
r 

$ON FbENT1AL Copy 
RM L57A3O 

Ce) 

Le) 

0 NACA 

RESEARCH MEMORANDUM 

THEORETICAL IIVESTIGATION OF THE EFFECT OF RUDDER


AND STABILIZER DEFLECTIONS ON THE ANGLES 

OF ATTACK AND SIDESLIP IN 

RAPID ROLLS 

By C. H. Woodling
Ca 

Langley Aeronautical Laboratory 
Langley Field, Va. 

CLASSIFIED DOCUMENT C* 

This material contains Information affecting the National Defense of the United States within the meaning 
of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any 
manner to an unauthorized person is prohibited by law. 

NATIONAL ADVISORY COMMITTE
FOR AERONAUTICS 

WASH NGTOF'4 

March 27, 1957 



NACA RM L57A3Oa	 CONFIDENTIAL 

NATIONAL ADVISORY COMvIITTEE FOR AERONAU'TICS 


RESEARCH MEMORANDUM 

THEORETICAL INVESTIGATION OF TEE EFFECT OF RUDDER 

AND STABILIZER DEFLECTIONS ON THE ANGLES 

OF ATTACK AND SIDESLIP IN 

RAPID ROLLS 

By C. H. Woodling, 

SUMMARY 

A theoretical investigation has been made of the effects of rudder 
and stabilizer deflections on the angles of attack and sideslip experi-
enced by an airplane in rapid rolls. Expressions are derived from the 
five-degree-of-freedom airplane equations of motion which define the 
rudder and stabilizer motions necessary to maintain constant angle of 
attack and zero sideslip during an aileron roll. These expressions are 
simplified and considered as the basis for automatic controls. The effect 
on the rolling behavior of the airplane of applying ramp-type rudder and 
stabilizer deflections, similar to the exact rudder and stabilizer inputs 
in magnitude and direction, is also investigated. The results are pre-
sented, for the most part, as time histories of the airplane response to 
aileron deflections with and without rudder and stabilizer inputs. Maxi-
mum loads experienced by the vertical and horizontal tail surfaces during 
aileron rolls are calculated for the automatic control investigation. 

The control motions calculated by using the expressions which are 
derived from the airplane equations of motion are useful in determining 
the magnitude and direction of the rudder and stabilizer deflections that 
might be applied by a pilot or by automatic controls to maintain small 
angles of attack and sideslip variations in aileron rolls. For the air-
plane configuration and flight condition investigated, the ramp-type 
rudder and stabilizer deflections were effective in reducing the angles 
of attack and sideslip in rapid rolls. The automatic rudder and stabi-
lizer had a large favorable effect on the rolling behavior of the air-
plane for the cases investigated. The maximum loads on the vertical and 
horizontal tail surfaces were generally reduced when the automatic con-
trols were applied.
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INTRODUCTION 

Current fighter airplanes have experienced large changes in angles 
of attack and sideslip, resulting in excessive loads, during rapid rolling 
maneuvers. A simplified linear analysis of the problem reported in refer-
ences 1 and 2 indicated that roll coupling between the lateral and longi-
tudinal modes could cause an instability in the form of a divergent motion 
as the rolling velocity of the airplane approaches the natural frequency 
of the airplane in yaw or pitch. The design trend of fighter airplanes 
resulting in large inertia about the pitch and. yaw axes relative to that 
about the roll axis, coupled with the loss in directional stability as 
Mach number increases, are predominant factors contributing to the afore-
mentioned uncontrollable motions. 

Theoretical studies of various means of reducing roll coupling have 
been made in references 3, 1, and 5 . References 3 and 1i pointed out 
that increased pitch damping was very effective in reducing the angles 
of attack and sideslip obtained in aileron rolls. Reference 5 presented 
a method of avoiding roll-coupling instability in which rudder and sta-
bilizer inputs were automatically applied to counteract the yawing and 
pitching moments produced on the rolling airplane by the predominant 
inertia coupling terms. This paper investigates the possibility of 
applying the rudder and stabilizer in coordination with the ailerons 
so as to roll the airplane with minimum variations in the angles of 
attack and sideslip. The analysis first determines the exact rudder 
and stabilizer inputs that would be required to roll an airplane with 
La and 3 identically equal to zero. By using these exact rudder and 
stabilizer inputs as an indication of the direction and approximate mag-
nitude of the controls required, the effect of simple ramp-type deflec-
tions such as might be applied by a pilot are investigated. Finally the 
exact control expressions are simplified and considered as equations for 
automatic controls, and their effect on the rolling airplane are studied. 
Time histories of the controls and the time responses of the rolling air-
plane, calculated on an electronic analog computer, are presented. Since 
the loads on the horizontal and vertical tails are dependent on the mag-
nitude of the rudder and stabilizer deflections, as well as the motions 
of the airplane, the maximum loads with and without the automatic rudder 
and stabilizer are computed and compared. 

The rudder and stabilizer expressions defining the controls required 
for rolling at constant angle of attack and zero sideslip are derived 
from the five-degree-of-freedom airplane equation of motion. The quan-
titative results, such as the airplane time histories and the tail loads 
calculations, are for a swept-wing airplane configuration flying at one 
altitude and Mach number.
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SYMBOLS 

The forces and. moments are referred to the body axes system shown 
in figure 1. 

