical determination of the loads and motions of seaplanes with 
high length-beam ratios, shock-mounted hydro-skis and other bodies 
impacting or planing on a water surface while undergoing pitching rota-
tion. Comparison of this theory with oscillating wing theory, with some 
low-aspect-ratio oscillating wing data, with a lower order unsteady 
planing approximation neglecting the effects of rotation on the pressure 
distribution (effective forward velocity theory), and with fixed-trim 
impact theory has led to the following conclusions: 

1. The theoretical effect of rotational velocity on the longitudinal 
pressure distribution of a pitching flat plate for an increasing angle 
of attack is to broaden the stagnation peak and. decrease the instantaneous 
ratio of maximum pressure to average pressure, whereas a decreasing angle 
of attack yields the opposite results. This effect is probably signifi-
cant for hulls having large bottom panels which would have tobe designed 
stronger to withstand high average pressures during upward pitching or 
small bottom panels which would have to be strong to take the high local 
pressures in downward pitching. 

2. For the low-aspect-ratio case, the proposed theory, with the 
exception of the sensitive moment phase angle, is in fair agreement with 
Lawrence and Gerber's three-dimensional, unsteady, linearized airfoil 
theory and with some oscillating airfoil experiments for an aspect ratio 
of 2. For the infinite-aspect-ratio case, because of the lack of incor-
poration of a certain frequency-sensitive circulation term into the pro-
pdsed theory, it is in relatively poor agreement with Theodorsen's exact, 
two-dimensional (infinite aspect ratio), unsteady, linearized airfoil 
theory for zero angle of attack. This circulation term is apparently 
unimportant for low aspect ratios. 

3. For freely trimming, narrow seaplanes, the dynamic-camber, 
effective-forward-velocity, or fixed-trim theories give similar values 
of maximum acceleration but, where accurate time histories of transla-
tional and pitching motions are required, especially for the heavier beam 
loadings, a theory taking into account the effects of pitching rotation 
such as the dynamic-camber theory or some equivalent thereof is probably 
desired. 

Ii-. For trimming hydro-skis for which the trim decreases on contact 
(pivot located forward of the shock strut), both the dynamic-camber and. 
effective-forward-velocity theories give similar results. Both theories 
predict load reductions for the trimming, shock-mounted hydro-ski over 
the equivalent fixed case (shock strut locked in the extended position) 
although for the higher beam loading, the load reduction was smaller for 
the cases examined, whereas the time to peak load was increased over the 
fixed trim case.
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5 . For low-aspect-ratio pitching hydrofoils either deeply immersed. 
or planing on the surface, the dynamic-camber theory is believed to offer 
some promise. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics,


Langley Field, Va., May 21i-, 1956. 
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APPENDIX A 

PRESSURE DISTRIBUTION ON A CAMBERED AIRFOIL AT 

LARGE A1'1GLFS OF ATTACK 

This appendix is concerned with the determination of the pressure 
distribution on a cambered airfoil at large angles of attack by means of 
conformal mapping procedures. This distribution is required for obtaining 
the loads and moments on such an airfoil. 

The two-dimensional incompressible flow solution for a cambered air-
foil at 00 angle of attack is given in appendix A of reference 14.. Since 
the present paper is concerned with large angles of attack, a similar 
though more general analysis is required. This solution is developed 
with the aid of figure 2 as follows: 

The exact complex potential for the flow including circulation about 
a circular cylinder of radius R for all angles of attack as represented 
by a section in the Z" plane is (see ref. 8, arts. 6.22 and. 7.12) 

= -	 e	 ^	 - ir log -	 (Al) w	

u(z" 

-ia	 R2 \ 

Ze 

where a is the angle of attack between the velocity vector U of the 
fluid far from the body and the negative X"-a.xis and r is a constant 
denoting the circulation. 

