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SUMMARY

A limited investigation has been made in the Langley 4- by L-foot
supersonic pressure tunnel to determine the effectiveness of differen-
tial horizontal-tail deflection for producing lateral control for two
swept-wing airplane models in the Mach number range from 1ol B0 2.0,

The tests were limited to rather small tail deflections but included
combined angles of attack and sideslip up to about 20°. One model had a
wing and tail swept 35°, whereas the other had a wing and tail swept 45°.

The tests showed the rolling-moment effectiveness to be essentially
constant with sideslip angle but to decrease with increasing angle of
attack. Estimates of the rolling-moment effectiveness near zero angle
of attack were in reasonably good agreement with the experimental values,
although they were consistently higher by 10 to 15 percent. The yawing
moment due to control deflection was generally favorable at low angles
of attack, but it became adverse with increasing angle of attack. Dif-
ferential deflections of the tail had no significant effect on the lon-
gitudinal stability characteristics.

INTRODUCTION

A problem of concern is that of providing satisfactory roll control
for airplanes in supersonic flight. The deflection of conventional out-
board wing trailing-edge ailerons may result in large amounts of wing
twist that cause the rolling power to be substantially reduced or even
reversed. The wing twist may be reduced by locating the ailerons farther
inboard, but the deflected controls may then cause undesirable flow dis-
turbances in the region of the tail. Wing spoilers may be used to provide
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roll control without the danger of wing twist; however, the spoiler-type
control generally has undesirable nonlinear characteristics; particularly
for small rates of roll.

Another method that has been suggested as a means for providing roll
control involves the use of a differentially deflected horizontal tail.
Such a control, of course, would avoid the wing-twist problem, although
problems of nonlinearities and more complicated tail structures may still
be involved. A summary of results for this type of control at subsonic,
transonic, and supersonic speeds up to a Mach number of 2 is presented in
refierencell s

The present paper presents results that are more detailed on the
effectiveness of the horizontal tail as a roll control device for two of
the configurations included in reference 1. These results were obtained
for a Mach number range from 1.4 to 2.0 in the Iangley 4- by 4-foot super-
sonic pressure tunnel during some investigations that had other primary
objectives. The results are limited to rather small deflections of the
tail but do include angles of attack and sideslip up to about 20°. One
model had a wing and tail swept 35°, and the other had a wing and tail
swept L45°. .

COEFFICIENTS AND SYMBOLS >

The results are presented as coefficients of forces and moments on
the stability axis system (fig. 1) with the reference centers of gravity
at longitudinal stations corresponding to the quarter-chord point of the
wing mean geometric chord. The symbols are defined as follows:

M
Cn yawing-moment coefficient, A
qSb
C 114  eoariieen =
7 rolling-moment coefficient, 255
Cy lateral-force coefficient, X
asS
o 1ift coefficient, where Lift = -Z, L;gt
CX longitudinal-force coefficient (corresponds to negative drag

coefficient at zero sideslip), 2

asS a
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pitching-moment coefficient, ggg
a

force along X-axis
force along Y-axis
force along Z-axis

rolling moment
pitching moment
yawing moment

wing area

horizontal-tail area

wing span

wing mean geometric chord
chord

free-stream dynamic pressure

lateral center-of-pressure location of one panel of horizontal
tail
angle of sideslip, deg

angle of attack, deg

all-movable horizontal-tail incidence angle (see fig. 1), deg
free-stream Mach number

left tail panel

right tail panel

rolling-moment coefficient due to tail deflection, ACI/ASt

yawing-moment coefficient due to tail deflection, ACH [MD
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Clut lift-curve slope of horizontal tail
Ad total differential tail-deflection angle

MODELS AND APPARATUS

Three-view drawings of the models are presented in figure 2. The
geometric characteristics of the models are presented in table I.