L	 rolling moment, ft-lb 

M	 pitching moment, ft-lb 

N	 yawing moment, ft-lb 

Y	 side force, lb 

CL	 lift coefficient,	 Lift 

pV2S 
2

Y lateral-force coefficient, 	
pV2S 

L C 1	 rolling-moment coefficient,
lpV2Sb 

Cm	 pitching-moment coefficient,	 M 

pV2S 
2 

C	 yawing-moment coefficient,	 N 

pV Sb 
2 

C 1	 rate of change of rolling-moment coefficient with aileron 
ba	 deflection, per radian 

C	 rate of change of yawing-moment coefficient with rudder 
Br	 deflection, per radian 

C	 rate of change of yawing-moment coefficient with aileron 
Ba	 deflection, per radian 

Cm.	 rate of change of pitching moment with stabilizer deflection 
it	 (horizontal tail), per radian 
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total aileron deflection, radians unless otherwise noted 

stabilizer deflection, positive when trailing edge is down, 
radians unless otherwise noted 

stabilizer deflection from trim value, deg 

rudder deflection, positive when trailing edge is to the 
left, radians unless otherwise noted 

S	 wing area, sq ft 

b	 wing span, ft 

mean aerodynaiic chord, ft 

p	 air density, slugs/cu ft 

V	 velocity, ft/sec 

€	 angle between body axis and principal X-axis, positive when 
reference axis is above principal axis at the nose, deg 

moments of inertia about X, Y, and Z body axes, respectively, 

slug-ft2 

1xz	 product of inertia (positive when principal axis is inclined 
below X-body axis), slug-ft2 

e
	 moment of inertia of rotating engine parts about X-body axis, 

slug-ft 

m	 mass of airplane, W/g, slugs 

W	 weight of airplane, lb 

g	 acceleration due to gravity, 32.2 ft/sec2 

flg	 normal lift acceleration at center of gravity, g units 

a.	 angle of attack of airplane body axis, radians unless other-
wise noted 

change in angle of attack from initial or trim value, deg 

13	 angle of sideslip, radians unless otherwise noted 
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0 angle of roll, radians 

angle of yaw, radians 

p rolling angular velocity, radians/sec 

pitching angular velocity, radians/sec 

r yawing angular velocity, radians/sec 

engine rotational velocity, radians/sec

direction cosines describing orientation of airplane axis 
system (see ref. ) 

t	 time, sec 

L --a

m 

Cm 
ci

2V 

2V 

C?, =__! 

àc 
Cn 3 =

ôc 

13	 I3 

C 1 =
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ôc 
C
lr

2V 

oc 
C

npa 

C =__I 
flT

2V 

- pV2Sb 
a	 2	 öa 

- L_ pVSb2 C
lp 

L	 - r
pVSb2 C1

r 

L13- pV2Sb C
113 2 

N5r=
pV2Sb C 

2 

Nc pV2Sb =	 C 
'-'a 2 

Nr =
pVSb2 Cnr

N - pVSb2 C 
p-	 i.	 ii 

N - pV2S1 
13	 2	 13 

2 = pV S 
P	 2	 .Lp
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7 

pV2Sc 
Mj

=	 2	
Cm 

M	
= pVS2

Cmq 

M pVS2 Cm. 
a 

- pV2S 
2 

Lt - pV2S CL 

2	 a

Subscript: 

o	 initial condition 

cg	 center of gravity 

A dot over a symbol represents a derivative with respect to time. 

EQUATIONS OF MOTION 

The nonlinear airplane equations of motion, referred to airplane 
body axes (fig. i) and assuming constant forward speed, may be written 
as follows: 

Rolling-moment equation

L 

1x 

Pitching-moment equation

M. 

____

	

	
e	 M	 Ma Ma (r2p2) q=	 pr+ 

1	 I	 I	 I 
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Yawing-moment equation

IXWe	 N8	 N8	 N	 N 

____

	

	
e ci+	 8r8 +.Lr+-p+ pq + T	 a 

Iz	 Iz	 Iz	 Iz	 Jz	 Iz	 Iz 

Iz 

Lateral-force equation

g 

Normal-force equation

L' 
=	 - pf3 +	 n -

mV 

Direction cosine equations

= m3r - n3q


= n3p - 13r


113 = 1 3 q - m3p 

The direction cosine equations were used to include the proper component 
of the gravity vector in the two force equations. 

ANALYSIS 

This paper investigates the possibility of applying rudder and sta-
bilizer, either by a pilot or by an automatic control, in coordination 
with the ailerons so as to roll the airplane with a minimum of variation 
in the angles of attack and sideslip. The analysis determines the exact 
rudder and stabilizer motions that are required to roll an airplane with 

and 13 identically equal to zero. Based on these control motions 
an indication is obtained of the direction and magnitude of rudder and 
stabilizer that might be applied by a pilot to maintain small variations 
in the angles of attack and sideslip during rapid rolls. The exact rudder 
and stabilizer expressions are simplified and considered as possible 
automatic controls equations.

CONFIDENTIAL



NACA EM L77A3Oa	 CONFIDENTIAL	 9 

Rudder and Stabilizer Required for Zero Variation 

of the Angles of Attack and Sideslip 

First, consider the lateral- and normal-force equations for 
= = = = 0. If it is assumed that the rolling is initiated 

from	 =	 the lateral-force equation becomes 

	

O=a0p-r+m3	 (1) 

and the normal-force equation becomes

L' 

	

0 = q + n3 - - c	 (2) 
mV 

From equation (i) the yaw rate is 

r = c 0p + 

and the time rate of change of r is 

r =cD+–m 
V 

From equation (2) the pitch rate is 

L'a 
q=—ct -fl 

mV	 V


and the time rate of change of q is 

= -	 1:13 

Thus, if the rudder and stabilizer are applied during the rolling 
maneuver so as to produce the yaw rate and yaw acceleration as prescribed 
by equations (3) and (3a) and the pitch rate and pitch acceleration as 
prescribed by equations ()4) and i-a), the angle of attack and angle of 
sideslip will be zero according to the lateral- and normal-force equations. 