The circle in the Z"-plane may be confornially transformed into a

cambered airfoil in the Z-plane by first mapping it on the Z'-piane where 
it is converted to another circle of radius R the center of which is 
elevated in the Y t -d.irection a distance h. (See fig. 2.) The converting 
function required by this process is 

Z' t =	 - ih = Z' -	 tan 8	 (A2) 

where c/li. is the distance from the origin to the intercept of the circle 

on the X t -axis and tan 5 = li-. The circle on the Zt_plane is next con-

verted to a circular-arc airfoil of length c and maximum ordinate 2h 
in the Z-plane by the Joukowski transformation 

	

z =	
^ (c/li-)2

(A3) 
zt 
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In order to determine the pressure distribution on this circular-arc 
airfoil, the velocity distribution about it must first be known. Before 
this velocity distribution can be determined, the circulation constant r 
of equation (Al) must first be determined with the aid of the Kutta con-
dition, which predicts smooth flow at finite velocity off the trailing 
edge. Thus, the complex velocity d.w/dZ must be finite at the point 

Z = ^ iO in the Z-plane which means that dW/dZ t = 0 at the point 

= + iO in the Z t -plane. In other words, a stagnation point exists 

at the intercept of the circle and the positive X'-axis in the Zt-plane. 

Actually a stagnation point also exists at the point Z' = - + iO the 

intercept of the circle and. the negative X'-axis. 

The complex velocity about the circle in the Z'-plane may be obtained 
from the complex velocity in the Z"-plane by means of the following 
equation:

(A14.) -	
-	 a	 dfd2 

The complex velocity in the Z"-plane is obtained by taking the derivative 
of equation (Al) with respect to Z" as follows: 

dw___	 R2 \ ir ______ __ ___ = _u(e	
- 2_ia) -	

(A5) 

Since dZ fl /dz t = 1, a combination of equations (A1-) and. (A5) yields the 
complex velocity in the Z'-plane which is 

dw -	 (-icL	 R2 \	 ir —1---U 1 e	 -	 --	 A 
d,Z	 2-ictJ	 Z 

Z e	 / 

which is identical to equation (A5). In order to evaluate this expres-
sion at the trailing edge of the airfoil, the value of Z" at the 


	

stagnation point Z' t = -	 tan 6 = Re 6 must be substituted into 

equation (A6) which then becomes 

= -U(e°' -	 R2	 - ir	 (A7) 
2 -216 -ia) 
Re	 e ,i	 Re 
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Since the velocity at a stagnation point is equal to zero, equation (A7) 
is equated to zero and yields for the circulation constant 

r = 2UR sin (a, + 5)
	

(A8) 

I'f the circulation constant is inserted into equation (A6), the complex 
velocity in the Zt_plane becomes 

	

- R2	 ^ 2iR sin(ct + 5)1 
dZ'.	 L	 Z!t2e	 j	 (A9) 

The complex velocity in the Z-plane is obtained by means of the equation 

=	 = d.w/dZ' 
dZ dZ t dZ	 dZ/dZt

(Ala) 

The expression for dZ/dZt is obtained by differentiating the Joukowski 
transformation (eq. (A3)) with respect to Z t which yields 

dzt 
= 
1 - (c/)2	

(All) 

The general complex velocity of the fluid about the cambered wing in the 
Z-plane is obtained through combination of equations (A9), (Ala), and 
(All) and gives the equation 

	

_ure-i - R2	 + 2iR sin(cL 
+ 1 2 -ia,	 Z 

dw	 L	 Ze (Am) 
2 dZ	

fc\ 

_) 

The velocity at the surface of the airfoil may be determined through 
substitution of the expressions for Z" and Z t on the body into 
equation (Al2). These expressions in terms of the modulus and arguments 
of Z" (R and. 0, respectively) and the angle S denoting the camber 
magnitude are

ie 

	