Model 1 (see fig. 2(a)) had a wing with 35° sweep of the quarter-
chord line, an aspect ratio of 4, a taper ratio of 0.5, and NACA
65A-series airfoil sections having thickness ratios of 6 percent at the
root and 4 percent at the tip. The wing was mounted in a semihigh posi-
tion on the body and had a negative dihedral of 2.5° and an incidence
of 0°. An all-movable horizontal tail swept back 35° was mounted slightly
below the wing-root chord line extended. A total deflection angle of -10°
was obtained by deflecting the right tail panel -5° (trailing edge up)
and the left tail panel -5° (trailing edge down).

Model 2 (fig. 2(b)) had a wing with 45° sweep of the quarter-chord
line, an aspect ratio of 4, a taper ratio of 0.2, and NACA 65A004 air-
foil sections. The wing was mounted on the body center line and had
dihedral and incidence of 0°. An all-movable horizontal tail swept back
45° was located in the extended chord plane of the wing. Total deflec-
tions of -12° and -6° were used with model 2. The total deflection
of -12° was obtained by deflecting the right tail panel -6° and the left
tail panel -6°. The total deflection of -6° was obtained by deflections
of the right and left tail panels of either -3° and -3°, respectively,
or of -6° and 0°, respectively.

Forces and moments were measured by the use of six-component strain-
gage balances contained in the sting-mounted models. Two different bal-
ance and sting arrangements were used for the two models.

TESTS, CORRECTIONS, AND ACCURACY

The test conditions are summarized as follows:

: ; Stagnation Stagnation Reynolds number,
eas eat fon [N temperature, OF|pressure, 1b/sq ft| based on &
1.61 100 1,4k0 1.56 x 106
Model 1 * 15 01 100 1,4k0 1.35
Model 2 1T 110 1,440 1.68

a0l 140 1,750 1.84 :
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The stagnation dewpoint was maintained sufficiently low (below -25° F)
to prevent condensation effects in the test section. The angles of attack
and sideslip were corrected for the deflection of the balance and sting
under load. The base pressure was measured and the longitudinal force
was adjusted to a base pressure equal to the free-stream static pressure.

The maximum estimated error in each of the individual measured quan-

tities is as follows:

Quantity Model 1 | Model 2
o8 ; et e ot | i +0.0002 | +0.0005
CZ . . P s . +.0001 t. o004
Cy - . . . e +.0015 +.0010
) RS Sra e s S T i e Bt A t.0070 | +.0080
Cx - . S St et 1.0020 £.0020
Cp » « - e, 5 Sit, : t.0005 +.0004
B s i : i 5B o b Tl il
(04N 5 A 5 . S <ot 22 e
Bl i A e o . S - . i 5.2 .2

An index of figures 3 to 11, including the test angle ranges, is

presented in*table II.
DISCUSSION

Rolling Moment

Effects of angle of attack and sideslip.- The rolling moments pro-
vided by differential tail deflection were essentially constant through-
out the sideslip range for any angle of attack for model 1 at M = 1.61
and M = 2.01 (figs 3 and 4). Limited sideslip data obtained for model 2
at M =2.01 (fig. 8) indicated a similar result. However, the rolling
effectiveness CZ for both models decreased with increasing angle of

attack, and between a = 16° and a = 20° values of CZ& were about

one-half those at low angles of attack (fig. 9).

The limiting angles of sideslip for which the 10° tail deflection
of model 1 would be able to neutralize the rolling moment due to side-
slip (fig. 11) vary from a maximum of about 6° at low angles of attack
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to angles of only about 2° at o = 15°. These limiting angles of side-
slip could be increased with increased tail deflection until the tail
loses effectiveness. This measure of the utility of differential tail
deflection as a roll control device is, of course, limited to configura-
tions and Mach numbers similar to those tested, because these results
depend not only on the lift effectiveness of the tail but on the effec-
tive dihedral of the configuration as well.

