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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

INVESTIGATION OF DRAG AND STATIC LONGITUDINAL AND
' LATERAT, STABILITY CHARACTERISTICS OF A MODEL
OF A 40.4° SWEPT-WING AIRPLANE AT MACH
NUMBERS OF 1.56 AND 2.06
By Melvin M. Carmel and Kenneth L. Turner

SUMMARY

An investigation has been conducted in the Langley Unitary Plan
wind tunnel to determine the drag, longitudinal stability, and lateral
stability characteristics of a model of a fighter-type airplane. During
the program, several modifications were made to the model in an attempt
to eliminate pitch-up. These data are included in this report. The
tests were made at Mach numbers of 1.56 and 2.06 and at Reynolds num-

bers, based on the mean aerodynamic chord of the wing, of 1.225 X 106

and 1.026 X 106, respectively.

INTRODUCTION

An investigation of the aerodynamic characteristics of a model of
a 40.4° swept-wing fighter-type airplane at supersonic speeds has been
undertaken by the National Advisory Committee for Aeronautics. The air-
plane, at this time, is in the process of being flight tested, and there-
is urgent need for data concerning the supersonic directional stability
and- pitch-up problems of this airplane. The test program was therefore
designed to place the greatest emphasis on these two problems. This
paper contains results obtained at Mach numbers of 1.56 and 2.06 in the
Langley Unitary Plan wind tunnel.

COEFFICIENTS AND SYMBOLS

Ap - base axial force behind choke, 1b

Ac balance-chamber axial force, 1b
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wing span, in.
meen aerodynamic chord, in.

mean aerodynamic chord of horizontal tail, in.
internal duct force along X stability axis, 1b
force along X stability axis, 1lb

right aileron hinge moment, ft-1b

left aileron hingé moment, ft-1b

rudder hinge moment, ft-1b

stabilator hinge mament, in-1b

incidence of horizontal tail, deg

incidence of tail with negative dihedral, deg

lift, 1b
rolling moment, in-1b
free-stream Mach number

pitching-moment, in-1b

‘moment area of ailleron, cu ft

moment area of rudder, cﬁ ft

mass flow at choke

free-stream mass flow based on inlet area
mass-flow ratio

yawing-moment, in-ib

free-stream static pressure, Ib/sq ft
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free-stream dynamic pressure, lb/sq ft
wing area (theoretical total), sq ft
stabilator area (theoretical total), sq ft
side force, 1b

drag coefficient, Fﬁ/qS

Ap cos a
choke base drag coefficient, - ——
@

asS

. : Aq cos a
. balance-chamber drag coefficlent, -{—~—k—

net external drag coefficient

difference in drag coefficient with and without fixed transition
internal duct drag coefficient, Dj/qS

right aileron hinge-moment coefficient, hR/2Maq

left aileron hinge-moment coefficient, hy /2Mgq

rudder hinge-moment cpefficient, hr/2Marq

stabilator hinge-moment coefficient, hs/qSHEt
lift coefficient, L/qS

rolling-moment coefficient, 1/qSb
pitching-moment coefficient, m/qST
yawing-moment coefficient, n/qSb

side force coefficient, Y/qS

angle of attack of wing, deg
angle of sideslip ofﬁﬁﬁggiﬁggagghter line, deg

Y
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Bg aileron angle, deg
(o rudder angle, deg

The results of these tests are presented as coefficients of forces
and moments referred to the stability-axes system. All aerodynamic
moments were taken about the center of gravity of the model, which is
longitudinally located at 0.2857¢ and 0.525 inch above the wing root
chord line. All hinge moments were taken about their respective hinge
center lines. '

APPARATUS AND METHODS

Tunnel

The tests were conducted in the low Mach number test section of the
Langley Unitary Plan wind tunnel. This tunnel is a variable-pressure,
continuous, return-flow type. The test section is 4 feet square and
approximately 7 feet long. The nozzle leading to the test section is
of the asymmetric sliding-block type. Mach number may be continuously
varied through the range of approximately 1.56 to 2.80 without tunnel
shutdown.