The rudder required to produce the prescribed velocities and accel-
erations is obtained by substituting for r,	 , q, and q, equations (), 
(3a), (L), and fl-i-a) into the yawing-moment equation and also remembering 
that Az. and	 are assumed zero. This substitution yields

(3) 

(3a) 

(Ii.) 

(1a) 
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=	
{ (ao -	

[(I' ;)

	
a0 -	 a2 + 

- a +	
+ ig	 - I\	 ')(Z 1 ' ) - —an3p +	 + 

(\(Ixz	 a - Nr\	 + (\(IXwe\	 fg\2(IXz'\ 

V)mV o	 )3	 v) i)3)f733 

/IXU)e L a \	 Nb 
______	 - - b 

1	
ao)	

'z a}
	 (5) 

The stabilizer required to produce the prescribed velocities and accel-
erations is obtained bymaking the same substitutions into the pitching-
moment equation. Thus, 

ly I r lz - Ix 	 1xz	 ___ 

	

_______	 /IXewe \ 

	

+	 (a 2_ip2+ 

'tLL\ 

(g\[71z - 'x\ + 2a	
im3p - ()'3 +

ly) 3 - )	 ° 'J 
2(I\ m 2 +	 n -	 a 

v) iy) 3	 mV	
-	

ao}	 (6) 

From expressions (5) and (6), therefore, one can determine, for a par-
ticular airplane and flight condition, the ideal rudder and stabilizer 
motions required for	 = f3 = 0 in a rolling maneuver. These inputs 
(as given by eqs. (5) and (6)) will hereafter be referred to as the exact 
control inputs. They are exact in the sense that they will produce Lrt 
and 13 identically equal to zero for any rolling input according to the 
equations from which they were derived. 
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Automatic Rudder and Stabilizer Deflections for 

&z. and p Approximately Equal to Zero 

The expressions for the proposed automatic controls are derived 
from the exact control equations. In order to simplify the exact rudder 
and stabilizer expressions (eqs. (5) and (6)), it is assumed that they 
are derived from the equations of motion referenced to principal body 
axes. In practice if the sensing instruments for the automatic controls 
are aimed to record the motions of the airplane relative to the prin-. 
cipal body axes then the effect of the product of inertia on the recorded 
quantities will be zero. Therefore the 1xz terms in expressions (5) 
and (6) are zero. The angle of attack in equations (5) and (6) now is 
the angle of attack of the principal X-axis of the airplane. Also the 
assumption is made that the gravity terms in equations (3) and (1) can 
be neglected. The terms 	 in3 and	 n3 contain the effect of the 

rotating gravity vector in the two force equations. During a rapid roll 
with small pitch rate, these vary approximately as sin pt and cos pt, 
respectively. These terms are not necessarily small as compared with 

LTa ap and -v- • However, since m3 and n3 are approximately peri-

odic, it is assumed that they can be neglected and that the desired yaw 
and pitch rates will be the mean values as determined by equations (3) 
and (I). That is

r=ctp	 (7) 

and

(8)  
mV 

Also from equation (7),	 is

(9) 

and from equation (8),	 is

. =o	 (io) 

Substitution of equations (7), (8), (9), and (10) into the yawing-moment 
and pitching-moment equations for 	 =	 = = 0, which is equivalent 

to setting the	 and gravity terms to zero in equations (5) and (6),


yields
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and

'	 J	 . -	 Lt N N1	 N8 
p 1	 a 8 r

boPLc
—a 
V	 0 

i	 )m
+ 

0 JP_8a 

IX We L' e a 
- ao} 

Iz v-
(ii) 

=	

- 

F	 - Ix)12 + (e
- a

o)

"M	 L t
a a +	 a1 1 p

mV	 °	 1y	
o)

(12) 

If these controls are to operate only while the airplane is rolling, 
some further modifications can be made. The last term in equation (11) 
defines the rudder required to counteract the yawing moment on the air-
plane produced by the engine gyroscopic term IXWe and the pitching 

L' 
velocity q —a a0 . If this term is retained in the rudder equation 

mV 
the yawing torque will be automatically compensated for. However in 
this analysis the term is deleted assuming that in a g maneuver if the 
yawing moment due to the engine is noticeable, the pilot will generally 
apply approximate corrective rudder. The last two terms or the stabi-
lizer equation, which are not a function of the roll rate, are also 
deleted. These two terms define the approximate stabilizer deflection 

required to trir the airplane at a 0 . If the gravity term	 n3 had 

not been neglected (in eq. (8)), in the derivation of the automatic con-
trol equations, the trim value of it would be determined exactly by 

these two terms. Assuming then that the pilot will apply the necessary 
stabilizer deflection to trim the airplane at a 0, the incremental sta-
bilizer to be applied automatically during a rolling maneuver is given 
by the first two terms of equation (12). When those terms which have 
been suggested are deleted, the final equations to be used for the auto-
matic rudder and stabilizer are as follows: 

= N8r	

- [(Ix	
L a +	 a +	 p - a 6a} (13) 
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and.

