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ANALYSIS OF LIMITATIONS IMPOSED ON ONE -SPOOL TURBOPROP-ENGINE DESIGNS 

BY COMPRESSORS AND TURBINES AT FLIGHT MACH NUMBERS OF 0, 0.6, AND 0 . 8 

By Richard H. Cavicchi 

SUMMARY 

A design-point analysis of one - spool turboprop engines was made to 
determine the relations among engine , compressor, and turbine design 
parameters in order to reveal the primary limitations on turboprop-engine 
design. For this invest igation, sea- level operation and flight at Mach 
numbers of 0 . 6 and 0 . 8 at the t r opopause were studied . High aerodynamic 
limits were assumed for all the turbines considered . No allowance was 
made for turbine cooling . 

Turbine centrifugal stress at the turbine rotor exit was found to be 
a limiting factor for all flight conditions studied. Increasing the com­
pressor pressure ratio relieves the turbine centrifugal stress . This 
stress was found to be more severe for sea- level designs than for design 
conditions of subsonic flight at the tropopause. It appears desirable to 
strive for high compressor pressure ratios at low tip speeds and low com­
pressor weight flows per unit frontal area. Except for sea-level Mach 0.6 
designs at a turbine-inlet temperature of 16680 R, turbines of 30,000 
pounds per square inch of stress at the design point are capable of driv­
ing light , compact, high- speed compressors . They do so, however , at sac­
rifices in specific fuel consumption compared with turbines with a stress 
of about 50,000 pounds per square inch . Furthermore, negligible propeller 
thrust is available from many engines in which turbines of 30,000-pound­
per - square - inch stress are capable of driving light, compact, high- speed 
compressors . 

An increase in turbine - inlet temperature is accompanied by an in­
crease in turbine centrifugal stress . If means are found to raise tur ­
bine stress iimits above 50,000 pounds per square inch, the primary lim­
itation might shift to the compressor, for compressor aerodynamics becomes 
a severe problem. 

INTRODYCTION 

At the present time, subsonic flight can be accomplished with lower 
specific fuel consumption by craft powered by turboprop engines than by 
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turbojet engines . The main reason for this is the high propulsive effi ­
ciency realized by the propeller, which handles a large mass of air at 
low velocity. 

This report presents a design- point analysis of one - spool turboprop 
engines in which turbine aerodynamics, compressor aerodynamics, turbine 
blade centrifugal stress, and engine geometry are related . The object of 
this report is to reveal the limitations imposed upon turboprop engines 
by these factors . This study pertains only to engines at their design 
points, no consideration having been given to the off- design problem . 

The analysis developed herein is presented in the form of design­
point charts for one - spool turboprop engines . Evaluation of the engine 
designs is made in terms of engine horsepower and specific fuel consump­
tion . Engine temperature ratios from 3.0 to 6 . 82 and flight conditions 
at Mach numbers of 0 and 0.6 at sea level and 0 . 6 and 0 . 8 at the tropo ­
pause are studied. Compressor pressure ratios from 3 to 40 are con­
sidered . Although turbine-inlet temperatures up to 30000 R are con­
sidered, no study is made herein of the effects of turbine cooling . 

GENERAL CONSIDERATIONS I N ANALYSIS 

The charts in this report are intended to facilitate the evaluation 
of turboprop engines. A schematic sketch of a turbopr op engine is s ho"l>rn 
in figure 1. ~;:he follow"ing brief discussion reviews t:le f<:!c tors involved 
in making an evaluation . First of all, a primary engine consideration is 
to have high horsepower and low specific fuel consumption . Selection of 
such a design, however, must be tempered by compromises in the choices of 
the following factors . 

Turbine Centrifugal Stress 

For a given turbine - inlet temperature, higher stresses can be toler ­
ated at the rotor exit of a turboprop engine than at the exit of a turbo ­
jet engine . The reason for this is the lower turbine - exit temperature of 
the turboprop engine, resulting from the higher turbine work output needed 
to drive the propeller . A stress of 30,000 pounds per square inch at the 
rotor exit would probably be considered low in a turboprop engine . An 
engine with such a turbine might be suitable as a "workhorse" engine where 
a conservative and reliable design is needed for long engine life . In 
the present study, turbine stresses in the first stage are not evaluated. 

• 
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Since temperatures are high in this regi on, it is possible that the 
stresses in the first stage might become a problem even though they are 
considerably lower than the exit stresses. Nevertheless, the exit stress 
is considered a good criterion of the severity of the turbine stress 
problem, and it is therefore used in this report. 

Compressor Aerodynamics 

Consideration of compressor aerodynamics is easily projected into 
this analysis by the use of a parameter e. This parameter, initially 
reported in reference 1, together with the compressor pressure ratio is 
indicative of the severity of compressor aerodynamics . Parameter e is 
defined as 

(1) 

All symbols are defined in appendix A. Figures 2 and 3, discussed in 
appendix B, show the relations of parameter eC with rotor inlet rela-

tive Mach number, equivalent tip speed, and equivalent specific air flow 
of the compressor. Low values of eC are obtained from subsonic com-

pressors, and high values from supersonic compressors . In order to uti­
lize the capacity of the advanced compressors of small diameter, the tur­
bine must operate at high stress. The following table, taken from figure 
3(a), lists the minimum values of compressor rotor inlet relative Mach 
number Ml for several values of parameter eC: 

Ml eC' lb/sec3 

0 . 9 21xlO6 

1 . 0 27 . 5 
1.1 35.5 
1.2 44 
1 . 3 54 
1.4 65 

A value of 44 xl06 pounds per second3 for eC is currently at the 

fringe of multistage-compressor designs of good efficiency. For this 
value of eC' the minimum relative Mach number obtainable at the compres-

sor inlet is 1.2. As shown in figure 2, compressor designs having inlet 
relative Mach numbers higher than 1.2 are possible at 44xl06 pounds per 
second3 . A compressor designer might very well have reasons for choosing 
designs off the dotted curve of figure 2. 