Z	 Re	 (Al3) 

and

Z' = Re10 + iR sin S = R(ei8 + i sin	 (Alli-) 
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The complex velocity at the airfoil surface obtained through substitution 

of equations (A13) and (Alli-) and the expression 	 =cos 8 into equa-

tion (Al2) is written 

2iUe-[sin(B - a) + sin(a + bj (e° + i sin 8)2	 (Al5) 

(1 - 2iesin o_ e) 

This ccmiplex fluid velocity may be subdivided into its components in 
the X- and Y-directions (u and. v, respectively), by the equation 

dZ -u + iv
	

(A16) 

The square of the resultant velocity vector q is then obtained through 
multiplication of the complex velocity equation (Al6) by its conjugate 

velocity () -u - iv as given by the equation 

q2u2+v2 =	 (Al7) 
dZ\dZ / dZ dZ 

This multiplication is easily accomplished through use of the following 
complex conjugate relations. If Q1, Q, and	 are three complex 
quantities and. if

dw
-
	

(Al8) 

then

() = Q
1Q2Q3 = Q123 

and therefore equation (All) takes the form 

=

	

	 =	 (A2o) 
dZdZ) 

Thus, q2 may be obtained from equation (Al5) by an operation similar 
to equation (A20) with the following result: 

= (2iUe_ i0 ) (_2iUe 0) [sin(O - cL) + sin(a + b)] [(ei9 + i sin 8) (e_18 -	 ] 2



(i - 2ie 0 sin 8 - e2i0 )(i + 2ie°sin 8 - e_219) 
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Or

o o12 

q2 
= 2[cos (a ^	 )I (i + 2 sin e sin ^ j25)2	 (i) 

Js(	
e\	 I 

_) _j 

The distribution of the pressure p about the cambered airfoil may 
be determined by means of Bernoulli t s equation which for the case of 
steady motion with viscous and. gravitational forces neglected may be 
written as

+ i2 
=	 ^ l j2	 (2) 

where p 0 and U designate the pressure and velocity far away from the 

body. The pressure far from the body is set equal to zero; this condition 
allows equation (A22) to be written in nondimensional form as 

p 
l2 

= 
1 - ()2	

(A2) 

The ratio of the pressure on the body to the stagnation pressure pU2 

is then determined through combination of equations (A2l) and (A23) and 

is written

2 

____ = 1	 + -	 + 2 sin e sin 8 + 
sin2o)1	

(^) 

___	

- L cos( - 

It is noted that this pressure ratio appears as a function of the vari-
able 0 which is a parameter in this analysis since the position along 
the airfoil can also be obtained only as a function of 0. The X-location 
of the pressure is determined through combination of equations (A), (AlIt-), 

and the well .4cnown relation Re 0 = R(cos 0 + i sin e); thus, 

+ (c 2 Fcos 0 - i(sin e + sin .) Z = R {cos 0 + i(sin 0 + sin 8)]	
R) L

cos + (sin 0 + sin 8)2]J 

(A27) 
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and, since .. = R cos 8, the real part of this expression becomes in 

dimensionless form 

X	 cos 8	 +	 cos2b	 (6) 
c 14. cos 8\	 1 + 2 sin 8 sin 8 + sin6J 

Thus, the pressure distribution about a two-dimensional cambered airfoil 
deeply immersed in a fluid and at any finite angle of attack is given by 
equations (A21i-) and (A26) where potential flow may be assumed. 
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APPENDIX B 

LOADS A1D MOMENTS ON A CAMBERED AIRFOIL OF INFINITE SPAN AT 


FINITE ANGLE OF ATTACK BY BIASIUS' THEORY 

The loads and moments on a cambered airfoil might have been obtained 
through integration of the pressure distribution equations (A2 )i-) and. (A26). 
It was believed to be simpler, however, to obtain these quantities by 
means of Blasius' theory (ref. 7, art. 7.1 or ref. 8, art. 6.1) by consid-
ering the flow far from the body. 

