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SUMMARY 

A limited  analysis  has  been  made  to  determine  the  effect  of 
increasing  the  fin-chord  length  while  holding  the  span constmt on  the 
lift  and  longitudinal  static  stability  of  fin-body  combinations.  Rec- 
tangular  and  triangular  fins  with  spans  of 2 and 3 body  diameters  in 
combination  with a fineness-ratio-14  ogive-cylinder  body  were  studied. 
Results  indicate  that,  as  the  chord  length  is  increased, a value  is 
reached  where  further  increases  in  chord  length  result  in a loss  in  sta- 
bility.  Lift  continues  to  increase  beyond  this  value,  however,  and  in 
some  cases  increases  with  increase  in  chord  length  up  to  the  maximum 
investigated (11 body  diameters).  The  chord  length  at  which maxim 
stability  occurs  is  higher  at  supersonic  speeds  than  at  subsonic  speeds 
and  is,  in  general,  higher  for a triangular  fin  than  for a rectangular 
fin.  No  appreciable  difference  in  the  chord  length  for maxim stability 
was  found  for  ratios  of  body  diameter  to  fin  span  of 0.33 and 0.50. 

INTRODUCTION 

Space  limitations  and  ease  of  handling  necessitate  that  the  fin  span 
of  many  fin-body  combinations  (fin-stabilized  ammunition,  air-to-air  mis- 
siles,  sounding  rockets)  be  kept  small. Also, at  high  Mach  numbers  the 
lift-curve  slope  becomes small even  for  moderate-aspect-ratio  fins.  One 
method  of  obtaining  the  fairly  large  fin  area  required  for  stability  at 
these  Mach  numbers  is  to  increase  the  chord  length.  Increasing  chord 
length  without a corresponding  increase in span  decreases  aspect  ratio, 
however,  and  lift-curve  slope  decreases  with  decreasing  aspect  ratio  for 
all  plan  forms  at  subsonic  speeds  and f o r  
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degree  at  supersonic  speeds. Also, increasing  the  chord  length  toward 
the  nose  moves  the fin center  of  pressure  forward.  It  is  probable  there- 
fore  that  a  chord  length  is  reached at which  additional  increases  result 
in  little  gain  in  lift or stability.  The  purpose  of  this  paper  is  to  use 
available  methods  to  study  analytically  the  effect  of  extending  fin  chord 
forward  from  the  body  base  for  rectangular  and  triangular  wings  in  combi- 
nation  with  a  fineness-ratio-14  ogive  cylinder  body  at  both  subsonic  and 
supersonic  speeds.  Where  possible,  the  calculations  are  compared  with 
experimental  data. 
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SYMBOLS 

body  cross-sectional  area 

total  fin  span 

fin  chord 

fin  chord  at  fin-body  juncture 

body  diameter 

lift 

body  length 

Mach  number 

pitching  moment 

dynamic  pressure 

lift  coefficient,  L/qA 

pitching-moment  coefficient,  m/qAd 

lift-curve  slope,  dCL/da 

slope  of  pitching-moment  curve,  dCm/da 

angle  of  attack 

center  of  pressure - 
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Subscripts: 

0 with  reference  to  body  nose 

0.51 with  reference  to  body  midpoint 

CONFIGURATION  STUDIED 

The  body  of  the  configurations  selected  for  study  in  this  paper  is 
one  which  is  typical  of  fin-stabilized  missiles  and  one  for  which  a  vide 
range  of  experimental  data  were  available  for  comparison. The body  con- 
sists  of  an  ogival  nose  with  a  fineness  ratio  of 2.5 and  a  cylindrical 
afterbody  with  a  fineness  ratio of 11.5. Rectangular  and  triangular  fins 
with  ratios  of  body  diameter  to  fin  span  of 0.33 and 0.50 were  studied. 
Sketches  of  the  configurations  investigated  are  shown  in  figure 1. 

METHOD 

Lift-curve  slope C h ,  moment-curve  slope  with  respect to the  nose 
Ck,o, moment-curve  slope  with  respect  to  the  body  midpoint C,,o.5z, 

and  center-of-pressure  location  xcp,  were  calculated  for  root-chord 
lengths  varying  from 0 to 11 body  dlameters.  In  all  cases  the  lift  coef- 
ficient  was  based  on  body  cross-sectional  area  and  the  moment  coefficient 
was  based  on  body  cross-sectional  area  and  body  diameter. The positive 
directions  of  forces  and  moments  are  given  in  the  sketch  in  figure 2. 
Mach  numbers  selected  for  the  calculations  were 0.26, 0.50, 0.80, 1.87, 
2.87, and 4.24 and  were  chosen  for  the  most  part  for  availability  of 
experimental  data. 