In any event, if the designer were to mlnlmlZe compressor-inlet rela­
tive Mach number Ml for a value of eC of 44xl06 pounds per second3, 

figure 3(a) shows that a value of 33.2 pounds per second per square foot 
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is obtained for me. For the same compressor design, figure 3(b) shows 

that the compressor equivalent tip speed is 1155 feet per second. Com­
pressor equivalent centrifugal stress for this case is read on figure 2, 
and it is 42,000 pounds per square inch. This would be the absolute 
centrifUgal stress for sea-level static designs (Bi = 1). For other 

flight conditions, the 42,000 pounds per square inch must be multiplied 
by Bi to obtain the absolute stress. 

If, for a value of 44xl06 pounds per second3 for eC' any other tip 

speed than 1155 feet per second is used (either higher or lower), 
compressor-inlet relative Mach number is greater than 1.2. If, for ex­
ample, an equivalent tip speed of 1250 were selected, the compressor­
inlet relative Mach number would rise to about 1.22 (fig. 2). 

Raising eC while maintaining minimum Ml raises the compressor 

equivalent specific air flow me (fig. 3(a)). This means that the com­

pressor diameter decreases for a given air flow. Furthermore, ralslng 
eC' with Ml a minimum, is accompanied by a rise in compressor equiva-

lent blade tip speed (fig. 2), thus requiring fewer compressor stages for 
a given compressor pressure ratio. This means that the compressor length 
decreases. High values of eC' therefore, mean light and compact compres-

sors. High values of parameter eC are possible only if the turbine can 
operate at high stress and the compressor at high Mach numbers . 

In the section RESULTS AND DISCUSSION, in which the use of the charts 
is illustrated, a value of 44xl06 pounds per second3 for eC is used as a 

base value. 

In appendix B it is shown that 

(B15) 

For specified values of fUel-air ratio f and compressor bleed b, param­
eters e for compressors and turbines are related by a constant factor. 
If the fUel-air ratio and bleed are small, little error is made in assum­
ing that parameters e for compressors and turbines are equal. In the 
computations of the present analysis, however, the value of f determined 
by equation (B2) was used along with zero bleed. Parameter e is thus 
both a compressor and a turbine aerodynamic parameter. For the turbine, 
high e is indicative of high turbine tip speed and, hence, high turbine 
stress for a specified value of weight flow per turbine frontal area. 

If>. 
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Turbine Aerodynamics 

Limiting turbine work output occurs at a turbine - exit axial Mach 
number of approximately 0.7, depending upon the trai l i ng-edge blockage 
of the last rotor blade . All the turbines in this analysis are at the 
limiting- loading condition. 

Parameter eT is also a turbine aerodynamic parameter. This is 

seen since 

5 

In this equation, both illT and cT are indicative of the severity of 

turbine aerodynamics . Parameter eT, however , cannot be tied together 

so neatly with turbine - inlet relative Mach number in the manner that eC 

corresponds to compressor - inlet relative Mach number . 
the turbine - inlet stator eliminates this possibility . 
eT is defined in terms of compressor-inlet st~gnation 

The presence of 
Furthermore, since 
conditions rather 

than turbine - inlet stagnation conditions, a simple relation between eT 

and turbine rotor inlet relative Mach number is not shown. 

Engine Geometry 

All turbines considered in the present analysis have been assigned 
a hub-tip radius ratio of 0 . 5 at the rotor exit. Therefore, when the 
exhaust-nozzle and turbine frontal areas are equal, the exhaust nozzle is 
4/3 as large as the turbine-exit annulus . In this analysis, engine ge ­
ometry is presented as the ratio of exhaust-nozzle to turbine frontal 
area. 

Presentation of Analysis 

The analysis is presented in the form of design-point charts for the 
various flight conditions selected. The parameters plotted in the charts 
include specific fUel consumption, engine horsepower per turbine front al 
area, turbine blade centrifUgal stress, compressor and turbine pressure 
ratios, compressor parameter eC' turbine-limited specific weight flow, 

and the ratio of exhaust-nozzle to turbine frontal area. The basis of 
the analysis and the manner of constructing the charts are presented in 
appendix B. 

No values lower than 0 . 705 are shown for the curves of constant 
A~~. The value 0.705 occurs when the exhaust nozzle chokes, assuming 
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an average value of 4/3 for k. Beyond the choking value of exhaust­
nozzle pressure ratio, AEi~ remains at 0.705, since (pVx/p'a~r) 4 is 
assumed constant throughout this analysis. 

RESULTS AND DISCUSSION 

Sea-Level Static Designs 

Charts r and II have been constructed for sea-level static designs 
with turbine-inlet temperatures of 20750 and 25930 R, respectively. A 
glance at chart I(b) immediately fixes the region of prime interest in 
a small section. ThiS, of course, is the compressor pressure ratio 
curve of 10 at and to the left of the peak. Such designs yield highest 
horsepower per turbine frontal area and lowest specific fuel consumption. 
Compressor pressure ratios higher than 10 are not shown on chart reb) 
because such curves would lie below the curve of P2/pi of 10. 

Chart I(b), which wa~ constructed for an inlet temperature of 20750 

R, shows that for lowest specific fuel consumption the ratio AEi~ is 

greater than unity. This is also true if the turbine-inlet temperature 
is raised to 25930 R (chart II(b)). 

Use of the charts is illustrated by considering point A, located on 
chart I(b) by a value of 1.1 for AE/~ on the compressor pressure ratio 

curve of 10. The same point A is also located on the right side of chart 
r(a). The relative balance between severity of turbine stress and com­
pressor aerodynamics is then revealed by the left side of chart I(a). If 
a turbine to drive the engine of point A is limited to a stress of 30,000 
pounds per square inch at the rotor exit, the compressor that the turbine 
is capable of driving runs at an eC of only 26.0xl06 pounds per second3 

(point Al). If the tolerable turbine stress is 50,000 pounds per square 

inch, however (point A2)' the turbine is capable of driving a compressor 

with eC of 43.3xl06 pounds per second3 . 