Model and Support System

A three-view drawing of the model is presented in figure 1. Geo-

" metric characteristics of the model are presented in table I. Photo-
graphs of the configurations tested are presented in figure 2. Sketches
of the pitch-up "fixes" used in an attempt to eliminate pitch-up are
presented in figure 3. The rearward end of the model fuselage was cut
off to simulate the proper side contour of the airplene. (See fig. 4.)
For the basic model condition this piece, called the fuselage fairing,
was attached to the sting; there was a clearance gap between 1t and the
model of approximately 3/16 inch. A few tests were also performed with
the fuselage fairing attached to the model to determine its effect on
aerodynamic characteristics so that comparisons might be made with other
wind-tunnel data. :

The model was attached to the forward end of an enclosed NACA
six-component, electrical, strain-gage balance. This balance was con-
nected to the tunnel central-support system by means of a sting. The
central-support components consisted of a remotely operated, adjustable
coupling; a variable offset coupling; and, for the pitch runs, a 10° bent
coupling. The adjustable coupling was used to change the angle of the

g -
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model in the vertical plane. The variable offset coupling was & means

of offsetting the model from the tunnel center line in order to get
increased angle-of-attack range for sideslip tests. The 10° bent coupling
was used for the same purpose during pitch tests.

MEASUREMENTS AND ACCURACY

Pitch tests were made through an angle-of-attack range of approxi-
mately +1° to +21°, at angles of sideslip of 0° and +2°. At angles of
attack of approximately 1°, 4O, 100, 120, 16°, and 19°, sideslip tests
were made through an angle range of approximately -4©O to 10°. The tests
were performed at Mach number of 1.56 and 2.06. All tests with tails on
were performed with a horizontal-tail incidence of -4©. The angles of
attack and sideslip are corrected for deflection of the sting and balance
under load and angles for a given run are estimated to be accurate within
$0.1°. It may be noted, in some instances, that the Cj data for a
given angle of attack for a pitch run does not check exactly with that
for a sideslip run. This is believed to be due to a slightly erroneous
zero angle setting for the sideslip run. The exact angle of attack for
the sideslip runs, however, is relatively unimportant as the aerodymamic
coefficient data for a given value of Cy, or p.  are accurate.

The maximum deviation of local Mach number in the part of the tunnel
occupied by the model is ¥0.015 from the average values given.

The dewpoint, measured at stagnation pressure, for all tests was
maintained below -30° F. The stagnation temperature was approximately
125° F and the wind-tunnel stagnation pressure was maintained at approxi—
mately 9 pounds per square inch absolute.

The tunnel, as yet, has not been completely calibrated and any
angularity of flow that might exist in the tunnel has not been determined.
The pressure gradients in the region of the model have been determined
and are sufficiently small so as not to induce any buoyancy effect on
the model.

The accuracy of the force and moment coefficlents, based on balance
calibration and repeatability of data, is estimated to be within the
following limits: .

CL + + « v+ o o e e e e e e e e e e e e e .. ... £0.002
CD « = = ¢ + o o o e e e e e e e e e e e e e e e e e . . . . t0.001
O « « = « o = & + o o o o e e e e e e e e e e e e e e e . . . $0.001
Cp v v oo e e et e e e e e e e e e e e e e e e e e .. $0.0002

b
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Cp v« t e e e e e e e e e e e e e e e e e e e e e e ... 0.0005
CY « = ¢ & e e e e e e e e e e e e e e e e e e e e e e e . .. t0.0015
Chg * + = =+ =+ o+ s e e e .. $0.015
Chp » = = ¢ s s e ee e e e e ee e .. $0.012
Chp + » ¢ s+ st et e e .. $0.010
Chig + + + + = st e e e et e e oo, 0,001

The drag data have been adjusted to correspond to zero balance-
chamber drag coefficient CDc = 0. An example of the measured balance-~

chamber drag coefficients plotted against angle of attack for both test
Mach numbers are presented in figure 5 in order to show the magnitude
of these coefficients.

