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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

EFFECT OF HINGE-LINE POSITION ON THE OSCILLATING 

HINGE MOMENTS AND FLUTTER CHARACTERISTICS OF 

A FLAP-TYPE CONTROL AT TRANSONIC SPEEDS 

By Robert F. Thompson and William C. Moseley, Jr. 

SUMMARY 

Free-oscillation tests were made to determine the dynamic hinge­
moment characteristics of a trailing-edge, flap-type control surface with 
various hinge-line positions. The essentially full-span control was 
tested on a 4-percent-thick, low-aspect-ratio wing as a reflection plane 
configuration in the Langley high-speed 7- by 10-foot tunnel. The total 
control chord was 30 percent of the wing chord, and ratios of balance 
chord to flap chord rearward of the hinge line of 0.20, 0.35, and 1.00 
are reported. Test parameters covered a Mach number range from 0.40 to 
1.02, control oscillating amplitudes of about 100 or larger, angles of 
attack of 00 and 60 , and a range of control reduced fre~uencies. Static 
data were also obtained for the three control hinge-line positions and 
results are compared with existing theories. 

Results show that oscillating amplitude has a large effect on the 
control aerodynamic damping derivative and that the damping is unstable 
in the test Mach number range above about 0.90 for the ~inge positions 
tested. Damping was generally stable at Mach numbers below 0.90 although 
it was unstable at subsonic speeds for high oscillation amplitudes of 
the control hinged at the midchord. When the total damping of the con­
trol system (nonaerodynamic plus aerodynamic) was unstable, the control 
fluttered with only one degree of freedom and at transonic speeds the 
flutter amplitude was decreased by a rearward movement of the hinge line. 
Test variations in angle of attack and control reduced fre~uency had 
little effect on the oscillating hinge-moment derivatives Ch~ and 

L'O ,(l) 

Ch~ . 
LLQ ,CD 

Considering existing limitations, good agreement was obtained 

with results computed by two-dimensional, potential-flow theory. 
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INTRODUCTION 

Aerodynamic hinge-moment data for flap-type controls determined 
under oscillatory conditions ~ needed in flutter and servocontrol anal­
yses. At present, theoretical calculations of these moments are generally 
considered unsatisfactory at transonic speeds and little experimental 
data are available for these conditions. However, a few results exist 
which cover certain features of the transonic behavior of these controls. 

One of the more important factors affecting the hinge-moment charac­
teristic of the control is the location of the hinge axis. Experimental 
results reported in reference 1 show that the rotational aerodynamic 
damping of a flap-type control is unstable at transonic speeds for a con­
trol with the hinge line located a moderate distance from the leading 
edge of the control. However, theoretical work reported in reference 2 
shows the rotational damping of a wing alone to be stable at low super­
sonic speeds for a rotational axis rearward of the 0.66-chord point of 
the control. Therefore, it was felt possible that flap-type controls 
with substantial amounts of aerodynamic balance would have favorable 
aerodynamic damping characteristics in the transonic region. 

The purpose of the present investigation was to determine the effects 
of hinge-line position on the dynamic hinge-moment and flutter character­
istics of a flap-type control surface at transonic speeds. In view of 
the results of reference 2, it was considered of interest to obtain these 
data with the hinge line located fairly far rearward, even though this 
factor reduces the control effectiveness and makes it statically unstable. 
(See ref. 3.) 

This investigation was basically an extension of the work reported 
in reference 1. The wing-control model was essentially the same and was 
originally intended to be a l/8-scale model of the X-1E research airplane 
wherein the model included only the outboard 35 percent of the wing semi­
span. For the present tests, the control hinge line was shifted rearward 
relative to the hinge-line location of the control reported in reference 1. 