Thus, if tolerable turbine stress can be raised from 30,000 to 50,000 
pounds per square inch, the turbine can drive a compressor of 67 percent 
greater equivalent specific air flow if compressor tip speed is unchanged. 
A smaller-diameter compressor would result from the reduction in compres­
sor frontal area for a given weight flow. Or, alternatively, if me is 

held fixed, compressor equivalent tip speed can be increased by 29 percent. 
Such a compressor would be shorter, since the higher tip speed reduces the 
required number of compressor stages. In any event, the compressor de­
signer has the freedom to apportion the available increase in parameter 
eC between a smaller diameter and shorter length, as he desires. 
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A limiting curve is drawn on part (a) of the charts. Regions above 
this curve are turboprop designs, and those below, turbojet. Appendix B 
presents the derivation of this limiting curve . 

Point B on chart I(a) shows that for this flight condition the 
lowest stress at which a turbine can drive compressors with eC of 

44xl06 pounds per second3 is 26,600 pounds per square inch. Points on 
or immediately above the limiting curve, however, represent designs of 
zero or negligible propeller thrust. This is reflected in terms of high 
specific fuel consumption . If, for example, a turbine of 30,OOO-pound­
per-square-inch stress is sought to drive a compressor with eC of 

44xl06 pounds per second3, chart I(a) shows that the turbine pressure 
ratio is 4 . 25 if the compressor pressure ratio is 10. On chart I(b) this 
point is located at high specific fuel consumption. 

Figure 4 shows this latter point most clearly for a turbine-inlet 
temperature of 20750 R. On figure 4, the curve of constant values of 
pz/Pi are reproduced from chart I(b). The dotted lines on figure 4 show 

the values of turbine stress resulting if the turbines are to drive com­
pressors with an eC of 44X106 pounds per second3 . This figure shows 

the high specific fuel consumption and low hp/~ resulting if turbine 

stress is limited to 30,000 pounds per square inch. For eC of 44xl06 

pounds per second3, the turbine must operate at a stress of nearly 50,000 
pounds per square inch for low specific fuel consumption and highest 
hp/~. 

For turbine-inlet temperatures of 25930 R, chart II(b) discloses 
that, on the basis of lowest specific fuel consumption and highest hp/~, 

optimum compressor pressure ratio becomes approximately 20. To develop 
such a high compressor pressure ratio in a one-spool engine requires a 
large number of stages. Therefore, considering what might be achieved in 
the reasonably near future, the compres sor pressure ratio might preferably 
be selected at values between 10 and 15. 

Furthermore, chart II(b) shows little to be gained by increasing the 
compressor pressure ratio from 15 to 20 . The reason for this is that, as 
compressor pressure ratio rises, the compressor takes up a larger propor­
tion of the turbine work output. In order for engine horsepower per tur­
bine frontal area to show a substantial increase as compressor pressure 
ratio exceeds 15, the turbine-inlet temperature must be raised above 
25930 R. This fact is demonstrated by charts I(b) and II(b). These 
charts show that the best compressor pressure ratio is 10 at 20750 R; 
whereas at 25930 R a value of 20 is best. 

At a turbine-inlet temperature of 25930 R, any engines in which the 
value of compressor parameter eC is 44xl06 pounds per second3 and the 
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turbine operates at a stress of 30,000 pounds per square inch also run 
at unacceptably high specific fuel consumption and low hp/~. This is 

shown by charts II(a) and (b), for such designs are to be found in the 
region of choked exhaust nozzles, which for these cases yield poor 
designs. 

Figure 5 was constructed from the information given on chart II to 
show the effects of compressor and turbine pressure ratios and AE/~ 

on turbine stress. A turbine-inlet temperature of 25930 R and an eC 

of 44xl06 pounds per second3 were used in making this plot. This figure 
shows that increasing the compressor pressure ratio with AEi~ constant 

results in lowered turbine stress. On the other hand, increasing the 
turbine pressure ratio with the compressor pressure ratio held fixed re­
sults in raising the stress. 

Figure 6, plotted from information given on charts I and II for ' 
parameter eC of 44xl06 pounds per second3 and AE/~ of 1.0, shows 

that increasing the turbine-inlet temperature results in higher turbine 
stress for any given value of compressor pressure ratio. 

Information given on chart II was used in plotting figure 7, which 
shows the variation in e

C 
with aT and P2/pi for a turbine-inlet 

temperature of 25930 R. At a constant compressor pressure ratio, eC 

varies directly with turbine stress. For a given flight condition, 
turbine-inlet temperature, and compressor pressure ratio, it can be shown 
that ~ is constant for either a specified value of P3/P4 or of spe-

cific fuel consumption. Equation (B13) then shows that eC varies 

directly with aT. 

The curves of constant stress in 
constant turbine pressure ratio of 6. 
beyond values of the abscissa P2/pi 

figure 7(a) were drawn assuming a 
These curves were not extended 

of 12.5, because both specific fuel 

consumption and hp/~ deteriorate above this point for a turbine pres­

sure ratio of 6. This figure shows clearly that, to drive advanced com­
pressors (high eC)' turbines must operate at high stress. For example, 

the corresponding point for point C on chart II(b) is shown on figure 7(a) 
at 44xl06 pounds per second3 . The turbine for this design must operate at 
a stress of about 47 ,000 pounds per square inch. It bears repeating that 
this stress may not be intolerable because of the high turbine pressure 
ratio and, hence, low turbine-outlet temperature. In any event, a tur­
bine of 30,OOO-pound-per-square-inch stress cannot drive an advanced com­
pressor without deterioration of specific fuel consumption and hp/~. 
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Figure 7(a ) shows that, for a given stress, increasing the compressor 
pressure ratio permits the turbines to drive compressors of higher eC . 

Or, alternatively, increasing the compressor pressure ratio at constant 
eC results in lower turbine stress . Chart II(b), however, indicates 

that increasing the compressor pressure ratio with constant turbine pres­
sure ratio is accompanied by increasing specific fuel consumption. 

Increasing compressor pressure ratio need not result in increased 
specific fuel consumption, as was just seen to occur in figure 7(a) for 
constant turbine pressure ratio . Figure 7(b) is similar to figure 7(a), 
but it is plotted for a constant specific fuel consumption of 0 . 64 pound 
of fuel per horsepower- hour . This figure, like figure 7(a), shows 
that parameter eC rises with increasing P2/pi for constant crT. The 

specific fuel consumption now, however,. is constant. For a stress of 
30,000 pounds per square inch, figure 7 (b) shows that eC does not ex-

ceed 39 xl06 pounds per second3 . These observations indicate that, if in 
turboprop - engine design t he turbine stress is limited t o 30,000 pounds 
per squar e inch, it is desirable to strive for high compressor pressure 
ratio at low values of parameter eC . This is in contrast with the aim 

in des i gn of compressors for high Mach number turbojet engines , for in 
the latter ca se low compr essor pressure ratio is required at high values 
of eC . 