Internal duct drag and choke base pressure drag were obtained for
one of the pitch runs only. The internal drag was obtained from a
single-tube, total-pressure measurement ahead of the choke location
within the duct. Choke base pressure drag was obtained from measurements
of the static pressure just behind the solid part of the choke. The
internal duct drag and choke base pressure drag coefficients plotted
against angle of attack for both test Mach numbers are also presented
in figure 5.

In order to assure turbulent flow ‘over the model, a transition
strip was fixed around the model nose, one inch rearward of the tip, and
also on the 10 percent chord of the wing (top and bottom, full span).
The transition strips were 1/4 inch wide and consisted of number 60
carborundum gralins imbedded in shellac with approximately 30 grains per
0.25 square inch. The results of these tests are presented in figure 6.
To obtain net external drag, the drag coefficients shown on the chearacter-
istic plots must first be increased by the incremental difference in drag
coefficient shown in figure 6 at the same model attitude, and this result-
ant drag coefficient must then be reduced by the amount of the internal
drag and the choke base pressure drag at the same model attitude ‘

(CDe = Cﬁ + ACD - Cbi - CbB). It is recognized that a small part of the

drag due to fixing trensition on the model is due to the wave drag of
the transition strips; however, it is believed that this is more than
offset by the differences in smoothness between the model and the full-
scale aircraft.

As previously mentioned, the model was tested with the fuselage
fairing attached to the sting and, for a few runs, with the fairing
attached to the model. A comparison of the aerodynamic coefficient date
" for these two configurations is shown in figures 7 and 8. With the
fairing attached to the sting, the pitching-moment coefficient was more

s s
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positive at a given 1lift coefficient at both test Mach numbers. However,
the slope of the pitching-moment curves with respect to lift coefficient
remained essentially unchanged. The other aerodynamic coefficlents were
relatively unaffected by this difference in the configuration with fuse~
lage fairing.

The reference srea used in computing the coefficients is shown as
the shaded area in figure 9. It should be noted that the use of the
smaller area makes the coefficient data appear larger in magnitude than
would be expected.

Figure 10 presents curves of mass-flow ratio against angle of attack
at Mach numbers of 1.56 and 2.06.

Schlieren photographs were taken of many of the model configurations
and attitudes. Typical examples of the schlieren photographs are pre-
sented in figure 11.

A study of the position of the model in the tunnel reveals that for
a Mach number of 1.56 any data taken at angles of attack beyond 200 are
influenced by wall-reflected shock waves acting on the tail of the model.

PRESENTATION OF RESULTS

The results of the investigation are presented in the following
figures:
3
Figure
Effects of horizontal and vertical tails on .
aerodynamic characteristics in pitch; B = 0° .. ... .. 12

Effect of external stores on aerodynamic
characteristics in pitech; =0° . . . . . . . . . . .« . 15

Effects of horizontal and vertical tails on
aerodynamic characteristics in sideslip . . . . . . « . . . . 14

Effect of sideslip on lateral stability for
basic-model configuration in piteh . . . . . . ¢ o ¢ o o . . . 15

Effect of sideslip on lateral stability for
model configuration with tails off in piteh . . . . . . . . . 16

Effect of aileron deflection on aerodynamic
characteristics in sideslip . . « «. . « « « « « & « « « o« o« . 17
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Figure
Effect of external stores on aerodynamic _ _
characteristics in sideslip . . . . « « « ¢« ¢ v ¢ « + + « . . . 18

Effect of rudder deflection on aerodynamic
characteristics in pitech . . . . . e

Effect of sideslip on alleron hinge-moment coefficient . . . . . 20

Effect of rudder deflection on rudder hinge-moment
coefficient . . . . . « . v v oo oo oo e s e e s 20

Effect of 1ift coefficient on stabilator hinge-
moment coefficient; 1 = -4° . . . . . . .. ... .00 22

Effect of wing leading-edge extensions on aerodynamic
characteristics in pitch; B = e s e e e e s s e s s . . 23

Effect of wing plan form on aerodynamic
characteristics in pitch; p=0° . . . . . . ... ... ... 24