According to Blasius, if the square of the complex velocity can be 
expressed by the series 

()2	 11i 112	 . . 
.	 (Bi) 

where H0, 111, 2	 . are independent of Z, then for large values


of Z (far away from the body) the camplex force on the body may be 
written as

+	 =
	

(B2) 

where D is the drag and L is the lift. The two-dimensional moment 
about the origin (located below the .inidchord in the Z-plane of fig. 2) 
M11fb may be written as:

=(pi)	 (B3) 

where	 refers to the real part of the expression. 

In order to obtain d.w/dz for the cambered wing in the appropriate 
form, equations (A2), (A3) (inverted), (A5), and. (A8) are first restated 
as follows:

	

Z" =	 - ih 

	

-	 2	 2 Z	 fc\ 
_) 
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I	 2ict\ 
L=_Uie_1a_Re 

dZ"	 z"2 )	
t' 

r = 2UR sin(a + 5) 

Equation (A2) transforms the symmetrically located circle in the Z"-plane 
into a displaced circle in the Z'-plane offset vertically upward a dis-
tance h. Equation (A3) is an inverted Joukowski transform which converts 
the offset circle in the Z 1 -plane to a circular arc of length c and maxi-

mum height 2h = tan S in the Z-plane. The positive sign for the 

radical was chosen since Z and. Z' must both become large far from the 
body. Equation (A5) gives the general complex velocity of the fluid 
about the circle of radius R in the Z' t -plane with circulation r where 
the resultant velocity of fluid U at 	 is inclined at an angle CL to 
the X"-axis. 

The expression forthe complex velocity in the Z-plane can be deter-
- mined from the complex velocity in the Z tt -plane by use of the _relation 

dw - dw d.Z" 
dZ dZ"dZ 

U /	 II 
In order to obtain dZ /dZ, Z must first be expressed as a function 
of Z; this expression is obtained through a combination of equations (A2) 
and (A3) so that

2 
= 

+	
- () - 

ih	 (B7) 

If the negative root had been chosen in equation (A3) instead of the 
positive one, then, as Z approaches oo Z" approaches 0 and this 
condition means that the flow outside the wing would be transformed to 
the inside of the circle instead of the outside of the circle for which 
the flow is defined. The derivative of Z" with respect to Z is 
therefore

dZtt	 1	 1 = 

+ 21 - 
(c)2	

(B6) 

A combination of equations (A5), (B li-), and (B6) results in the expression 

dwrl^ ______ r /	 2ict\ i1l U(e_b0_Re 1 
1	

c 21	 ztt2 j	
rj	 (B7) 

L 2l()j

(Bl) 
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In order to obtain the series expression for (dw/dZ) 2 required in 
equation (Bi), the series for dw/dZ will be synthesized and then squared. 
The series for the first bracketed term from equation (7511.) of refer-
ence 23 may be written as 

______	 (C 2	 (C6 
l	 1	 =^	 )	 ^io	 ^.	 (B8) 
2	 2()2 

where. ()2 approaches 0 for large values of Z far from the body, as 

required by Blasius' solution. The series for Z" as a function of Z 
from equation (B5) and equation (753) of reference 23 .may be written 

	

i\2 	 (c	 - 2( )6 -	

.	 (B9) Z " = Z - ih - ___ - ___ ____ 

z	
z5 

where (2 approaches 0. The series for Z"2 is therefore 

cl1. 