Estimated rolling-moment effectiveness.- Estimated values of CZ& for

differential tail deflections at a = 0° were obtained from the relation

i Y5t
C == ol <L
18 2 Iut bS

The lateral center-of-pressure location of the tail Yy Wwas obtained

through the use of reference 2. For the present models the lateral cen-
ter of pressure was found to be at approximately LO percent of the exposed
semispan of the tail. The lift-curve slope for the exposed tail was
obtained by the use of reference 5. This procedure neglects body-tail

interference effects. The estimated values thus obtained are in reason- -

ably good agreement with the experimental values at a = 0° but are
consistently higher than the experimental values by approximately 10 to

15 percent (fig. 9). Part of this difference may be attributed to some .

dynamic-pressure loss at the tail and some loss of 1ift on the tail
resulting from the small gap at the inboard end of the tail panels.
Unpublished results from other tests of model 1 have shown that the pres-
ence of the wing reduces the horizontal-tail pitching-moment effective-
ness approximately 10 percent. A similar reduction might be expected in
rolling-moment effectiveness.

Effects of vertical tail.- Tests made with model 2 at M = 1.41
with the vertical tail both on and off indicated no measurable difference
in the rolling effectiveness for the small tail-deflection angles inves-
tigated (fig. 7). This result may not be true, however, for larger tail
deflections or for other possible tail arrangements.

Effects of initial pitch-control deflections.- Limited tests made
with model 2 at M = 1.4l with a differential tail deflection of -6°
indicated no difference in the rolling effectiveness for an initial pitch-
control deflection of -3° (0° left, -6° right) from that obtained with
an initial pitch-control deflection of 0° (-3° left, -3° right) (fig. 7).
This result may not necessarily apply for higher initial pitch-control
deflections, however, since under some conditions the differential
deflections may result in the angle of attack for one tail panel exceeding
the linear range of the tail lift-curve slope.
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Yawing Moment

At angles of attack near zero, the yawing moments due to differen-
tial tail deflection were favorable for model 1 and were approximately
zero for model 2 (fig. 10). For model 1, the favorable yawing moments
are apparently a result of an initial downward flow angle at the tail
that, when the tail is deflected differentially to provide positive roll,
would result in the local angle of the left tail panel approaching zero
while the local angle of the right tail panel becomes more negative.
Consequently, the drag increment provided by the right tail panel would
increase and thus provide a positive or favorable yaw. The existence
of this initial downward flow angle at the tail is indicated by the
effective downwash-angle measurements presented in reference 4 for a
configuration similar to model 1 at M = 1..41.

For model 2, no yawing moments should be expected at o = 0° because
the tail is located symmetrically with respect to the body and wing, and
the initial flow angle at the tail should be 0°. Hence, the differential
tail deflection would result in equal drag increments for the left and
right panels and would cause no yaw. With increasing angle of attack,
the yawing moments become adverse for both models.

The limited tests made for model 2 at M = 1.41 indicated no effect
of the vertical tail or of initial pitch-control deflection on the yawing-
moment characteristics (fig. 7). Some effect might be expected, however,
for larger deflection angles since other investigations have indicated
that large symmetrical deflections of a horizontal tail have a signifi-
cant effect on the lateral-force contribution of the vertical tail.

Iongitudinal Stability Characteristics

For the small range of control deflections investigated, there was
no significant effect of differential tail deflection on the longitudi-
nal stability characteristics of either model (figs. 5 to 8).

CONCLUSIONS

An investigation has been made in the Langley 4- by L4-foot supersonic
pressure tunnel to determine the effects of small differential horizontal-
tail deflections on the lateral control characteristics of two swept-wing
airplane models in the Mach number range from 1.4 to 2.0. One model had
a wing and tail swept 35°, whereas the other had a wing and tail swept
45°. The results of the tests indicated the following conclusions:
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1. The rolling moment provided by differential tail deflection was
essentially constant throughout the sideslip range but decreased with
increasing angles of attack a to values between approximately a = 16°
and a = 20° that were about one-half the values at low angles of attack.

2. Estimates of the rolling-moment effectiveness at low angles of
attack were in reasonably good agreement with the experimental values,
although the estimates were consistently higher by 10 to 15 percent.