If, however , turbine stress can be increased in the future, it ap­
pears from figure 7 (b) that parameter eC will exceed presently obtain-

able values. Thus , the primary limitation shifts from turbine stress to 
compressor aerodynamics . 

Sea-Level Designs at Mach 0 . 6 

Charts I I I and IV show turboprop - engine performance for turbine­
inlet temperatures of 16680 and 22250 R, respectively, for Mach 0.6 de­
signs at sea level. On chart III (b), where the turbine-inlet temperature 
is 16680 R, the compressor pressure ratio for lowest specific fuel con­
sumption is 7 . If T; is raised to 22250 R (chart IV(b)) the best value 

of pI/pI 
2 1 is about 15. The value of ~/ ~ for lowest specific fuel 

consumption is between 0.8 and 0.85 on both charts III(b) and IV(b). 

To drive a compressor having a value for eC of 44xl06 pounds per 

second3, a turbine with an inlet temperature of 16680 R must run at a 
stre ss of at least 37,000 pounds per square inch (chart III(a)) and pref­
erably over 50,000 pounds per square inch in order to obtain low specific 
fuel consumption. Chart IV(a) shows that it is possible for turbines of 
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30,OOO-pound-per - square-inch stress to drive compressors of 44xl06 pounds 
per second3 . Such designs are so close to the limiting curve that they 
would surely suffer because of high specific fuel consumption, for the 
reasons mentioned earlier. 

Figure 8 is taken from information given on chart IV(b). The curves 
of constant stress are drawn for a value of eC of 44xl06 pounds per 

second3 . This plot shows that turbines designed to operate at a stress 
of 30,000 pounds per square inch can drive compressors with an eC of 

44xl06 pounds per second3 only at high values of specific fuel consump ­
tion. Figure 8 further shows that, for a given value of specific fuel 
consumption, higher values of hp/~ are obtained as turbine stress is 

decreased, but pI/pI must be increased in so doing . Or, for a constant 
2 1 

P2/pi' higher hp/~ is obtained as turbine stress is decreased, but at 

the expense of raising specific fuel consumption . 

This last circumstance can be illustrated by considering points D 
and E on the curve for a compressor pressure ratio of 10 . Point D is for 
a stress of 50,000 pounds per square inch, and point E is for a stress of 
40,000 pounds per square inch. By reading the values of ~ for these 

two cases on chart rv(a), the resultant engine power per unit weight flow 
1 is 122 percent lower for the turbine of 40,000 pounds per square inch. 

Furthermore, the frontal area per unit weight flow of the lower - stress 
turbine is 21 percent lower. This greater decrease in area per unit 
weight flow offsets the decrease in power per unit weight flow, which re­
sults in higher hp/~ at 40,000 pounds per square inch. The smaller 

frontal area per unit weight flow, with eC constant, results in lower 

stress. Also, since the engine power per unit weight flow is reduced by 
a less favorable split between propeller and jet thrust for the 40,000-
pound-per - square-inch case, the specific fuel consumption increases since 
the ratio of the fuel flow to weight flow is constant. 

On figure 9, plotted from information given on chart IV(a), the var­
iation in turbine stress with compressor and turbine pressure ratios and 
with AEi~ is shown. On this plot, the turbine -inlet temperature is 

22250 R and parameter eC is 44xl06 pounds per second3 . For a constant 

value of AE/~' increasing P2/pi results in lower aT' just as was ob­
served in the sea-level static designs. This figure also shows that, for 
a given value of P2/pi' increasing P3/P4 results in increasing stress. 

It will be noticed that the ratio AE/~ rises for such a case. Alter­

natively, increasing P3/P4 at constant ~/~ yields lower stress, as 

pI/pI also increases. 
2 1 
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Figure 10 was plotted from data given on charts III (a) and rv(a) 
with eC of 44xl06 pounds per second3 and AE/~ of 0.8 . This plot 

11 

shows that increasing the turbine-inlet temperature results in increased 
turbine stress. 

Tropopause Designs at Mach 0.6 

For turbine-inlet temperatures of 16720 , 20900 , and 25090 R, 
respectively, charts V, VI, and VII present turboprop-engine performance 
for Mach 0.6 designs at the tropopause. For a turbine-inlet temperature 
of 16720 R, chart V(b) shows that a compressor pressure ratio of 12 
yields the lowest specific fuel consumption. At temperatures of 20900 

and 2509 0 R, charts VI(b) and VII(b) indicate theoretically best values 
of compressor pressure ratio of 25 and 40, respectively. Such high val­
ues are of academic interest, only, and are shown merely for completeness. 
At T3 of 16720 R, a value for AE/~ of about 0.72 yields lowest spe-

cific fuel consumption. 
value of 1.0 for AEi~ 

For inlet temperatures of 20900 and 25090 R, a 
results in lowest specific fuel consumption. 

Figure 11 has been drawn for a turbine-inlet temperature of 20900 R 
(data from chart VI) and is similar to figures 4 and 8. Again, although 
turbines designed for a 30,000-pound-per-square-inch stress yield higher 
hp/~ for a given pz/pi than those of 40,000-pound-per-square-inch 

stress, the resultant horsepower per unit weight flow is less . And, in 
turn, the horsepower per unit weight flow is less for turbines designed 
for a stress of 40,000 pounds per square inch than those designed for 
50,000 pounds per square inch. Nevertheless, figure 11 shows that a 
wider range of turbine designs for a stress of 30,000 pounds per square 
inch is possible than for the sea-level flight conditions (fig. 8) . 
This implies that the stress problem is less severe for flight at a Mach 
number of 0.6 at the tropopause than at sea level. At a compressor pres­
sure ratio of 15, specific fuel consumption can be reduced from a value 
of 0.467 to 0.405 pound fuel per horsepower-hour if stress is i ncreased 
from 30,000 to 50,000 pounds per square inch. 