Zt12	 - 2ihZ - [h2 + 2(i)] 
^ 2ih()2 - () + 2ih(	 - 2()6 + 

Z

(Blo) 

The series expansion of dw/d.Z may be synthesized from equations (B7), 
(B8), (B9), and (BlO) and may be stated as 

2i 

	

________________________________________________________	 ir 

[	

c'2	 C'
- Re	

I z2 2	 (C)2 

dw	 i+L^3+..i	 z2_2i_[h2^2()2]+2) -+...j

	
Z-ih-	

3

(Bli) 
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which, after multiplication and. reduction, yields the equation for the 
first few terms which are all that are required in this paper 

= -Ue	 -	 +	 Fh + UR2e'° - U() e_1a1 + . . .	 (312) 

This expression is squared to again yield the first few terms required 
by the Blasius t solution for the square of the complex velocity 

(d)2 = U2e_21a ^ 2 _ [2+ 2UFhe_+ 2U2R2- 2U )2e_2] +

(Bl3) 

Thus, the value for H1 of equations (Bl) and (B2) is from equations (A8) 
and (313)

H = 2iFUe	 = U2ci 61(0 + 
(cos a - i sin a)	 (BIA) 

	

-	 cos8	 - 

since R = cos 8. A combination of equations (B2) and (Bi li. ) yields the 

two-dimensional lift and drag forces 

= ipUc cos a sin(a + 8)	 (315) 
b	 cosb 

= itpUc sin a sin(a + 8)	 (Bl6) 
b	 cos8 

The section lift coefficient per unit span is therefore 

L/b c1 
= (c)U2 

= 2t(sin a. cos a + cos2a tan 8)	 (B17) 

The moment is obtained in a similar manner. From equation (B l3) the 
value of 112 used in equations (31) and (B3) is 

= _i2 - 2Ufhe	 - 2U?R2 + 2U2()e_2	 (Bl8) 

The real part	 of 1112 Is therefore 

	

1112 = _aJ2() sin 2a + 2Ur'h sin a	 (Bl9) 

CONFIDE1'TIAL



CO'IDENTIA.L	 NACA BM L56E3I 

The two-dimensional pitching moment about the origin expressed 
positive for increasing a is therefore obtained from combining equa-

tions (A8), (B3), and (B19) with expressions R = 	 C	 and. h = . tan 8 
1 cosb	 lj. 

to yield the equation 

	

- pUc	 a cos a(l - tan2b - tan a tan 8)	 (2O) .--	 Ii. 

The section moment coefficient per unit span about the origin is therefore 

M/b 

= 22 
=. sin a cos a(l - tan28 - tan a tan s)	 (B21) 

In order to make comparisons with the thin airfoil low-ang1e derivation 
in chapter II of reference 9 (see eq. iO.8 of ref. 9), the moment must 
be taken about the leading edge. An upward pitching moment (!ncreasing 
trim) is considered positive in this report and negative in reference 9 
and thus have opposite signs. For small angles of attack, therefore, 
the two-dimensional upward trimming moment about the leading edge may be 
stated for the present derivation 

-r) = r^)
	

(B22) 

where r is the distance between the center of pressure and the trailing 
edge. Since, however, the moment about the origin is 

M = _L( - r)	 (B2) 

the moment about the leading edge may be written 

M=-L+M	 (B2k) 

which, in combination with equations (B15) and (B20), becomes 

MLE = ipu2c2 r2 cos a sin(a + 8) - sin a cos a + sin a cos a tan 28 + 
b	 Lcosb 

	

sin2a tan 8]
	

(B25) 
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The upward trimming section moment coefficient per unit span about the 

leading edge is therefore 

- M/b -	 in a cos a ^ tan 5(1 ^ cos2a)]	 (B26) 
- 

____ - - ________ 
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APPENDIX C 

METhODS OF SOLUTION 

General. - The means for making numerical solutions of the equations 
for trimming bodies and shock-mounted hydro-skis are outlined in the 
following procedures. Step-by-step processes must be resorted to, because 
the equations do not lend themselves to explicit solution. Although the 
methods suggested depend on linear extrapolation, any well-known step-
by-step procedures may be applied. 