For the  rectangular  fin  at  supersonic  speeds  calculations  were  made 
by  method A of  reference 1, a  linearized  theory  approximation  which  assumes 
that  neglecting  the  tip loss in  fin  lift  will  exactly  compensate  for  neg- 
lecting  the  interference  lift  on  the  body  due  to  the  presence of the  fins. 
Values  of C b  were  obtained  for  the  triangular  fin  at  supersonic  speeds 
from  reference 2 which  used  exact  linearized  theory  but  replaced  the  body 
with  a  flat  plate  in  the  plane  of  the  fin.  Slender-body  theory  of  ref- 
erence 3 was  used  for  the  center-of-pressure  location. For the  rectangu- 
lar  fin  at subsonic speeds, C h  was  calculated  by  using  a  formula 
obtained  by  the  lifting-line  method,  an  elliptical  lift  distribution 
(ref. 4) being  assumed.  These  values  were  corrected  for  the  presence of 
the  body  by  the  slender-body  theory  of  reference 3 and  the  center-of- 
pressure  location  was  assumed  to  be  at  the  quarter-chord  line.  The 
linear  low-aspect-ratio  theory  of  reference 5 was  used  to  calculate  both 

I 
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lift  and  pitching  moment  for  the  triangular  fin  at  subsonic  speeds.  Com- 
pressibility  effects  at  subsonic  speeds  were  taken  into  account  on  both 
plan  forms  by  making  the  Prandtl-Glauert  correction.  The  lift  and 
center  of  pressure  of  the  body  alone  (the  body  not  in  the  presence  of 
the  fins)  were  obtained  at  both  subsonic  and  supersonic  speeds  by  using 
slender-body  theory  (ref. 3). The  experimental  data  were  taken  from 
references 6 to 10. 

It  should  be  noted  that  sample  calculations  were  made  by  several 
other  methods  (refs. 11 and 12 in  combination  with  refs. 3 and l3), but 
the  methods  described  previously  were  found  to  give  the  best  agreement 
with  experiment  over  the  entire  range  of  chord  lengths  investigated. 

RESULTS 

The  variation  of Ch, C%, o, Cx, 5 2 ,  and  center-of  -pressure 
location  with  chord  length  (rectangular  fin) or root-chord  length  (tri- 
angular  fin)  is  presented  in  figures 3 and 4. Included  in  the fi,o;ures 
are  experimental  data  from  references 6 to 10. The  agreement  between 
experiment  and  calculations  for  the  rectangular  fin  is,  in  general,  good. 
Some  discrepancy  between  experiment  and  calculation  appears  in  the  mag- 
nitude  of  the  center-of-pressure  location  at  medium  chord  lengths (2 to 4 
diameters).  The  trend  in  the  variation  of  center-of-pressure  location 
with  Mach  number  is,  however,  in  good  agreement  even  at  these  chord 
lengths. No experimental  data  were  available  for  triangular-fin  config- 
urations  of  the  type  investigated  herein.  (Experimental  verification 
of  the  methods  used  is  given  in  the  references  from  which  they  were 
taken. ) 

It  may  be  noted  from  the  curves  of  figures 3 and 4 that,  as  the 
chord  length  is  increased,  an  optimum  value  is  reached  beyond  which  an 
increase  in  chord  length  results  in a decrease  in  stability.  There  are 
two  reasons  for  the  decrease  in  stability.  One  is  that,  as  the  fin 
chord  is  extended  forward,  the  center  of  pressure  of  the  fins  moves  for- 
ward  also.  The  second is that,  as  the  chord  length  is  increased,  the  fin 
aspect  ratio  and,  consequently,  the  lift-curve  slope  (based  on  fin  area) 
is  decreased. A chord  length  is  reached  at  which  the  increase  in  fin 
area  is  almost  entirely  offset  by  the  decrease  in  lift-curve  slope.  It 
should  be.  noted,  however,  that  this  chord  length  is  considerably  higher 
than  the  optimum  for  stability.  In  other  words,  the  fin  lift  continues 
to increase  after  the  stability  begins  to  decrease  and,  in  some  cases, 
the  lift  continues  to  increase  up  to  the  maximum  chord  length  investigated. 