-ly I __	 __ _______	 71x °e 
-	 [(iz	 x)a12 +	 e a)}	 (i) 

The term a0 appearing in the stabilizer and rudder expressions is 

defined as the initial angle of attack or the angle of attack from which. 
the roll is initiated. If the airplane is rolled from 2g or 3g flight, 
the a0 in the stabilizer and rudder expressions must be the a cor-

responding to 2g or 3g. It is of interest to note that expressions (v), 
(8), and (9) indicate that the larger the a 0 (higher g conditions) 

from which the airplane is rolled, the higher the required yaw rate and 
acceleration (for the same roll rate) and the pitch rate must be. These 
higher rates result in proportionally larger required rudder and stabi-
lizer deflections.

RESULTS MID DISCUSSION 

The results of the analysis are for the most part presented as time 
histories of airplane motion and control inputs computed on an electronic 
analog computer. These results are divided into three parts, namely: 

(1) Time histories of the exact rudder and stabilizer inputs cal-
culated by equations (5) and (6) for several g conditions and several 
aileron deflect ions. 

(2) Time histories of the airplane response in aileron rolls to 
ramp rudder and stabilizer inputs similar to the exact control inputs 
in magnitude and direction. 

(3) The effect of automatic rudder and stabilizer control on the 
airplane response in aileron rolls and calculation of the vertical and 
horizontal tail loads produced by these controls during rolling. 

The time histories were calculated. using the five-degree-of-freedom air-
plane equations of motion. The airplane used in this study was a swept-
wing fighter airplane configuration, assumed to be flying at an altitude 
of 32,000 feet and a Mach number of 0.7. The stability derivatives, 
mass characteristics of the airplane and other constants used. in the 
study are presented in table I. All the time histories presented are 
for left rolls only, since for the conditions investigated this direction 
of roll is more severe than right rolls. This difference in right and 
left rolls can be attributed to the asymmetric moments produced on the 
aircraft by the rotating engine (ref s. (3) and (6)). The analog runs 
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for rolls with aileron alone, that is, stabilizer and rudder not applied, 
are for approximately 360 0 roll angle. Generally, for these cases the 
airplane after rolling.360° would not remain at zero bank angle but would 
reverse in roll direction due to the rolling moment produced by the 
effective dihedral. No attempt was made to stop this rolling after the 
3600 roll angle was obtained. A simple ramp-type aileron input with a 
500 per second rate was used throughout the investigation. 

Exact Rudder and Stabilizer Inputs 


for	 x = f3 = 0 

The airplane time histories with and without the exact rudder and 
stabilizer inputs and also the time histories of the rudder and stabi-
lizer deflections calculated by equations (5) and (6) are shown in fig-
ure 2. The two cases on each figure are compared for the same aileron 
input. Figure 2(a) shows the response of the airplane to a 20° ramp 
aileron deflection. The airplane is initially at 1 g trim flight and 
rolled from this condition. For the aileron-alone case, i.j is held 

at its initial trim value and or at zero. For this case the angle of 

attack and angle of sideslip reach values of 
_50 and _200, respectively, 

during the rolling. Notice the rapid change experienced in the angles 
of attack and sideslip during the recovery phase, that is, after the 
aileron has been returned to zero. When 8r and it are applied as 

defined by equations (5) and (6), respectively, the angle of attack 
remains at its initial value and the angle of sideslip remains at zero 
during the rolling. It should be noted that the roll rate response is 
somewhat improved. The lack of overshoot in the roll rate response 
during the recovery phase and the higher level of rolling velocity for 
zero ict and 13 is mainly the result of zero dihedral effect during 
the maneuver. The increase in the roll velocity is more pronounced in 
some of the subsequent figures. The maximum incremental stabilizer 
deflection required is about +2°. It is interesting to note that the 
direction of the stabilizer is such to produce a pitch-dom moment on 
the airplane, or probably opposite stabilizer to that which a pilot 
would instinctively apply as he experienced the negative normal g due 
to the angle of attack. The maximum rudder deflection required is 
about +l)i0 and _50. The change in sign of the rudder deflection is 
principally due to the 	 term in the 8r equation (eq. (5)). 

Figure 2(b) shows the response of the airplane to a 30° ramp aileron 
input. The airplane is initially at 1 g trim flight. For the aileron-
alone case, the maximum excursions in a. and 13 are slightly less than 
those shown in figure 2(a). According to reference 3, which presents an 
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analysis for an airplane of almost identical mass and aerodynamic char-
acteristics and for the same flight condition, the maximum excursions 
in a. and 13 due to roll coupling occur for average roll rates between 
-1.5 and -2.0 radians per second. Average roll rate in this case is 
defined as 2it divided by the time required to roll to 360°. Although 
the roll angle record is not shown for the cases presented in this paper, 
the average roll rate calculated from unpublished analog results for 
figure 2(a) is about -1.9 radians per second and for figure 2(b) about 
_2. Li. radians per second. This explains the slight decrease in the maxi-
mum angles obtained for figure 2(b) as compared with figure 2(a). The 
maximum incremental stabilizer and the rudder deflections required for 

= 13 0 are larger than those for ba = 20° due to the dependency 

of the it and r on the roll rate. Comparison of figures 2(a) and 
2(b) also indicates that the magnitude of the prescribed yaw rate, but 
not the magnitude of the pitch rate, is a function of the roll velocity 
(see eqs. (3) and ()i.)). 