Both example procedures assume the immersing body to be a flat 
rectangular plate. In order to make solutions for other bottom shapes, 
the theory of references 6 and 18 or planing data obtained with the 
body of interest might be utilized in judicious modifications of the 
charts of figures 6 to 8 whereas a value of the coefficient B for average 
angles of dead rise greater than zero may be obtained from references lIi., 
15, or 18. The equations in this appendix include terms representing 
aerodynamic lift and pitching moment and bydrod.ynamic afterbody moment. 
In order to make fairly complete solutions by the proposed methods 
including the effects of these parameters on the overall hydrodynamic 
motions and. loads, it is necessary to know the variations of the aero-
dynamic and afterbody terms with impact geometry either theoretically 
or from experimental data. Both solutions presented here assume that 
both aerodynamic and bydrodynamic forces are oriented essentially normal 
to the keel and neglect the force due to acceleration of the virtual 
water mass as was done in reference 18. The shock-mounted hydro-ski 
solution assumes that the mass and moment of inertia of the bydro-ski 
may be neglected, that exponential damping exists in the shock strut, 
and that the trim of the airplane is constant during impact. The water 
rise is taken into consideration only Insofar as it affects the area 
over which the hydrodynamic force acts while the rate of change of water 
rise as a force increaser (see ref. 17) is neglected. 

The numerical solutions are made with the aid of figures 5 to 8. 
Each time-history abscissa is subdivided into equal time increments of 
duration Lt where the subscript n - 1 designates the values calcu-
lated at the end of the previous time increment and n designates the 
values being calculated. For many applications it is believed to be 
advisable to select very small increments t for the first four or 
five steps and larger increments from there on. The correct increment 
size may be established by experience acquired in making several solu-
tions for a given problem and using different increment sizes for each 
solution. The increment size may be increased until the point is reached 
where the solutions diverge from the more accurate curve obtained with 
a very small increment size. If a small-period oscillation is present in 
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the curve, too large an increment size or too small an increment size 
for the number of significant figures used. to define the design curves 
is indicated. The first point in the time-history solution is determined 
by the initial conditions of the problem. The equations listed as com-
putational steps outline the arrangement of computation sheets. The 
values determined from the repeated application of these equations when 
plotted against t give the motions of the trimming hull or the fuselage 
and shock-mounted hydro-ski as the case may be. For cases where 	 is 
small, it may be taken as zero in order to simplify the calculations. 

Computational steps for free-to-trim body with flat rectangular 
bottom. - The computational steps for a free-to-trim body with flat rec-
tangular bottom are as follows: 

(i) T	 Tn_i	 _1(t) 
+ 

(2) t = Zn...l +	 _ 1(Lt)cos Tn_i

- 

(1k) Zsn zs(nl) + n - in-i + E(sin Tn sin Tn_I) ^ J(cos Tn - COS 

(5) ? 
=	 Zsn 

b sin Tn 

(6) tn = tn-i + 

(7) n Tn1 + n_i(t) 

(8) Un 
= n + (E - 

sin Tn 

(9) 'wn	 (7'n) (fig. 6) 

(io) o 
= 

+nnb in radians 

- 28.65+n?\b -	 in degrees 
Un 

(11) cn = f(r11, o) (fig. 7(a)) 
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(12) C	 = f(A, 4) (See loop of long dashes in fig. 8)

(l) F;n	 . ?bU2 

F* + (r - W)cos i-
(iIi.)	 n" 1'Tn	

W/g 

or, if wing lift may be assumed equal to the weight, 

- Fg 

n	 W 

(15) Ten = f(P A 

where B = 0.88 (See loop of short dashes in fig. 8) 

(16) C pn = f( Ten, 5) (fig. 7(b)) 

(17) M n = 

(18)
-	 - FE +	 + 

n -	 - 

or, if the resultant aerodynamic force may be assumed to pass tb±ough 
the center of gravity, and to be equal to the weight, 

*	 * 
MSn-FNnE 

n 

Computational steps for trimming rectangular flat-bottomed bydro.-
ski with shock-strut restraint. - The computational steps for trimming 
rectangular flat-bottomed hydro-ski with shock-strut restraint are as 
follows: (This method is for appreciable damping only. For cases of 
negligible damping on shock-strut extension (shock struts with dump 
valves), use this procedure until T is a minimum, then use the fol-
lowing zero damping procedure until z = 0 again.) 