An indication  of  the  effect  of  changing  the  ratio  of  the  body  diam- 
eter  to  the  fin  span  may  be  obtained  by  comparing  figures  3(a)  and  3(b) 
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and f igures  4(a) and 4 ( b ) .  For both  rectangular and t r iangular   plan 
forms, the magnitude of C b  and Cm, i s  greatly  reduced by increasing 

chord  length for maximum s t a b i l i t y  when d/b i s  increased.  Also, C b  

continues  to  increase  with an  increase  in chord length up t o   t h e  maximum 
invest igated  for   both  ra t ios  of body diameter t o   f i n  span. 

a 
I d/b  from 0.33 t o  0.50. No appreciable change,  however, occurs  in  the 

I 

The da ta   fo r  C %,0.52 of f igures  3 and 4 a re   c ros s   p lo t t ed   i n   f i g -  

ure 5 as the  var ia t ion of chord length   for  maximum s t ab i l i t y   w i th  Mach 
number. The chord  length  for maximum s t a b i l i t y  remains fa i r ly   cons tan t  
a t  subsonic  speeds. A t  supersonic  speeds,  the  chord  length  for maximum 
s t a b i l i t y  i s  higher  than a t  subsonic  speeds and increases  with  increase 
i n  Mach number. In  general,  chord  length  for maximum s t a b i l i t y  i s  higher 
for   the  t r iangular   f in   than  for   the  rectangular   f in .  

CONCLUDING REMARKS 

An analyt ical   s tudy of t he   e f f ec t  of increasing  the  fin-chord  length 
while  holding  the  span  constant on the l i f t  and long i tud ina l   s t ab i l i t y  of 
the  fin-body  combinations  indicates  that, as the chord  length i s  increased, 
a value i s  reached a t  which fur ther   increase   in   chord   l ength   resu l t s   in  a 
loss i n   s t a b i l i t y .  The l i f t ,  however, continues to   increase  as the  chord 
length i s  increased beyond th is   va lue  and, i n  some cases,  increases up t o  
the  m a x i m u m  chord  length  investigated (11 body diameters). Changing the  
r a t i o  of the  body diameter t o   f i n  span  from 0.33 t o  0.50 reduced  the 
magnitude of l i f t  and moment-curve slope  but  did  not  appreciably change 
the  chord  length  for maximum s t a b i l i t y .  The chord  length for m a x i m u m  
s t a b i l i t y  i s  higher at supersonic  speeds  than a t  subsonic  speeds and 
increases w ' i t h  increasing  supersonic Mach number. The chord  length  for 
m a x i m u m  s t a b i l i t y  is, in   general ,   h igher   for  a t r i a n g u l a r   f i n   t h a n   f o r  a 
r ec t angu la r   f i n  by  about 1/2 t o  1 body diameter,  depending on Mach number. 

Langley Aeronautical  Laboratory, 
National  Advisory Committee for  Aeronautics, 

Langley Field,  Va. ,  September 26, 1956. 
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Figure 1.- Sketches of configurations  studied. 
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Figure 2.- Sketch showing posi t ive  direct ion of forces and moments. 
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Figure 3 . -  Variation of C L ~ ,  Cma, and xcp  with c for the  rectangular 
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Figure 3 .  - Continued. 
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Figure 3 .  - Continued. 



1.3 

4 6- 8 10 12 
c ,  diameters 

a 

2 

2 4 6 8 
c, diameters 

(b) Concluded. 

Figure 3.- Concluded. 

10 12 



NACA RM ~ 3 6 ~ 1 6  

- 3  

-2  

-1 

0 

s 1  

C 

1 
0 

2 4 6 8 
c f ,  diameters 

10 12 

2 4 6 a 
cr, dlameters 

10 12 

(a) d/b = 0.33. 

Figure 4.- Variation of C L ~ ,  ‘2%. and xcp with cf fo r   t he   t r i angu la r  

f i n .  



m 

0 
E 

h 
& 

11 

9 

7 

5 

3 

1 
0 2 4 6 8 

c f ,  diameters 
10 12 

2 4 6 8 
cf, diameters 

(a) Concluded. 

Figure 4. - Continued. 

10 12 



16 

0 
W 
k 
ho 
a W 

k 
W a 
1 

0 
n 

€? 
V 

al 
a, 
k 
ho 
a W 

k 
a, a 
1 

LC\ 

0 -. 
E? 
V 

- 3  

-2  

-1 

0 

NACA RM ~56~16 

2 4 

-1 

6 
c f ,  diameters 

8 10 12 

c f ,  diameters 

(b) d/b = 0.50. 

Figure 4.- Continued. 



17 

a, 

0 c 
m 

1 

9 

7 

5 

3 

1 
0 2 6 8 10 12 

c f ,  diameters 

Q, 
a, 
k 

a 2 
k 
e, a 

.4 

.2 

n 
c diameters f ’  

( b) Concluded. 

Figure 4. - Concluded.. 



18 

1 2 3 
M 

d/b=O .33 
4 5 

0 1 2 3 
M 

d/b=O .33 

Figure 5.- Variation of optimum chord o r  root chord  with Mach  number. 

NACA - Lnngley Field, Vd 