Figure 2(c) shows the response of the airplane to a 200 aileron 
deflection. For this case, the airplane is rolled from a steady 2g con-
dition. The rolling for this case and all subsequent 2g cases is ini-
tiated with the flight path horizontal. An initial pitch rate of about 
0.05 radian per second and an angle of attack of 100 is required for 
constant g flight. The trim stabilizer deflection is -3.5°. For the 
aileron-alone case, because of the low roll rate (an average roll rate 
of -0.9 radian/second), the aileron had to be held on about 1 seconds 
in order to roll the airplane through 360°. The small roll rate is a 
direct result of the large opposing rolling moment produced on the air-
plane by the relatively high value of the effective dihedral C 113 at 

an angle of attack of 10°. (See table I.) Because of the low rate 
developed, this case does not exhibit any serious roll coupling tendencies. 
When t and r are applied, a large increase in the roll velocity is 

noticed and, in fact, since the same aileron input was used, the airplane 
for this case rolled through almost 1,080° of roll angle. Notice that 
the stabilizer and rudder deflections for this case are approximately 
twice as large as those shown in figure 2(a). This results from the 
fact that the angle of attack from which the roll is initiated in this 
case is exactly double that for the 1 g case. The maximum pitching and 
yawing velocities for LcL = 13 = 0 for this case are also increased for 
the same reason. 

Figure 2(d) shows the response of the airplane to a 30° aileron 
deflection, where the airplane is initially at 2g. The aileron-alone 
case exhibits very severe roll-coupled motions. Relatively large sta-
bilizer and rudder deflections are needed to keep ia and 13 zero 
because of the combination of the large angle of attack and the high 
roll rate developed. A sizeable increase in roll rate is noticed for 
the	 t=13 =0 case.
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It should be noted that in figure 2 and the subsequent figures 
the magnitude of the rudder and stabilizer deflections required for 

= = 0 are inversely proportional to the effectiveness of the con-
trol surfaces. That is, if the control effectiveness - especially in 
the case of the rudder - could be increased, the corresponding deflec-
tion would be decreased. As has been pointed out in reference 5 the 
assumed value of C 	 (rudder effectiveness) for this airplane is only 

about one-third of that provided bn many airplanes. However a decrease 
in deflection due to increased control effectiveness would not mean a 
reduction in the tail loads. 

Effect of Ramp-ype Rudder and Stabilizer Inputs 


on the Airplane Response in Aileron Rolls 

Using the time histories of the stabilizer and rudder deflections 
shown in figure 2 as a basis of the controls required for rolling with 
small changes in the angles of attack and sideslip, the effect of some 
ramp-type i- and r inputs on the rolling airplane is presented in 

figures 3 and Li-. All the ranrp rudder and stabilizer inputs were applied 
simultaneously with the aileron. Also, they were reversed to return them 
to their initial value at approximately the same time as the aileron 
reversal was effected. The rate for all the stabilizer deflections was 
assumed to be 50 per second and the rate for the rudder deflections 
was set at 200 per second. 

Figure 3 presents a comparison of the effect of the ramp inputs 
with that of the exact rudder and stabilizer inputs. Figures 3(a) and 
3(b) present the airplane time histories for (n g)	 1 and 

= 200 and 300, respectively. Figure 3(c) shows the time histories 
for (ng) = 2 and	 = 300 . The aileron-alone cases and the exact 

control input cases are repeated from figure 2. The magnitude of the 
ramp rudder and stabilizer deflections that were used in figure 3 are 
a rough approximation of the average values of the exact it and 

Also, the ramps were applied in only one direction, that is, it can be 
seen that in the case of the rudder deflection no attempt was made to 
follow the exact rudder to its negative value and then back to zero. 
In spite of these differences from the ideal rudder and stabilizer inputs, 
the angles of attack and sideslip variations were considerably reduced 
from those obtained for the aileron-alone cases. The tendency for the 
o response to vary rather abruptly at the initial part of the maneuver 
for the ramp input cases is due mainly to the stabilizer deflection that 
was used. That is, because of the rate and time of application assumed 
for the stabilizer, this control causes the airplane initially to pitch 

CONFIDENTIAL



NACA RN L57A5Oa	 CONFIDENTIAL	 17 

negatively, which results in a corresponding decrease in the angle of 
attack. With reference to the exact stabilizer motion, it appears that 
if the stabilizer deflection would have been applied at a slower rate 
or with some delay, smaller a changes would have been experienced. 
Even though the angle of attack still varied abruptly (particularly in 
figures 5(b) and 5(c)) when the ramp deflections were applied, the total 
angle of attack never reached the negative values as did the aileron-
alone cases. 