Oscillating hinge moments and associated flutter characteristics were 
determined for a range of control reduced frequencies and two setback 
hinge positions. Static hinge moments were also obtained. The effects 
of angle of attack and control-surface oscillating amplitude were investi­
gated over a Mach number range from about 0.40 to 1.02. In addition, per­
tinent results from reference 1, which are considered directly comparable, 
were used to extend the range of hinge-line positions reported herein. 
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SYMBOLS 

control hinge-moment coefficient~ Hinge moment 
2M'q 

area moment of control area rearward of and about hinge 
line, ft3 

free-stream dynamic pressure, lb/sq ft 

aerodynamic hinge moment on control per unit deflection, 
positive trailing edge down, ft-lb/radian 

local wing chord, ft 

control chord (distance from hinge line rearward to trailing 
edge of control, see fig. 1), ft 

balance chord (distance from hinge line forward to leading 
edge of control, see fig. 1), ft 

total control chord, ca + cb, ft 

reduced frequency, wct/2V, with Ct taken at midspan of 

control 

angular frequency of oscillation, 2nf, radians/sec 

frequency of oscillation, cps 

control wind-off natural frequency, cps 

free-stream velocity, ft/sec 

moment of inertia of control system, slug_ft2 

logarithmic decrement, 
d(log 01) 

per second 
d( time) , 

amplitude of OSCillation, deg to each side of mean 

control-surface deflection, measured in a plane perpendicular 
to control-surface hinge line, positive when control-surface 
trailing edge is below wing chord plane, radians except as 
noted 
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b/2 
effective Mach number over span of model, II cMa, dy 

1 0 

twice wing area of semispan model, sq ft 

twice span of semispan model, ft 

average chordwise local Mach number 

local Mach number 

spanwise distance from plane of symmetry, ft 

angle of attack of wing chord plane, deg 

Real part of Me 
2M'q 

per radian 

Imaginary part of Me 
2M'qk 

per radian 

the subscript w indicates 
derivatives that are a 
function of w 

phase angle of resultant aerodynamic 

the control displacement, tan e = 

moment with 
kC,.,;. 
__ '-'O.......L..' w_, deg 
Ch~ u,w 

respect to 

"bumped" flutter condition, flutter starts when the control 
surface is manually displaced and suddenly released 

"self-starting" flutter condition, flutter starts due to 
random tunnel disturbances when the control is released 
at 00 deflection 

MODEL AND APPARATUS 

The test model consisted of a semispan wing, a flap-type control 
surface, and a torsion spring and deflector mechanism as shown in the 
schematic drawing in figure 1. General model dimensions are given in 
figure 2, and photographs are shown in figure 3. The model was designed 

J 
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so that the internal damping and spring constant of the control system 
could be varied and was tested as a reflection plane configuration at 
transonic ~ch numbers in the Langley high-speed 7- by 10-foot tunnel. 

Wing Details 

5 

The wing had an aspect ratio of 1.80) a taper ratio of 0.74) and 
an NACA 64A004 airfoil section with a modified trailing edge. The 
portion of the wing rearward of the 70-percent-chord line was modified 
so that the trailing edge had a constant thickness eQual to 0.0036c. 
This trailing-edge modification was based on construction consideration 
for the X-LE airplane and carried over to this investigation to keep 
results comparable with reference 1. 

The wing was constructed with a steel core and a plastic surface. 
All oscillation tests were made with a tip store added to the wing. 
Details of the tip store are shown in figure 1 and table I. Two geo­
metrically similar stores having vastly different weights were used to 
vary the wing natural freQuencies for various test conditions. The 
natural first bending and torsion freQuencies of the wing) with the light 
and the heavy tip store) are given in table II. These freQuencies were 
obtained with the torsion spring clamped at 8 .2 inches from the reference 
position (fig. 4) and are average values for the two controls since 
shifting the hinge line had a slight effect on the wing freQuencies. 

Control-System Details 

The total chord of the control was 30 percent of the local wing 
chord and the span of the control extended from the 0.086b/2 model 
station to the 0.943b/2 model statioh-. Two setback hinge-line positions 
were tested and the ratios of balance chord to control chora rearward 
of the hinge line were 0.35 and 1.00 (fig. 2). The gap between the con­
trol nose and wing was unsealed. The controls were statically mass bal­
anced with the balance distributed so as to balance as near as possible 
each spanwise segment. They were made of steel and the cb/ca = 0.35 
control was balanced by a tungsten nose insert and holes drilled perpen­
dicular to the chord plane rearward of the hinge line (fig. 3(b)). The 
cb/ca = 1.00 control was balanced by holes drilled forward of the hinge 

line (fig. 3(c)). These holes were plugged with balsa and the entire 
control surface covered with silk. 