Effect of T-tail on aerodynamic
characteristics inpitch; g =0° . . . . . . .. . ... ... 25

Effect of wing spoilers in combination with T-tail on
aerodynamic characteristics in pitch; p=0° . . .. . . . .. 26

Effect of added fin area on aerodynemic
characteristics in pitch; g =0° . . . . . . . . . . ... 27

Effect of added tail with negative dihedral on '
aerodynamic characteristics in pitch; B =00 . . . . . . . . . 28

SUMMARY OF RESULTS

The basic results are presented without analysis; however, some
general observations relative to the data are as follows:

1. The results indicate positive static directional stability for
complete-model configurations at angles of attack to 19° for both test
Mach numbers. The directional stability decreases with angle of attack,
and at angles of attack greater than 19° the data indicate neutral direc-
tional stability. The results also show that at low angles of attack
the directional stability decreases with Mach number, but this effect
diminishes with increasing angle of attack. Addition of missiles to the
basic configuration decreases the static directional stability.
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2. Positive effective dihedral is indicated at all angles of attack
to 19° at both test Mach numbers for complete-model configurations.

3. The neutral point for the tail-on model configurations with and
‘without missiles is located at approximately 75 percent of the mean
aerodynamic chord for a Mach number of 1.56 and moves forward to the
71 percent chord at a Mach number of 2.06. For the model with the tails
off, the neutral point is located at approximately 43 and 40 percent of
the mean aerodynamic chord for Mach numbers of 1.56 and 2.06, respectively.

ly. The data indicate that a 50 rudder angle is necessary to compensate
for the yawing moment produced by approximately 1° of sideslip at both
test Mach numbers for 1lift coefficients up to 0.5. At 1lift coefficients
above 0.5, the effect of sideslip diminishes until it is zero at 1lift -
coefficients above 1.0 (neutral directional stability); however, the rud-
der effectiveness remains relatively constant up to the higher 1lift
coefficients.

5. The tail with negative dihedral and the delta wing were the only
fixes that had any effect on pitch-up. The fix that simulated the delta-
wing configuration was found to delay the pitch-up, but 1t did not elim-

inate it. The delta wing also decreased the minimum drag and increased
the maximum lift-drag ratio.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 31, 1956.



L] L ® oo L X ] * L]
* o o o ¢ o L] o o @ o ..0 ..:
e o ee o e 8 L] L] o o L ] L] e
L 2N J LN J ¢ e o L 3 L LX) . L] L
e s00 o ® @ ea e o o L ] eece

10 CONFIDENTIAL

NACA RM L56I17a

TABLE I.- GEOMETRIC CHARACTERISTICS OF MODEL

Model scale, percent . . . . . . .

Center-of-gravity location, percent of mean aerodynamic chord e e e . .. 28.57

Wing:
Loading (take-off gross weight), 1b/sq ft . . .
Loading (combat gross weight), lb/sq ft
Exposed area, sq ft .
Theoretical area (see shaded aree of fig 9), Sq ft
Span, in. . . . . . ... .. . . . . . .

Aspect ratio . . . .
Sweepback angle of zero percent chord line, deg
Dihedral, deg . . . . . . . . .

Incidence, deg . « ¢+ ¢ v 4 e 4 e e } e e .
Geometric twist, deg . . . . . . . . .

Root section . . . . . . . . . ..

Tip section . . . ¢ ¢« & ¢ ¢ ¢ ¢ ¢ v 4 o e e e
Root chord, in. . . . . . . . . ¢ ¢ ¢ v o ¢ 4 .
Tip chord, in. .

e e e e e . 122
e e e e e e e e . 100
N ¢ I (o T0)
e s e e s s . . . 0.922
e e e e . . . . 23.812

S Y= £~
B To
0
1.0

e e e e e e e 0
. NACA 65A007 gmodified)
. NACA 65A006 (modified)
.........8.662

e e e e .. 264

Root-chord location, longitudinal (fuselage station), in. ... ... .18.38

Root-chord location, vertical (water line), in.
Mean aerodynemic chord, in. . . . . . . . . . .
Mean-aerodynamic-chord location:
Longitudinal (fuselage station), in. .
Lateral (body 1line), in. . . . v « ¢ v o «
Vertical (water line), in. . . . . . . . . ..
Ieading-edge flaps . . . v v v ¢ 4 ¢ & o« o « o o &