Since the rudder and stabilizer deflections shown in figure 5 were 
applied at the beginning of the roll maneuver, these results are more 
indicative of the effect of preventive, rather than corrective, controls. 
Preventive controls, as used here, are defined as controls applied in 
such a manner so as to prevent subsequent deviations, such as those 
applied with the aileron at the initiation of the roll maneuver in fig-
ure 5. Corrective controls would be applied after some deviation occurs - 
for instance, at t = 1.7 seconds for the solid curves of figure 5(a). 
Normally in a rolling maneuver the pilot will attempt some sort of coor-
dination of the controls, such as the application of the rudder with the 
aileron to maintain small angles of sideslip. In some cases the effec-
tiveness of rudder for controlling the sideslip may be considerably 
reduced due to adverse moment produced by the inertia coupling term 
(I - Iy)pq. This term becomes significantly large in many cases because 
of the high roll rate and also the relatively large pitching velocity 
that is developed during rapid rolls. For example, notice the values 
of pitching velocity that are encountered during the aileron-alone cases 
shown in figure 5. High rates of pitching have also been experienced 
in actual flight maneuvers such as reported in references 7, 8, and 9. 
In fact, it is this pitching velocity coupled with the rolling velocity 
that produces a yawing moment opposite to that produced by the stabi-
lizing NL3. When the yawing moment due to pq becomes larger than 

that due to N13, rolling instability results. Proper stabilizer inputs 

to maintain a minimum amount of pitching during rapid rolls, which may 
be contrary to pilot stimuli, then should not only permit more favorable 
use of the rudder but should also reduce the possibility of instability 
due to roll coupling. This is borne out in figure 5 for the three cases 
shown. Also, the fact that reduction of the pitching velocity in rapid 
rolls tends to reduce the severity of the maneuver was pointed out in 
references 3 and t4, where analog results indicated that ideal pitch 
dampers were very effective in reducing the angles of attack and side-
slip encountered in aileron rolls. 

Figure shows the effect of several combinations of ramp rudder 
and stabilizer deflections applied with the aileron. Figures li-(a), li-(c), 
and )-i-(e) present a comparison of the relative importance of the rudder 
and of the stabilizer when applied separately with the aileron. Fig-
ures 1-(b), 1-(d), and )i-(f) give some indication of the sensitivity of the 
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rolling airplane to the magnitude of the applied stabilizer deflections. 
In figure li-(a) for (n	 = 1 arid ba = 200 , it can be seen that all 

three of the control combinations were effective in reducing the a. 
and 3 motions during the recovery phase of the maneuver. With the 
exception of the first negative variation of i, the angles of attack 
and sideslip variations for 	 = 0 are nearly the same as those 

obtained when both the rudder and stabilizer are applied with the aileron. 
It should be noted that even though the 	 = 0 case exhibits small

angles of attack and sideslip variations these results should be evalu-
ated in light of the low level of roll rate experienced for this case. 
That is, since the low roll rate is responsible, in part, for the small 
variations it is probable that if a larger aileron deflection were used 
in this case to produce a larger roll rate the angles of attack and 
sideslip variations would also be increased. It appears that if a com-
paratively high rate of rolling is required the stabilizer applied with 
the aileron is at least as effective, and in some cases (see figs. ).i-(c) 
and )--(e)) more effective, in maintaining small variations in the angles 
of attack and sideslip than the rudder applied with the aileron. 

Since the stabilizer when applied in combination with the rudder 
and aileron appears to be quite effective in reducing the angles of 
attack and sideslip variations, it is important to know how sensitive 
the airplane at this flight condition is to the magnitude of the stabi-
lizer deflection. Figure b) shows three values of 	 with r 10° 
for (n	 = 1 and	 = 20°. Even though the angles of attack and 

sideslip variations are directly dependent on the magnitude of i' 

all three cases offer a definite improvement, especially during the 
recovery phase, over the aileron-alone case shown in figure 3(a). 
Although the range of values shown here for	 -t is small, it should 

be remembered that the 	 per g is about l.'(. Thus a pilot, because 

of this high sensitivity of the control, could probably distinguish 
between say 10 or 30 of stabilizer deflection. It is also interesting 
to note the effect that the longitudinal control (sit) has on the lat-

eral variables, namely, yawing velocity and sideslip angle. The differ-
ence in the yaw rate and, consequently, the sideslip is attributed to 
the (I - Iy)pq term in the yawing-moment equation. The angle-of-
attack response during the initial part of the maneuver is seen to be 
proportional to the magnitude of 	 This effect was mentioned in 

the discussion of figure 3. 

Figure c) shows the effect of the rudder and stabilizer deflec-
tions for an aileron input of 30° and (ng) = 1. Note that for 	 = 0 

the rudder input of 15° is not sufficient to yaw the airplane favorably 
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during the complete maneuver. However, when both the stabilizer and. 
rudder are applied the pitch rate is reduced, thereby reducing the 
yawing moment due to pq and the resulting yawing is mostly negative. 
Again, the angles of attack and sideslip variations for r = 0 are 

only slightly different from those obtained when both the rudder and 
stabilizer are applied. Figure 1i(d) presents results similar to those 
of figure (b) for (ng) = 1 and öa = 300 . Note again the propor-

tional change in the yawing rate with the magnitude of LSi.t. 

Figures 1(e) and !l(f) show the airplane response to	 Sa
= 3Q0 and 

combinations of rudder and stabilizer deulections for In \ g1 = 2. The

results shown in figure 1(e) indicate that the stabilizer when applied 
with the aileron maintained smaller values of 13 than for the case of 
the rudder and aileron combination, even though the level of roll rate 
for the	 = 0 is much higher than that for -t = 0. Figure Ii-(f) 

presents the effect of two different stabilizer deflections applied 
with both r and öa equal to 

3Q0 and (n	 = 2. The angles of
g1 

attack and sideslip variations for both the hit's show a large reduc-
tion from the aileron case of figure 3(c). 