The inboard tang of the control extended through the reflection 
plane to the outside of the tunnel (fig. 1). The tang extension con­
sisted of a damper rod and a torsion spring. The control was mounted 
by two ball bearings outside the tunnel and a plain bearing at the wing 
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tip. The system was carefully alined to keep friction to a mininrum. 
Attached to the damper rod was a small armature which rotated in the 
magnetic field of a reluctance-type pickup to indicate control position 
and a deflection arm used to apply a step deflection to the control 
system. A movable clamp was used to vary the length of the torsion 
spring and hence the natural frequency of the control system. The 
values of natural frequency are given in figure 4 for each clamp posi­
tion. The moments of inertia of the control system with the two con­
trols are given in table III. The viscous damper used to increase the 
tare damping of the system is described in reference 1 and was used in 
this investigation for only a few test points. 

INSTRUMENTATION 

Strain gages were located near the root of the wing to indicate 
the wing bending and torsion response. Control deflection was measured 
by a reluctance-type pickup located at the end of the damper rod nearest 
the control. These three quantities were recorded against time by a 
recording oscillograph. Dynamic calibration of the recording system 
indicated accurate response to a frequency of about 500 cycles ~er 
second. 

TESTS 

The tests were made in the Langley high-speed 7- by 10-foot tunnel 
utilizing the side-wall reflection-plane test technique. This technique 
involves the mounting of a relatively small model on a reflection plate 
spaced out from the tunnel wall to bypass the tunnel boundary layer. 
Local velocities over the surface of the test reflection plate allow 
testing to a Mach number of about 1.02 without choking the tunnel. 

Typical contours of local Mach number, in the vicinity of the model 
location obtained with no model in place, are shown in figure 5. Average 
test Mach numbers were obtained from similar contour charts by using the 
relationship 

The tunnel stagnation pressure was essentially equal to sea-level atmos­
pheric conditions. 
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The variation of Reynolds number based on the wing mean aerodynamic 
chord with test Mach number is presented in figure 6. The width of the 
band in figure 6 represents, for these tests at a given Mach number, the 
maximum variation of Reynolds number with atmospheric conditions. 

Oscillating hinge moments were obtained for amplitudes up to about 
100 or larger through a Mach number range of about 0.40 to 1.02. These 
data were measured at ~ = 00 for both hinge-line positions tested and 
at ~ = 60 for the ~/ca = 1.00 control. The contro! reduced-frequency 
range varied with control hinge-line position and Mach number and was 
generally in the range from 0.05 to 0.25. In addition, static hinge­
moment data were obtained at ~ = 00 for both controls and at ~ = 60 

for the cb/ca = 0.35 control. 

TEST TECHNIQUE AND REDUCTION OF DATA 

Oscillating hinge moments were obtained from the free-oscillation 
response of the control system. The control system was designed so that 
at the test frequencies the torsional response of the control about the 
hinge line was essentially that of a single-degree-of-freedom system. 
The wing response characteristics were varied relative to the control 
oscillating frequency so that the physical response of the model for the 
various test conditions was predominantly control rotation. Therefore, 
the aerodynamic moment resulting from angular deflection of the control 
about the hinge line could be determined from the free-oscillation char­
acteristics of the contrcl system following known starting conditions. 
Typical oscillograph records of the time response of the model are shown 
in figure 7. 

The technique used to initiate the free oscillations depended on 
the total damping (aerodynamic plus nonaerodynamic) of the control system 
for the particular test condition. The term "nonaerodynamic" is con­
sidered to include the system frictional and structural damping plus any 
artificial damping that might be added. When the total damping was 
unstable at low deflections, the hinge moments were determined from the 
unstable oscillation following release of the control at 0 = 00 

(fig. 7(c)). This type of oscillation was initiated by random tunnel 
disturbances and in all cases was self-limiting because of the nonlinear 
variation of aerodynamic damping with oscillating amplitude. When the 
total damping was stable or varied from stable to unstable wi thin the 
test oscillation amplitude range, the free oscillation was initiated by 
releaSing the control at some initial deflection angle at zero initial 
rotational velocity (figs. 7(a) and 7(b)). The ensuing oscillation was 
either a buildup or a decay and for the conditions where the dampir~ 
variea from stable to unstable, the initial deflection angle was changed 
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so as to study the complete oscillation amplitude range. In addition, 
a very small portion of the data was determined from decayed oscilla­
tions made stable by increasing the nonaerodynamic damping of the system 
with the viscous damper. 