Ailerons:

e e e e e e e .. 1.725
e e e e e e e .. 6.146

e e e e e e e . . 24365
S T 11
. . 2.25%

e e e e e s e e e None

Type « - « ¢« ¢« ¢ ¢ « v ¢« = = « .« v+ .. .. Plain, piano-hinged, unsealed

Area, sqft . . . . .. ... ...
Span, in. . . . . e e e e e e e e
Sweepback of hinge line, deg © e s o s s e & s e
Iocation:
Iongitudinal hinge center line, percent chord
Lateral, inboard edge (body line), in.
Lateral, outboard edge (body line), in.
Chord, 1nboard edge, in. o« o . . .« e e
Chord, outboard edge, in. . . . . . . . . . . .
Deflection, deg . . . . e e e e e e e e e e e
Aileron trim tab . . . . . . . . .. 000 0. .,

Fuselage:
Length, in. e e e e e e e e e e e e e e
Width, in. e e e e e e e e e e e e e e e e e
Depth, in. e e e e e e e e e e e e e e e e e .
Frontal area, sq ft . . . . . . . . . . ..
Side area, sq ft . . . . . . . ... 0000 ...
Base area, sq ft . . . . . . . . ..

e e e e e e ... 0.037
S 1 1
e e e e e e e . . 26.28

c e e v e e e . T2.85
e e e e e e . . 6.048
e e e e e e e . . 10.506
e e e.e e e o« o 1l.hop
e e e e e e .. . 0.863
e e e e e e e e 25
. . e e e . None

e v+ . . . h0.206

e v e e . ... Lo
B 0 I -
e e e . . .. 0.106
e« e e . ... 0.819
. . . . 0.02765
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TABLE I.- GEOMETRIC CHARACTERISTICS OF MODEL - Concluded

Horizontal tail:

Type . .

Area (theoretical), Sq £t

Span, in. . . . e e ..
Aspect ratio . . . ... . . . . ..

Taper ratio C e e e e e e e e e e e e e
Root-chord length, in . . e e e e e e e .
Mean-aerodynsamic-chord length in
Mean-aerodynamic-chord location, 25 percent chord
Longitudinal (fuselage station), in. .. ... ..
Lateral (body line), in. . e e e .
Vertical (water line), in. e e e e e e e e
Tail length, 28.57 percent ©

Sweepback, 29.34 percent chord line, deg . ..
Dihedral, deg . . e e e e e e et e e e e e
Geometric tw1st deg C e e e et e e e e e e e e e e
Root section . . . . . . . . . . .. ... ... ...
Tip section

Tip-chord length, in S e e e e e e e e e e e e e e
Elevators .. .« ..

Vertical tail:
Area (theoretlcal), sgft ... L L.

to tall 25 percent chord, in.

. Stabilator
0.189

- e e 9.45

e« v . 3.301

« . . . 0.460
‘e e .. 3,925
v e . .. .2.988

. 41.855
... 2.075
.. . 8.o04

17.49
35

10

0

NACA 65AOO7 (modified)
. NACA 65A006 (modified)

1.80
c e e . None

.« . . 0.2124

Span, in. . . e e e e e e e e e e e e e e v v .. Lhox
Aspect ratio . . . . . . . ... L ... L. e - . . 0.662
Taper ratio . . . C e e e e e e e e e e e e e e . 0.509
Root-chord length, in. . C e e e e e e e .. e e e . W 9.00
Mean-aerodynemic-chord length in e s« . T.0%0
Mean~aerodynsmic-chord location, 25 percent [

Longitudinal (fuselage station), in. .. .. . 38.469

Vertical (water line), in. . ... ... .. . . 6.606
Tail length, in. e e e e e e e e : . S 1 T I B
Root section . . . . . . . .. .. ... - NACA 65A007 émodified)
Tip section . . e e e e . NACA 65A007 modified)
Tip-chord length, in. e e e e I iy tate)

Rudder:
Type . . . S e e e e e e e e e e e e
Area, s8q ft . . .