3. The yawing moment due to control deflection varied from favorable
to approximately zero at low angles of attack but became adverse with
increasing angle of attack.

4. For the small range of control deflections investigated, there
was no significant effect of differential tail deflection on the longi-
tudinal stability characteristics.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 31, 1956.
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TABIE I.- GEOMETRIC CHARACTERISTICS OF MODELS

Characteristic Model 1 Model 2
Wing

Area, 1nclud1ng body 1ntercept

sq in. ! . § 160.21 14k
Span, in. . . . 25531 24
Root chord, in. St 8.44 10
Tip chord, in. BRSNS 4T I k.28 2
Mean geometric ehord, Inm., .« o s 655 6.89
Sweep of quarter-chord line,

deg . . - 35 L5
Aspect ratio . ; . L L
Taper ratio . . @i Or2

Airfoil section .

NACA 65A004 (tip)

{NACA 654006 (root)

NACA 65A004

Horizontal tail

Area, including body intercept,

gq in, A sy y 1.9 20, T
Area, exposed, sq in. e % b 28.2 18.24
Span, in. el s . ity L2512 1075
Root chord, in. A g 4, ok 5455
Tip chord, in. s LA 1.98 2,01
Sweep of quarter—chord ilsines

degty L, 55 45
Aspect ratio (total) e 4
Aspect ratio (exposed) b w e 5 3
Taper ratio . e S et e 0.4 0.6
Airfoil section . o e . {NﬁiéA6Zéiggh(?$§;§ Hexagonal

Vertical tail
Aves; Bq In. . g E ol o 29.6 42,3
Span, in. b 6.2 8.59
Root. chord; in. A e 7650 8.18
Pip chord, in. - N 1..2% 1.6k
Sweep of quarter- chord line,

e RS it 4h.5 35
Aspect ratio A A 5 DD
Taper ratio . . QL G2
Alipfolilfiscection « . ¢ . NACA 65A006 (root) Hexagonal

|

NACA 65A004 (tip)
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TABLE II.- INDEX OF FIGURES 5 TO 11

Model M o, deg B, deg Component Figure
Basic data
i} 1.61 0, 4.2, 8.5, Range Cn,Cy,Cy 3
1227, 16
1 2.00 0, k.1, €3, Range Cns»C3,Cy L
265y 565
1 ikl Range 0 Cr,s CxtsCr 5
CnyCy,Cy
1 2.01 Range 0 C1,5CxtsCp 6
Cn,Cy,Cy
2 1.41 Range 0 C1,»Cxt»Crm T
CnsCy,Cy
2 2.01 Range 0,4 C1,5Cx5Cpy 8
Cn’CZ’CY
Summary
e Various Cl& against o 9
12 Various Cn6 against « 10
i I 61 20l B against o for trim roll 11
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Relative wind
—_—

X =

Relative wind

Figure 1.- System of stability axes.

1Lt

Right panel

—— Left panel

Arrows denote positive directions.
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(a) Model 1.

Figure 2.- Details of models.
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Figure 4.- Continued.
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(a) Cm, Cr, and Cx plotted against a.

Figure 5.- Effect of differential stabilizer deflection on the aerodynamic
characteristics in pitch. Model 1; M = 1.61; B = 0°.
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Figure 6.- Effect of differential stabilizer deflection on the aerodynamic
characteristics in pitch. Model 1; M = 2.01; B = O°.
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Figure T7.- Effect of differential stabilizer deflection on the aerodynamic
characteristics in pitch. Model 2; M = 1.41; B = 0°.
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Figure 8.- Effect of differential stabilizer deflection on the aerodynamic
characteristics in pitch. Model 2 with vertical tail removed; M = 2.01;
B = 0° and 4°.
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Figure 9.- Variation of roll-effectiveness parameter with angle of attack.
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Figure 10.- Variation of yawing moment due to control deflection with
angle of attack.
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Figure 11.- Variation of sideslip angle for trim roll with angle of attack
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