Effects of Automatic Controls Designed To Minimize the


Angles of Attack and Sideslip Variations 

in Rapid Rolls 

The human pilot, even though he has some idea of the rudder and 
stabilizer deflections necessary to maintain small variations in the 
angles of attack and sideslip during aileron rolls, may still be unable to 
cope with the complexity and rapidity of the motions that are encountered 
in such maneuvers. Therefore, it may become necessary to resort to some 
type of automatic control. A brief investigation has been made which 
considers the rudder and stabilizer as defined by equations (13) and (1)-i-), 
respectively, as possible automatic controls. In this investigation, 
the automatic control inputs were assumed to be perfect in that zero 
time lag was assumed for the control servos. Also, no limitations of 
rate or magnitude were assumed for either the rudder or stabilizer 
motion. 

In the analysis, for the sake of simplification, the expressions 
defining the automatic rudder and stabilizer were derived from the air-
plane equations of motion for principal body axes. In practice, as was 
mentioned previously, the instruments for sensing the values of p, 
and 0D' which are required for the automatic rudder and stabilizer, 
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would be aimed to record these quantities about the principal axis. 
In the analog investigation of the automatic controls, the airplane 
configuration that was used was assumed. to have the same characteris-
tics as those presented in table I with the exception of I>, which 

was taken as zero. 

The effects of the rudder and stabilizer inputs as defined by equa-
tions (13) and (1)-f) are presented in figure 5. Figure 5(a) shows the 
effect on the airplane response for 8a = 200 when the airplane i 

initially at 1 g. It can be seen that angles of attack and sideslip 
variations remain almost zero when the stabilizer and rudder are oper-
ating. Since these results are very similar to those presented in fig-
ure 2(a) for the exact controls, the assuniptions used in simplifying 
the exact control expressions to obtain equations (13) and (iii-) are 
apparently valid for this airplane and flight condition. The maximum 
incremental stabilizer deflection required is approximately 2° and the 
rudder reaches maximum values of i1i. and _90• The roll rate response 
is somewhat improved when the stabilizer and rudder are operating. This 
improvement, as was indicated in a previous section, is mainly the result 
of almost zero dihedral effect due to the practically zero J3 during 
the maneuver. Figure 5(b) presents the control inputs for (ng) = 1 

and a = 30°. The magnitude of the stabilizer and rudder deflections 
is increased from the a = 20 0 case because of the higher roll rate 

developed for the larger aileron deflection. Figure 5(c) shows the air-
plane time histories when the airplane is rolled from 2g trim flight. 
For the a = 3Q0 aileron-alone case the airplane rolled only about 
2000 and therefore experienced a somewhat less violent maneuver than 
the 3600 rolls previously presented for this flight condition. Two 
aileron defiections were considered with the automatic controls oper-
ating. For 8a = 300 , it can be seen that the roll rate is markedly 
increased when the rudder and stabilizer are operating. Because of this 
high rate of rolling and the relatively large angle of attack from which 
the roll is initiated, the necessary rudder and stabilizer deflections 
are large. Such control deflections may be unattainable or impractical 
because of the excessive.loads they might produce on the tail surfaces. 
Some calculations of the loads are discussed briefly in the next section. 
Since a significant increase is generally obtained in the roll rate for 
a particular aileron deflection when the automatic controls are used, 
a smaller aileron deflection may be sufficient to produce the roll rate 
required for a specific maneuver. For a = 200 and the automatic con-

trols operating the roll rate developed is still higher than that shown 
for a = 300 with aileron alone. The necessary stabilizer and rudder 
deflections for this case (5a = 200) are considerably less than those 
required for öa 300.
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Effect of the Automatic Controls on Tail Loads 

Rolling an airplane with small variations in the angles of attack 
and sideslip by proper rudder and stabilizer inputs does not guarantee 
that loads on the tail surfaces will necessarily be small. The rudder 
and stabilizer deflections required for maintaining the small variations 
may produce loads which are larger than those experienced for zero con-
trol deflections and varying angles of attack and sideslip. In order 
to determine the loads produced on the tail surfaces when the automatic 
rudder and stabilizer are utilized, the maximum loads on the vertical 
and horizontal tails were calculated for the aileron rolls presented 
in figure 5. 

Listed in table 11(a) are the maximum positive and negative tail 
loads computed for the two g conditions and two aileron deflections. 
Presented in table 11(b) are the assumed tail characteristics and 
expressions that were used for calculating the horizontal and vertical 
tail loads. It should be pointed out that the loads listed for the 
cases where the automatic controls are not operating are mainly due to 
the attitude and angular motions of the airplane, whereas the loads 
listed for the cases of the controls operating are principally due to 
the magnitude of the rudder or stabilizer deflections. An initial load 
is given for the horizontal tail in each case, which is produced by the 
initial or trim values of a. and it . No negative loads are indicated 

for the horizontal tail when the automatic controls are operating since 
the loads experienced for these inputs always remain positive. For 
both aileron deflections at (ng) = 1, the maximum loads are reduced 

when the automatic controls are operating. However, at (ng) 	 2 and


= 300 (fig. 5(c)), only the vertical tail loads show a reduction 

with the automatic rudder and stabilizer. The increase in the horizontal 
tail load is due mainly to the comparatively large stabilizer deflection 
required. However, since the magnitude of the controls is proportional 
to the magnitude of the roll rate developed, if an aileron deflection 
of 200 is applied for this condition the control deflections are con-
siderably reduced, even though the roll rate is greater than that for the 
case of a = 30° without automatic control. The last row in table 11(a) 

lists the loads experienced.for a = 200 and (ng) 0 = 2 with the auto-

matic rudder and stabilizer operating. Comparing these loads with those 
for 6a = 3Q0 and (ng) 0 = 2 without the automatic controls shows a 

substantial reduction in both the horizontal and vertical tail loads 
when the automatic rudder and stabilizer are applied. 
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CONCLUDING REMARKS 

Expressions have been derived from the five-degree-of-freedom air-
plane equations of motion which define the rudder and stabilizer motions 
necessary to maintain cons.tant angle of attack and zero sideslip during 
an aileron roll. The control motions calculated by using these expres-
sions are useful in determining the magnitude and direction of the rud-
der and stabilizer deflections that might be applied by a pilot or by 
automatic controls to maintain small variations in aileron rolls. 