Lower-edge location (water line), in .
Upper-edge location (water line), in.

Chord (lower edge), in. . . . . . . . . . . . . . . . .

Chord. (upper edge), in. . . . . . . . . . . .. .. . .

Deflection, deg . . . . . . . . . ... ... ... . .
Duct areas:

Inlet (one side), sq ft . . . e e e e e e

Compressor face (one side), Bq ft c e e v e e e e e e
Exit (one 51de), sqft . ... L. L.

. Plain unsealed

. 0.0305

5.016

-« ... 8.576
<« e o . 1l.547
e v+ . . 0.916
. .. . 125

. . . . 0.0100
.« . . 0.012137
. . . . 0.012935
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Figure 1.- Three-view drawing of model. All dimensions are in inches.

="



13

NACA RM L56I17a

9G626

=1

s Topouw Jo sydeif8ojouyd =g 9IMITJ

*ma1A doy, (e)




NACA RM L56I17a

1k

26626

fi

+ponUTAUO) -°2 SINITJ

*M3TA JUOIJ Jaq.renb-saayr (q)




15

NACA RM L56I17a

£G626-1

‘panuUTAUO) -°g 2JNITA

*MOTA JBDJI J29a80D

daayy (o

)




‘papuTouoc) -°g aam3Td

*SOTTSSTW UY3TA TSPOW (P)

o
7
-
O
1\
—
) 0G626-1
5

=

16



NACA RM L56Il7a :o. :oo ..Céﬂi‘]j)ﬁl\]‘fi[\l,.. L ® see oo

//////// /////%\

(a) Area added to simulate delta wing.

Figure 3.- "Fixes" used in an attempt to eliminate pitch-up.
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(b) Area added to fin.

Figure %.- Continued.
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SECTION A-A

(c) Wing spoilers.

Figure 3.- Continued.
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(d) T-tail.

Figure. 3.- Continued.
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(e) Wing leading-edge extension.

Figure 3.- Continued.
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Figure 5.- Effect of angle of attack on chamber, duct base, and internal
duct drag coefficients; B = 0°.



O Basic model, transition fixed
O Basic model

(a) M = 1.56.

Figure 6.- Effect of fixed transition on aerodynamic characteristics in
pitch; B = 0°. Data uncorrected for base and internal duct drag.
(Flagged symbols denote wall reflected shock waves striking tail.)
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O Basic model, transition fixed}
O Basic model

(p) M = 2.06.

Figure 6.- Concluded.
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O Basic model

q

(a) M =1.56.

Figure T.- Effegt of fuselage fairing on aerodynamic characteristics in
pitch; B = O . Data uncorrected for base and internal duct drag.
(Flagged symbols denote wall reflected shock waves striking tail.)
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Fuselage fairing attached to model,
Fuselage fairing attached to model,
Basic model, a= 4.02

Basic model, a= 9.7

B’m
(a) M = 1.56.

Figure 8.- Effect of fuselage fairing attached to model on aerodynamic
characteristics in sideslip.



30

2

O Fuselage fairing attached to model,
Fuselage fairing attached to model,
Basic model, a= 4.0°

B, deg

(a) Continued.

Figure 8.- Continued.
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O Fuselage fairing attached to model,
O Basic model, a= 12.12

B, deg
(a) Continued.

Figure 8.- Continued.

a= 12,
a= 16.3
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0 Fuselage fairing attached to model,
O Basic model, q= 12.1°
i del, a= 16,3°

@

(a) Concluded.

Figure 8.- Continued.
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1l oo,

O Fuselage fairing attache
O Fuselage fairing attached to model,
¢ Basic model, a= 3,9°

ic model 9.6°

(p) M= 2.06.

Figure 8.- Continued.
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O Fuselage fairing attached to model, a= 9.6°
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A Basic model, a= 9.6°

0 2 4 6 8 10
B, deg

(b) Continued.