(1) T = Tfl_l + +_
1(t) + n_it)2 

(2) Zan = Z(1) + a(n_l)t)	 n-1 
cos T

COS T 

(3) Zan = Zs(nl) +	
(st) + a(n-l)	 n 

a(n-1)	 2	
+ E(sin T - sin Tn_i 
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(14.)	
"n b .sin Tn 

an	 a(n-l) + a(n_l)t) 

(6) Un = ;an + (E - nb)(+n_i ^ 
Sin T 

('i)	 fCl\n)	 (fig. 6) 

7b	 - 28.65A..b 
(8)	

= 2Un (Tn_i 
^	 1(t)) (rians) -	 (Tn-i ^ n_i( t )) (deg) 

() c	 = f (Tn, n) (fig. 7(a)) 

(io) c= f(A, c n) - (See loop of long dashes in fig. 8) 

(ii) F	 = C	 mn	 - -	 - - 

	

*	 / F +iL -WicosT 
(12) - - Nn	 n	 /	 n 

an	 W/g 

or, if wing lift may be assumed equal to the normal component of the 
weight, then

* 
- Fg 

an

1* 
(C 

(13) Ten 

where B = 0.88 (See loop of short dashes in fig. 8) 

(11.4. ) C pn = f ( Ten, 8n) (fig. 7(b)) 

(i) M:n = Fnb;\j1jC:pn
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*	 l/d 

(16) + = 
i {_Msn ^ Nn +PK[P(Tn - to)] } 

where K in this case is a general spring function of P ( rn - T, or 

for the special case of linear spring force (K = constant) and turbulent 

d.amping (d = 2) 

i n = 
_M + Nn ^ }2(Tn - 

where r1 and T0 are expressed in radians. These equations apply only 

for strut compression where the hyd.ro-ski pivot is in front of the shock 
strut. For extension of the strut with this arrangement the same equa-
tions apply with the exception that G is replaced by -G' which may 
have a different value. For the case of the hydro-ski pivot behind the 
shock strut, G is replaced by -G and -G' by +G'. Thus G changes 
sign when + goes through zero. 

(it)	 = Tfl - Tnl 

(1t) 

or more accurately to prevent divergence caused by small differences 
between	 and Tn_l 

- 3Tn - UTn.l + Tn_2 
'l- 	 - n	 2(Lt) 

Computational steps for trimming rectangular flat plate hydro-ski 
with shock-strut restraint (zero damping).- The computational steps for 
trimming rectangular flat plate hydra-ski with shock-strut restraint 
(zero damping) are as follows: 

(I) TX T_ - 3Tn_2 + 3Tnl 

(Subscript x denotes extrapolation.) 

(2) an 1a(n-1) ^ a(n_l)( t ) CO5 Tnl 

-	 CO5T	 (t-t)2 
() zsn = zs(n_l) + za(n_l)(t) ^ a(n-l) 2 n-1

	 + 

E(sin Tx - sin Tn_l) 

- Z 
\ /	 n b sin Tx
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an = a(n-1) + a(n_l)t) 

an + (E - ?\nb)(+n_i + 

(6) Un =
sin 

(7) = f(7) (rig. 6) 

_7wb. 