In figure 12, which was derived from chart VI(a), turbine stress is 
plotted against turbine pressure ratio for curves of constant pz/Pi and 

of constant AEi~. For this plot, the turbine-inlet temperature is 20900 

R and the parameter eC is 44xl06 pounds per second3 . Once again it is 

found that increasing the compressor pressure ratio yields lower stress. 
This is true if either AE/~ or P3lP4 is held constant. 

For a value of 44xl06 pounds per second3 for parameter eC and for 

AE/~ of 0.75, turbine stress is plotted against turbine-inlet tempera­
ture for three selected values of cowpressor pressure ratio in figure 13. 
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The data for this plot were r ead from charts V(a) , VI(a), and VII(a). 
In engine designs made for flight at a Mach number of 0 . 6 at t he t ropo­
pause , increasing the turbine - inlet temperat ure results in i ncrea s i ng 
turbine stress . 

Figure 14 is a plot of parameter eC against P2/pi wi th curves 

of constant specific fuel consumption . This figure was constructed from 
chart VI for a t urbine- inlet temperature of 20900 R and a turb i ne str ess 
of 30,000 pounds per square inch. First of all , this figure reveals, as 
did the designs for the sea-level static condition, that increasing the 
compressor pressure ratio makes a turbine of a given stress capable of 
driving compressors of high parameter eC. This figure further dis -

closes that low values of specific fuel consumption and high values 
of eC are unobtainable for this flight condition and temperature in 

an engine with 30,000-pound- per-square - inch stress in the turbine with­
out going to high pz/Pi. For e~ample, for a specific fuel consumption 

of 0 . 45 pound fuel per horsepower- hour, a turbine designed to operate at 
30,000-pound-per- square-inch stress cannot drive a compressor of eC of 

44X106 pounds per second3 unless the design value of compressor pressure 
ratio is about 18. 

If a turbine stress of 40,000 pounds per square inch can be tolerated, 
a design can be made in which specific fuel consumption and eC remain at 

0.45 pound per horsepower-hour and 44xl06 pounds per second3, respectively, 
and pz/pi is reduced to a value of 12. This design is designated aR 

point F on chart VI . On the other hand, if aT i s fixed at 30,000 pounds 

per square inch and eC at 44xl06 pounds per second3, the resulting value 

of specific fuel consumption is 0.505 pound per horsepower -hour if pz/Pi 

is 12 (point G on chart VI and fig. 14) . From this it can be concluded 
that , if turbine st ress must be limited to 30, 000 pounds per square inch 
and compressor pressure ratio to 12, the turbine can dri ve a compressor 
with eC of 44xl06 pounds per second3, but the engine suffers by in­
creased specific fuel consumption . 

Tropopause Designs at Mach 0.8 

Tropopause designs at 0.8 Mach number are presented in charts VIII, 
IX, X, and XI for turbine - inlet temperatures of 17500

, 2200°, 26410
, and 

3000° R, respectively . On chart VIII(b) it can be seen that the compres ­
sor pressure ratio for lowest specific fuel consumption for T3 of 17600 

R is about 15. At T3 of 22000 R (chart IX(b)) , a compressor pressure 
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ratio of 25 yields the lowest specific fUel consumption. At higher tem­
peratures (26410 and 30000 R, charts X(b) and XI(b)), the compressor 
pressure ratio for lowest specific fUel consumption is much higher. 

With regard to the ratio AEI~, chart VIII(b) indicates that a 

value of about 0.72 yields lowest specific fuel consumption. At T3 of, 

22000 , 26410 , and 30000 R, the corresponding values of AEI~ are about 
0.75, 0.72, and 0.705. At a turbine-inlet temperature of 30000 R, values 
of AE/~ greater than 0.705 are not shown, because, as chart XI(a) shows, 

the resulting turbine stresses become very high for values of eC as low 

as even 30xl06 pounds per second3 . 

Figure 15 was plotted for a turbine-inlet temperature of 22000 R, 
and the data were taken from chart IX(b). Parameter eC is held con-

stant at 44xl06 pounds per second3 in this figure. At a compressor pres­
sure ratio of 15, this figure shows that specific fuel consumption can be 
reduced 9 percent by increasing the turbine stress from 30,000 to 40,000 
pounds per square inch. An additional 3-percent decrease in specific fUel 
consumption is possible if the turbine stress is further increased to 
50,000 pounds per square inch. 

At a turbine-inlet temperature of 26410 R, figure 16 shows that for 
this flight condition, just as for the others considered herein, increas­
ing compressor pressure ratio results in decreasing turbine stress when 
eC and AE/~ are held constant. At P2/pi of 15) the exhaust nozzle 

must be choked for stresses below 49,000 pounds per square inch to be 
considered. 

The variation in turbine stress with turbine- inlet temperature for 
this flight condition is presented in figure 17. This figure shows that 
turbine stress increases with increasing turbine-inlet temperature. This 
has also been found to be true in the other flight conditions studied. 

Comparisons 

In figure 4, it is seen that, if the turbine stress is 30,000 pounds 
per square inch when eC is 44xl06 pounds per second3, the specific fUel 

consumption is very high for all designs. In figure 8, only one design 
of a turbine with a stress of 30,000 pounds per square inch is shown, and 
this design results in high specific fUel consumption. Thus, if turbine 
stress is limited to 30,000 pounds per square inch, turbines designed for 
the sea-level condition can drive compressors of parameter eC of 44X106 

pounds per second3) but the resulting specific fuel consumption is un­
acceptably high. Figures 11 and 15, drawn for design conditions at the 
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tropopause, show that, if turbine stress is 30,000 pounds per square inch 
and eC is 44X106 pounds per second3, the resulting specific fuel con-

sumption is considerably improved in value over the sea- level designs . 
This suggests that turbine stress is a more serious problem for sea- level 
designs than for subsonic designs at the tropopause . This contention is 
corroborated by figure 18, in which stress is plotted against turbine­
inlet temperature with curves of constant engine temperature ratio for 
the various flight conditions considered. Assumed in this figure are 
pz/Pi of 10, P3lP4 of 6, and eC of 44xl06 pounds per second3 . These 

curves indicate that the most severe stress problem is for sea-level 
flight at e. Mach number of 0.6, while sea-level static designs are some ­
what less severe. The stress problem is less serious for subsonic flight 
at the tropopause, the stresses at a Mach number of 0.6 being lower than 
those at a Mach number of 0.8 . These results can be explained by con­
sideration of equation (B12). In this equation (pVxlp'a~r)4 is constant. 