Figure 8.- Continued.
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Fuselage fairing attached to model, a
Fuselage fairing attached to model, a =
Basic model, a= 12,0°

Basic model, a=16.1°

(b) Continued.

Figure 8.- Continued.
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Fuselage fairing attached to model, a= 16. O°
Basic model, a= 12.0°

Basic 7_5[1‘95176»];#’2‘: 16.1°

=% 0 2 i T 10 12
B, deg

(b) Concluded.

Figure 8.- Concluded.
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Figure 9.- Wing area used in computation of aerodynamic coefficients.
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(a) Basic model, M = 1.56.

Figure 11.- Typical schlieren photographs of model.
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M=206

(¢) Basic model with missiles.

M=206
a= B84°
B=-0I°

(d) Delta-wing configuration.

Figure 11.- Concluded.
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O Basic model, i, = —4°
ticel tail

(a) M= 1.56.

Figure 12.- Effects of horizontal and vertical tails on aerodynamic char-
acteristics in pitch; B = O°. Data uncorrected for base and internal
duct drag. (Flagged symbols denote wall reflected shock waves striking
tail.)
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(b) M= 2.06.

Figure 12.- Concluded.



i S5 et i et et L CuiFTDENTIRL S § S NACA RM L56T17a

0 e 45 6 7 B 85 w0 u 2
1
(a) M= 1.56.
Figure 13.- Effect of external stores on aerodynamic characteristics in

pitch; B = 0°. Data uncorrected for base and internal duct drag.
(Flagged symbols denote wall reflected shock waves striking tail.)
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(b) M= 2.06.

Figure 13.- Concluded.
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(a) M= 1.56.

Figure 1lk.- Effects of horizontal and vertical tails on aerodynamic char-

acteristics in sideslip.
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(a) Continued.

Figure 14.- Continued.
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(a) Continued.

Figure 1k4.- Continued.
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Basic model, a= 12.,1°
Basic model, a= 16.3°
Horizontal and vertical tails off, a = 12.2°
Horizontal and vertical tails off, a = 16.3°

B, deg

(a) Continued.

Figure 14.- Continued.
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“Basic model, a= 12,
Basic model, a= 16.3°

(a) Concluded.

Figure 1k4.- Continued.

a= 12,2°
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O Basic model, 0.9
O Horizontal and vertical tails off, a

(b) M= 2.06.

Figure 14.- Continued.
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Basic model, a= 0,9°
Horizontal and verti

B, deg

(b) Continued.

Figure 1k4.- Continued.
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Basic model, a= 3.9

Basic model, a= 9.6°

Horizontal and vertical tails off, a=
Horizontal and vertical tails off

(b) Continued.

Figure 1h4.- Continued.
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Basic model, a= 3.9°

Basic model, a= 9.6°

Horizontal and vertical tails off, a
Horizontal and verti tail

(b) Continued.

Figure 14.- Continued.

25



56 oo ves o ses o oo CQUFIDENTTIAL o ece oo NACA RM L56Il7a
e 0 LI J L . * s 0 e o @ e o o
e @ L N J a0 o - . LI . . e & o
e o L e & » - LA R} L] . * o o
ee ean o L LR} ee © & S8 o0 LER ] e
ol SEEEEEE 5
CI,S i
-0l
-02p+
450 Basic model, a= 12.0°
0O Basic model, a= 16.1°
¢ Horizontal and vertical tails off, a= 12,1°
A Horizontal and vertical tails off, a= 16._29 =
= 02

B, deg

(b) Continued.

Figure 1h.- Continued.



:o oo :QOEFIDWWS .oo .

o
o
<
A

1

Basic model, a = 12.0°
Basic model, a= 16.1°
Horizontal and vertical tails off, a-=
Horizontal and vertical tails off, a

12,10

it

B
=
=
a
58S
B
=
=
=
B
B

(b) Continued.

Figure 14.- Continued.

16.2°)

o7



NACA RM L56I17a

58

o
o
(o}
—

I
-]
.
[
°
=]
g8
o
o
m
[©]

G
B
o
[ 7]
—
o
o
e
—
[}
o
o
e}
bl
i
>
°
<
]
—
o
-
=
o
N
o
S
(=}
=
o

(b) Continued.