(8) - 2Un (
Tn_i + r_i(st)). in radians 

28.657\nb(.	
^ n_i( t )) in degrees = ________ 

Un 

() c	 = f(Tx, n) (fig. 7(a)) 

(10) c = r(A, c) (See loop of long dashes in fig.8) 

(ii) F;n = C	 . Xb2U2 

*	 / F +I1-WcosT 
()	 Nn	 'n	 / 

W/g 

or if wing lift may be assumed equal to the normal component of the weight, 
then,

* 
Fg 

- Nn 
an	 W 

(13) Ten =	 7wn0) 

where B 0.88 (See loop of short dashes in fig. 8) 

(ihi) C pn = f (Ten, bn) (fig. 7(b)) 

(15) M = FbXC
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(16) T =	 + }
1 M	 Nn 

for the general spring case where K 1 is the inverse spring ftnction. 
For the special case of the linear spring (K = constant), 

* 
-	 M5nEFNn 

TnT0	 2 
KP 

where T and. T0 are expressed in ra1ians. 

I \	 TnTn_l 
11j Tn - _________ 

(18)	 = Tn
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TABLE I. - INITIAL CONDITIONS OF flYIPACT 

Configuration Trimming hull Shock-mounted 
trimming ski 

Run I II III IV 

b,ft	 ................ 10 5 2 1 
0.88 0.88 0.88 0.88 
1.98 15v9 16.26 132 

d .................2 2 
P,ft ...............10 10 

5 5 15 15 E,ft ................
lb 14-12 11.12 

ft/sec2

..

B	 .................

i,600,0OO 1,600,000--
J, ft ...............111..7 i14..7 _ 
K,	 lb/ft	 .	 .	 . -. -.	 •	 .	 •	 •	 .	 . -. 7,500 7,500 
U0 , ft/sec	 ............- 

---------
-223.5- 223.5 

135 135 
123,500 123,500 8,250 8,250 

0 0 z 0,ft ..............
0 0

17 17 

C	 ................

22.2 22.2

- 

- 

3,deg	 ..............0 0 0 0 
9.14.8 9.14.8 6.06 6.06 

I,	 slug-ft2	 ............

57.9 57.9 

Vo, ft/sec	 ............
W,	 lb	 ...............

ft/sec 31.9 31+.9

-

- 
a0' ft/sec ............

0 0 

to	 ft/sec	 ............

deg ..............

_ 

0 0 

ft/sec ............

ft/sec2	 ...........

0. 592 0.592 2.23 2.23 
1.938 1.938 1.938 1.938 

ft/sec2 ...........

p, slug-ft3 .............

5.5 5.5 15 15 T c	 deg ...............

-0.087 -0.087 0 0 ' radian/sec	 ..........

radian/sec2 ..........0 0 0 0
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(a) Rotating plate in stream. 

yi 

(b) Equivalent cambered. plate in stream. 

Figure 1.- Shape of cambered boundary. 
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Fractional effective cnord, 
Ce
	 Fractional effective chord , Ce 

Figure 3.- Variation of lower surface-pressure coefficients with 
fractional effective chord for two-dimensional cambered plates 
having a wide range of camber i. 
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Figure 5.- Concluded. 
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(a) Narrow trimming hull.

x 

(b) Shock-mounted bydro-skis. 

Figure 5.- Geometric relations of trimming bodies during water impact. 
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Figure 9.- Comparison of approximate theories for computing motion-time 
histories of freely trinuning, narrow flying boats during water impact. 
For initial conditions see table I. 
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Proposed theory (6 varies) 
----Effective forward velocity theory (6 = 0) 

o ---Fixed-trim theory ( .r = 0) 
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Figure 9.- Concluded. 
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Dynaic-cainber theory (o varies) 
- Effective forward velocity theory (8 0) 

- - - Fixed-trim theory (t = 0 

4, 
U)
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	 Time, t, Sec 

(a) Run III, forward pivot location. 

Figure 10.- Comparison of approximate theories for computing motion-time 
histories during water impacts of aircraft equipped with trimming, 
shock-strut-mounted hydro-skis. For initial conditions see table I. 
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- Dynamic-camber theory (6 varies) 
- Effective forward velocity theory (6 0) 
- Fixed-trim theory ('t = 0)
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(b) Run IV, forward pivot location.


Figure 10.- Concluded. 
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