Since P2/pi and P3lP4 are held fixed in making the cra-ss plot, all 

other factors on the right side in equation (B12) are constant except 
T3/Ti and f. In the calculations, f was calculated for each pOint, 

but little variance was found . Therefore, along the lines of constant 
engine temperature ratio, there is approximately a linear variation of 
crT with 8{, because eC is constant. The following table lists 81 
for the four flight conditions: 

No Altitude 8i 

° Sea level 1 
.6 Sea level 1.072 
.6 Tropopause .806 
.8 Tropopause .848 

It is seen f'rom this table, then, that the observed variations of turbine 
stress with flight conditions arise from variations of the value of 81. 

It can also be observed that under the assumptions used in plotting 
figure 18 an increase in turbine-inlet temperature is accompanied by a 
stress increase. 

In figure 19 the effects on turbine stress of varying the ratio of 
exhaust-nozzle to turbine frontal area and flight Mach number are shown. 
On this plot eC = 44xl06 pounds per second3 and pz/Pi = 10. At sea 

level, an engine temperature ratio of 4 is maintained on the plot; for 
the tropopause designs, the curves are drawn f or a value of T3ITi of 5 M 

Thus, for this figure, the turbine-inlet temperature is about 21000 to 
22000 R. 

-. 

.. 

J 
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These curves show clearly, for all flig~t conditions investigated, 
the advantages in stress reduction afforded by reducing the ratio AE/~' 
The lowest stress is obtained at a value of 0.705, at which point the 
exhaust nozzle chokes. Of course, specific fUel consumption rises with 
reduction in AEi~, as shown on the charts. 

For any given value of AE/~ and the same engine temperature ratio, 

increasing the flight Mach number results in stress increases at both alti­
tudes considered. 

CONCLUSIONS 

The following conclusions have been drawn from this design-point 
analysis of one-spool turboprop engines: 

1. Turbine centrifUgal stress is a primary limitation for all flight 
conditions considered. 

2. Increasing the compressor pressure ratio relieves the turbine 
stress and reduces the specific fUel consumption. It appears desirable 
to strive for high compressor pressure ratio at low tip speeds and low 
weight flows per unit frontal area. This is in contrast with the aim in 
high Mach number turbojet design, for in the latter case high tip speeds 
and high weight flows per unit frontal area are re~uired at low compres­
sor pressure ratios. 

3. The problem of turbine centrifUgal stress is more severe for sea­
level design conditions than for design conditions of subsonic flight at 
the tropopause. 

4. For most sea-level designs, turbines operating at a stress of 
30,000 pounds per s~uare inch are capable of driving compressors of high 
weight flow per frontal area and high tip speed. They do so, however, 
only at high specific fUel consumption. Furthermore, many such designs 
represent negligible propeller thrust. 

5. Increasing turbine-inlet temperature is accompanied by increasing 
turbine centrifUgal stress. 

6 . If turbine stresses above 50,000 pounds per s~uare inch can by 
some means be tolerated, the primary limitation might shift to the com­
pressor, for compressor aerodynamics becomes a severe problem. 

7. For sea-level static designs, lowest specific fUel consumption 
can be obtained if the turbine frontal area is about the same size as the 
exhaust nozzle. This is also true of flight at a Mach number of 0.6 at 
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the tropopause for turbine-inl et temperatures of 20900 R and higher. 
Values between 0.75 and 0. 85 f or the ratio of exhaust -nozzle to turbine 
f rontal area yield lowest specific fuel consumption for a Mach number of 
0 . 6 at s ea level and a Mach number of 0.8 at the tropopause for turbine ­
inlet temperatures up to 26410 R. 

8. In engines designed f or a Mach number of 0 . 8 at the tropopause 
with a t urbine- i nlet temperature of 30000 R, the exhaust nozzle should 
be choked in order to avoid excessive values of turbine centrifuga l 
stress. 

9. Reduction in the ratio of exhaust-nozzle to turbine frontal area 
results in reduced turbine stress. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, September 7, 1956 
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APPENDIX A 

SYMBOLS 

A frontal area, sq ft 

a 

at 
cr 

sonic velocity, 1(ygRT, ft/sec 

°t o 1 1 °t ~2k gRTf crl lca ve OCl y, 
k+l ' 

ft/sec 

b fraction of weight flow bled from compressor 

en exhaust - nozzle velocity coefficient 

c equivalent tip speed, Ut/~, ft/sec 

e engine parameter used in relating compressors and turbines, mc 2, 
lb/sec3 

f fUel-air ratio, lb fUel/lb air 

g constant of gravity 

H lower heating value of fUel at 6000 R, Btu/lb fuel 

h specific enthalpy, Btu/lb 

h f initial enthalpy of fUel, Btu/lb fuel 

hp engine horsepower, hp 

J mechanical equivalent of heat 

k ratio of specific heats for gas at exhaust-nozzle exit 

M Mach number relative to rotating blades 

17 

w.ye{ 
m equivalent weight flow per unit frontal area, ~' (lb/sec)/sq ft 

1 

p absolute pressure, lb/sq ft 

R gas constant 
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r radius, ft 

sfc specific fuel consumption, lb fuel/hp -hr 

T absolute temperature, oR 

U blade velocity, ft/sec 

v 

w 

r 

y 

e 

p 

cr 

absolute velocity, ft/sec 

weight flow, lb/sec 

density of blade metal, lb/cu ft 

ratio of specific heats for air in free stream 

ratio of pressure to NACA standard sea- level pressure, p/21l6 

burner efficiency 

gearbox efficiency 

propeller efficiency 

small-stage efficiency 

ratio of temperature to NACA standard sea- level temperature, 
T/51S.7 

stress-correction factor for tapered blades 

density of gas, lb/cu ft 

blade centrifugal stress at hub radius, psi 

(h - ha)(l + f) 
f ' Btu/lb 

angular velocity, radians/sec 

Subscripts: 

a air 

C compressor 
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E exhaust nozzle 

h hub 

j jet 

T turbine 

t tip 

x axial component 

0 free stream 

1 compressor inlet 

2 compressor outlet 

3 turbine inlet 

4 turbine outlet 

5 exhaust -nozzle outlet 

6 station outside exhaust nozzle 

Superscript: 

stagnation state relative to stator 
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APPENDIX B 