Figure 14.- Continued.



NACA RM L56I17a

e ese CONFIDENT o
. L : : : .. .
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(b) Concluded.

Figure 1k4.- Concluded.
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(a) M= 1.56.

Figure 15.- Effect of sideslip on lateral stability for basic-model
configuration in pitch.
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(b) M= 2.06.

Figure 15.- Concluded.
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(a) M= 1.56.

Figure 16.- Effect of sideslip on lateral stability for model configuration
with tails off in pitch.
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(b) M= 2.06.

Figure 16.- Concluded.
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Figure 17.- Effect of aileron deflection on aerodynamic cheracteristics
in sideslip.
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(a) Concluded.
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Figure 17.- Continued.
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(b) M=1.5; a = 9.7°.

Figure 17.- Continued.
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(d) Concluded.

Figure 17.- Continued.
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(e) Concluded.

Figure 17.- Continued.
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(f) M= 2.06; a=~ 9.6°.

Figure 17.- Continued.
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(h) Concluded.

Figure 17.- Concluded.
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Figure 18.- Effect of external stores on aerodynamic characteristics

in sideslip.
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(a) Continued.

Figure 18.- Continued.
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Basic model, a = 12,10
Basic model, a= 16.3°
With external stores, a= 12.2
With external stores, q= 16.3

(a) Continued.

Figure 18.- Continued.
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Figure 18.- Continued.
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Basic model, a = 9.6°
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(b) Continued.

Figure 18.- Continued.
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(a) M= 1.56.

Figure 19.- Effect of rudder deflection on aerodynamic characteristics
in pitch.
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Figure 20.- Continued.
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(¢) Concluded.

Figure 20.- Continued.
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Figure 21.- Effect of rudder deflection on rudder hinge-moment coefficient.
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(a) M= 1.56.

Figure 23.- Effect of wing leading-edge extensions on aerodynamic char-
acteristics in pitch; B = 0°. Data uncorrected for base and internal
duct drag. (Flagged symbols denote wall reflected shock waves striking
tall.)
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(b) M= 2.06.

Figure 23.- Concluded.
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O Simulated delta
O Basic model

(a) M= 1.56.

Figure 24.- Effect of wing plan form on aerodynamic characteristics in
pitch; B = 0°. Data uncorrected for base and internal duct drag.

(Flagged symbols denote wall reflected shock waves striking tail.)
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Simulated delta wing

(b) M= 2.06.

Figure 24.- Concluded.
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(a) M= 1.56.

Figure 25.- Effect of T-tail on aerodynamic characteristics in pitch;
B = 0°. Data uncorrected for base and internal duct drag. (Flagged

symbols denote wall reflected shock waves striking tail.)
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(b) M= 2.06.

Figure 25.- Concluded.
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O T-tail and wing spoiler:
O Basic model

(a) M= 1.56.

Figure 26.- Effect of wing spoilers in combination with T-tail on aero-
dynamic characteristics in pitch; B = 0°. Data uncorrected for base
and internal duct drag. (Flagged symbols denote wall reflected shock

waves striking tail.)
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o T-tail and wing spoilers
O Basic model

(b) M= 2.06.

Figure 26.- Concluded.
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O Basic model wii:h added fin areafs
O Basic model e
e e

(a) M=1.5.
Figure 27.- Effect of added fin area on aerodynamic characteristics in

pitch; B = 0°. Data uncorrected for base and internal duct drag.
(Flagged symbols denote wall reflected shock waves striking tail.)
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O Basic model with added fin area
O Basic model
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(b) M= 2.06.

Figure 27.- Concluded.
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(a) M =1.56.

Figure 28.- Effect of added tail with negative dihedral on aerodynamic
characteristics in pitch; 8 = 0°. Data uncorrected for base and
internal duct. (Flagged symbols denote wall reflected shock waves
striking tail.)
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(b) M= 2.06.

Figure 28.- Concluded.
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