For the airplane configuration and flight condition investigated, 
simple ramp-type rudder and stabilizer deflections, applied with the 
aileron and similar to the exact inputs in magnitude and direction, were 
effective in reducing the angles of attack and sideslip in rapid rolls. 
The ramp stabilizer deflections applied with the aileron were nearly 
as effective as the rudder and stabilizer deflections for the cases 
investigated. 

The expressions defining the exact rudder and stabilizer necessary 
for zero variation of the angles of attack and sideslip during rolling 
were simplified and considered as the basis for automatic controls. For 
the airplane configuration and flight condition investigated, and assuming 
no rate or magnitude limitations and zero time lag for the control inputs, 
the automatic rudder and stabilizer controls were very effective in 
reducing the angles of attack and sideslip developed during rolling. 
The roll rate was increased and the roll rate response was considerably 
improved when the automatic controls were applied. The automatic con-
trols generally reduced the maximum loads experienced by the vertical 
and horizontal tail surfaces during the aileron rolls. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., January 10, 1957. 
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TABLE I 

STAB]IITY DERIVATIVES, MASS CHARACTERISTICS OF THE AIRPLARE, 

AND OTHER CONSTANTS USED IN THE STUDY 

1x' Blug-ft2 ......................................10,976 
I, elug-ft2 ......................................57,100 
1zslug-ft2 ......................................6,975 

'HE' slug ft2 .....................................92 
q, lb/ft2	 .......................................197 
5, ft2 .........................................376 
b, ft	 .........................................36.6 
E, ft	 .........................................11.32 
W, lb .........................................23,900 
m, slugs .........................................72 
V, ft/sec .........................................691 
h, ft	 .........................................32,000 
p, siug /ft3	 ..............................0.000826 
Mach number	 .......................................0.7 
e,deg .........................................1 
IXeWe slug_ft 2/sec ..................................17,55I 
C 1 , per radian ....................................-0.0528 

C 1 , per radian ....................................-0.255 

Clr per radian ....................................O.0112 
radian .....................................-1.0 

(L, per radian	 .................................... 
Cm., per radian ......................................-1.5 
Cm, per radian ....................................-0.36 
Cm , per radian ....................................0 

per radian ....................................-0.03 
Cnr per radian ....................................-0.095 

per radian ....................................0 
CO3 per radian .....................................0.057 
Cy, per radian ....................................-0.50 
C, per radian ....................................3.85 
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TABLE II 

TAIL LOADS DURING RAPID ROLLS 

(a) Comparison of the maximum tail loads experienced with 


and without the automatic controls 

Horizontal tail Vertical tail 

Automatic rudder loads, lb loads, lb 

and stabilizer
Maximum Maximum Maximum Maximum 

Initial negative positive positive negative 

(ng) 0 = 1; ö8 = 20° 

Not operating 990 3,792 8,i)48 5,555 3,)437 
Operating 990 3,383 l,)452 5)48 

(ng)	 1;	 a = 300 ________________ 

Not operating 990 )4,273 6,789 5,126 2,881 
Operating 990 5,313 1,985 733 

(ng) 0 = 2; 6a = 300 

Not operating 2,002 1,59)4 8,931 5,926 2,859 
*Operating 2,002 11,336 3,718 1,7)41 

ng )	 = 2;	 a = 200 

Operating 2,002 6,99 2,726 1,526

*The large load listed for this case is primarily due to the 
large increase in roll rate from the not-operating case (see 
fig. 5(c)). When 5a•= 20 0 was used for this g condition, which 

still resulted in a larger roll rate than the not-operating, 
= 300 , case, a reduction in the horizontal as well as the ver-

tical tail loads was experienced. 
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TABLE II. - CONCLUDED 

TAIL LOADS DURING RAPID ROLLS 

(b) Horizontal and vertical tail characteristics and expressions 


used for calculating the tail loads 

Horizontal Tail: 
(based on wing area), per radian .............0.755 

Longitudinal distance from center of gravity to c/ )-i. of 
horizontal tail, Xht, ft ..................15.0 

Rate of change of downwash angle with angle of attack, 
d€/da.

1 - - + - ci + i 
pV2S	 d€\ Xht 

Loadht (lb)	
2	 daj	 V 

Vertical Tail: 
Cy (based on wing area), per radian .............-0.213 

13 
C	 (based on wing area), per radian ............0.O71i. 

Longitudinal distance from center of gravity to c/1- of 
vertical tail, x, ft ................... JA.8

 Vertical distance from fuselage reference line to /1- of 
vertical tail, z, ft ................... 5.6 

____	
- - r + - + Load	 (ib) = pVS Y13(13cg x
	 z	 \ 

V	 V/ 
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/ if ,' 

Pro. 
re/c 

Figure 1.- Sketch showing the body axis system. Each view presents a 

plane of the axis system as viewed along the third axis. 
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