ANALYSIS AND CONSTRUCTION OF CHARTS 

Analysis 

In this analysis J values must be assumed for many de sign var i ables . 
The following parameters and assumed values are used in the present 
analysis: 

T)OOJ C 
T)B 

T)G 

T)p • 

HJ Btu/lb fuel •. • 
hfJ Btu/lb fuel . 

r J lb/cu ft 
A 
Cn 
(rh/rt)l 
b .. 
gJ ft/sec 2 . 
JJ ft-lb/Btu 
RJ ft-lb/ (lb) (OR) 

. . . . 

0 . 562 

0 . 95 

. · 0 . 5 

0 . 85 

0 . 88 

0 . 95 

0 . 95 

0 . 80 

l8 J 574 
- 50 

· 500 

· 0 . 7 
0 . 96 

· 0 . 4 

0 
32 . 2 

778 . 2 
53 . 4 

Cycle analysis. - The calculation procedure was begun by first as ­
suming a range of values for the compressor pressure rat i o P2/pi while 

simultaneously varying the turbine pressure ratio P3/P4. Compressor 

pressure ratios from 2 to 40 were assumed in equal increments of the 
natural logarithm. The ratio Pi/Pi was maintained within the limit s 

P' p' P' 
< 4 < 3 2 0.8 --, --, - , 

Pl P2 Pl 

r k - 1 ~~D~~:'~ 
=---'-=-::-----=-T3 y - 1 k (Bl) 

TT 
1 

!' 
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where the upper limit is the value f or a turbojet engine if it is as­
sumed that wT = wC' 

21 

The turbine pressure ratio pI/pI 
3 4 

is used to determine the turbine-

outlet stagnation temperature T4 by means of the method described in 

reference 2. However, the fuel-air ratio f must be evaluated first. 
Reference 2 gives as a formula for f: 

f (B2) 

The parameter ha ,2 is obtained by using the method of reference 2 along 
with the compressor pressure ratio P2/ pi and small - stage efficiency 

~m,C' The parameters ha,3 and ~h,3 are also obtained by the method 

of reference 2 by using the assigned turbine-inlet temperature T3. A 

value for each of the constants TJB' H, and hf is given on the preceding 
page. 

Turbine-limited specific weight flow ~ is calculated from 

pJ, 

wTveI 2116 V 2kg ( PVx) G G~):J pi 
~ ~oi '\1'518 .7 pla~r 4 T' T' (k + l)R 

4 3 
T'T' 3 1 

(B3) 

where the ratio pI/pI 
4 1 is caleulated as follows: 

P4 P2 P4 P3 
(B4) pt == ptptpt 

1 1 3 2 

The method of reference 2 is used to calculate the specific enthal­
py changes across the compressor 6hC and across the turbine 6hT from 

their known pressure ratios. 

The exhaust-nozzle pressure ratio is found from 

P I pI pI pI pI 
01234 

ptptptptpt 
1 2 3 4 5 

(B5) 
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since it is assumed that 

Equation (B5) is then used in calculating the jet velocity : 

[ 
k-1J 

2k gRT' 1 _ (P6) k 
k - 1 4 Ps 

(B6) 

The flight velocity is 

(B7) 

and the turbine weight flow per unit turbine frontal area is 

wT = (Pi) (PO) (~) I\@f;i- ~TO) 
~ ~ Po Po 2116·V TO II \ T-oJ (BB) 

For engines having their design points at the sea-level static con­
ditions, engine horsepower per unit turbine frontal area is 

(B9) 

The constant 2.5 is an arbitrary value used to convert static thrust to 
horsepower. Specific fuel consumption is calculated from 

sfc 3600 :f 
= ::--hp-'7-:-~---

wT7~ (1 + f) 

(BIO) 

For engines having their design point at Mach numbers other than 
zero, specific engine horsepower is calculated from 

(BI1) 

and specific fuel consumption from equation (BIO). 
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The number of turbine stages required is not investigated in this 
analysis . This information can be obtained from reference 3 . With the 
turbines designed for limiting loading [ i . e.) (pVx!p ' acr )4 = 0 . 562]) the 

smallest exit annular area is obtained for a given work output . The same 
work output) of course) is obtainable from a turbine designed below the 
point of limiting loading) but its exit annular area would be larger . 

In this analysis) no allowance has been made for the effects on tur ­
bine weight flow and work output that would result from turbine cooling . 
Cooling of the turbine blades would be required in many of the designs 
studied in this report) since turbine - inlet temperatures as high as 30000 

R are considered . 

Turbine blade centrifugal stress . - The compressor parameter eC 

and the turbine blade centrifugal stress at the hub radius of the last 
rotor are related from 

then 

rA. 31518.7 
288 2116 

(k + l)R (1 + f) 
2kg3 

Combining equations (B3) and (B12) by eliminating 

Parameter e. - Since parameter e is defined as 

e = mc 2 

2 2 
wCUt)C WC(1) 

eC = 

Ac 5i tier 1!51~ 1 1 

2 wrfD2 
e.r wTUt )T 

= 
A5'~ 1!5' vef T 1 1 1 1 

T' T' 4 3 

P4~1 
p ' T' 

1 4 

(B12) 

Yields 

(B13) 

(B14 ) 
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Because compressor and turbine weight flows bear the relation 

wT = (1 + f)(l - b)wC 

parameters e for compressors and turbines are related by 

eT = (1 + f )(l - b)eC (B15) 

Figures 2 and 3 are reproduced from reference 1. These figures _ 
illustrate the role that parameter eC plays in compressor aerodynamics. 

In figure 2, compressor parameter eC is plotted against compressor 

equivalent blade tip speed cc for various values of compressor rotor 
inlet relative Mach number Ml . The dotted line is the locus of minimum 

values of compressor rotor inlet relative Mach number Ml for given val­

ues of parameter eC' The additional abscissa scale is convenient for 

determining compressor centrifugal stress. In the plotting of figures 2 
and 3, it was assumed that the compressors have no inlet guide vanes. A 
compressor hub-tip radius ratio of 0.4 is assumed in these two figures. 

Figure 3 relates compressor parameters for maximized parameter eC' 

that is, points on the dotted line of figure 2 . Maximized parameter eC 

and equivalent specific air flow me are plotted against compressor 

rotor inlet relative Mach number Ml in figure 3(a). Compressor equiv­

alent blade tip speed cc and compressor-inlet absolute Mach number 

(V/a)l are plotted against Ml in figure 3(b). 

Turbine aerodynamics. - It is stated earlier that all turbines in 
this analysis are designed at the limiting-loading condition. Throughout 
the analysis a value of 0.562 is assumed for turbine-exit specific weight­
flow parameter (pVx/p'a~r)4' This value is obtained at a turbine-exit 

axial Mach number of 0.7 and zero exit whirl. 

Turbine-limited specific weight flow ~ is calculated from equa­

tion (B3). Throughout this analysis a constant value of 0.5 was assumed 
for the turbine hub -tip radius ratio (rh!rt)4 at the rotor exit. 

Engine geometry . - In order to relate engine geometry with engine 
operating parameters, the ratio of exhaust - nozzle to turbine frontal area 
is calculated from 

AE (pVx/p'a~r)4 
~ = (pVx7pla~r)5 

pI 
4 

P5 (B16) 
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k 

For the case of a choking exhaust nozzle, when (;~) < (k:l)k-l, 

and 

AE 
AIr = 0.705 

if 

For the case of subsonic flow in the exhaust nozzle, when 
k 

k+l [1 _ (P6)k~~l k-l Ps J 
Construction of Charts 

25 

(B17 ) 

(B18) 

Table I summarizes the flight conditions and engine temperature 
ratios presented in the charts. The following procedure pertains to 
each flight condition and turbine - inlet temperature investigated. The 
left side of parts (a) of the charts consists simply of straight lines 
which go through the origin (although not shown) and with crT/eiec plotted 

against crT' The right side of parts (a) of the charts is plotted direct­

ly from calculated data of crT/Biec against P2/pi with curves of con­

stant turbine stoagnation pressure ratio P3lP ~ . The ratio p ~/pi used 

in the calculation of 0T/eiec from equation CB12) was limited as shown 

in equation (Bl). 

On the right side 
ing values of constant 

of pOI/pI 
4 1 in equation 

of parts (a) of the charts, 
~ were obtained by using 

(B3) and cross-plotting the 

the dashed lines show­
the calculated values 

calculated data. 
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The dotted lines on the right side of parts (a) of the chart s show 
values of constant ratio of exhaust -nozzle to turbine frontal area AE/~. 

These curves were obtained by calculating uT/eiec' as before, P6/ P5 
from equation (B5) for the values of P2/pi and P3/P4' and AE/~ 

from equation (B16) . From these calculations , AE/~ was plotted against 

uT/eiec with constant curves of P2/pi . Cross -plotting then yielded the 

dotted curves of constant AE/~ on the right side of parts (a) of the 

charts. 

From calculated data, engine horsepower was plotted against compres­
sor pressure ratio for constant values of P3!P4. Similarly, specific 

fuel consumption was plotted against compressor pressure ratio. These 
two preliminary plots were then read at selected values of compressor 
pressure ratio to produce the curves of constant compressor and turbine 
pressure ratios shown on the (b) portions of the charts. These curves 
are independent of turbine stress. 

The dotted curves on the (b) portions of the charts show constant 
values of AE/~. They were obtained from the corr esponding dotted lines 

on parts (a) with the help of either of the preliminary plots just de ­
scribed. As discussed earlier, these curves of constant AE/~ are in-

dependent of turbine stress. Since the turbine hub -tip radius ratio has 
been assumed to be 0 . 5 throughout this analysis, a value of 0.75 for 
AE/~ means that the turbine- exit annular area has the same magnitude as 

the exhaust -nozzle area . Chart XI(b) has a dotted curve of AE/~ 

of 0.705 only. This means that the exhaust nozzles of all engines 
on this plot are choked. 

On the right side of all the (a) portions of the charts there is 
drawn a limiting curve . This curve separates turboprop-engine designs 
from turbojet - engine designs and was determined by the upper limit in 
equation (Bl), where it is assumed that 

Regions above the limiting curve are turboprop designs , and those below, 
turbojet . Immediately above the limiting curve, the t urboprop - engine 
design would have practically no propeller thrust . Therefore, such de­
signs cannot be seriously considered as represent i ng true turboprop 
engines. 
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TABLE I. - SUMMARY OF FLIGHT CONDITIONS AND 

ENG INE TEMPERATURES PRESENTED IN CHARTS 

Charts Flight Altitude, Flight Engine Turbine -
Mach ft velocity tempera- inlet 
number, ture ratio, tempera-

Me mph knots T ' IT' ture, 3 1 
T3, 
oR 

I ° Sea level ° ° 4 2075 

II ° 0 ° 5 2593 

III .6 456 396 3 1668 

IV . 6 456 396 4 2225 

V .6 36,089 396 344 4 1672 

VI . 6 396 344 5 2090 

VII .6 396 344 6 2509 

VIII .8 528 458 4 1760 

IX .8 528 458 5 2200 

X .8 528 458 6 2641 

XI .8 528 458 6.82 3000 



Station 

0 1 2 3 4 

Figure 1. - Schematic sketch of turboprop engine . 
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(a) Engine parameters. 

Chart XI. - Turb oprop-engine performance. Flight Mach number at tropopause, 0.8; turbine-inlet 
temperature, 3000 0 R; engine temperature ratio, 6.82. 
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Chart Xl . - Concluded. Turboprop-engine per formance. Flight 
Mach number at tropopause, 0 . 8; t urbine-inlet temper ature, 
30000 R; engine temperature rat io, 6.82. 
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