The hinge moment existing on an oscillating control is not neces­
sarily in phase with the control position and may be represented in com­
plex notation by the relation 

(1) 

The part Ch~ u,w 
is proportional to the real component of the moment 

which is commonly called the in-phase or spring moment. The part 
kCh' is proportional to the imaginary component of the moment which 

O,W 
is commonly called the out-of-phase or damping moment. Frequency effects 
higher than first order could not be separated by the test method used 
in this investigation; therefore, the parameters Ch~ and kCh~ 

·~,w ·~,w 

include the higher order derivatives that are either in-phase or out­
Of-phase, respectively, with control position. 

Evaluation of Spring Moments 

The aerodynamic in-phase or spring moment was determined from the 
natural frequency of oscillation of the control system. Since the varia­
tion of in-phase moment is not necessarily linear with amplitude and the 
test method was not sufficiently accurate to determine the variation in 
natural frequency with amplitude, the values of Ch~ presented are 

·~,w 

effective values averaged over the amplitude range of the oscillation. 
The effect of the values of damping encountered in this investigation 
on the natural frequency was considered negligible and the aerodynamic 
spring-moment derivative was determined from the relationship 

where the subscript 0 signifies a wind-off condition. As shown by 
equation (2), negative values of Ch~ oppose the control displacement 

·~,w 

and hence increase the stiffness or natural frequency of the control 
system. 
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Evaluation of Damping Moments 

The aerodynamic out-of-phase or damping moment was determined from 
the rate of buildup or decay of the free oscillation of the control 
system. Like the spring moment, the damping moment is not necessarily 
linear with amplitude and the damping results were analyzed on the basis 
of an equivalent linear system . It was assumed that all damping forces 
considered in this investigation were adequately described by an equiv­
alent viscous damping and the time response of the actual system was 
simulated by a linear system having the appropriate damping constant at 
each oscillating amplitude for a given frequency. The variation of 
damping-moment parameter with oscillating amplitude was obtained by 
plotting the logarithm of the amplitude of successi ve cycles of the 
oscillation against time and taking, at a particular amplitude, the 
slope of the faired curve through the points as the value of the loga-

rithmic decrement A = d(log 01) of the oscillation at that amplitude. 
d(time) 

The aerodynamic damping-moment derivative was determined from the 
relationship 

where the subscript 0 refers to wind-off values taken at approximately 
the same frequency and amplitude as the wind-on values. 

The aerodynamic damping 

viscous damping constant (c, 

C 

derivative is related to an 

ft-lb ) by the expression 
rad/sec 

Ct<i.M 1 

C • h5, m - V-

Determination of Static Hinge Moments 

equivalent 

(4) 

Static hinge moments were measured by attaching a clamp to the con­
trol system at the damper rod. This clamp replaced the oscillating 
spring clamp and wa s fitted with a calibrated electric strain gage which 
measured the torque about the control hinge line for various control 
deflections. The static hinge-moment coefficient Ch was determined 
from the relationship 

Torque 
2M ' q 

J 
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General Comments 

Values given for oscillating and flutter amplitudes are to each side 
of mean and for this investigation the mean oscillating amplitude was 
very near zero deflection. Therefore, the oscillating and flutter ampli­
tudes correspond closely to the control amplitude measured relative to the 
wing- chord plane. Flutter in all cases was a limited amplitude oscilla­
tory condition and was terminated by physically restraining the control 
motion. For the free-oscillation technique used, the oscillation reduced 
frequency k varies with Mach number and values of k are given for 
each Mach number . 

The wing bending and torsion traces shown in figure 7 are a measure 
of the wing root bending and torsion stresses, whereas the control posi­
tion trace indicates the control deflection. The traces in figures 7(a) 
and 7(b) were more sensitive than those in 7(c). It would be desirable 
to eliminate all wing motion in an investigation of this type but this 
is not practical. However, care was taken to minimize the wing motion. 
The control surface was dynamically balanced about the hinge line to 
prevent any inertia coupling between the wing and control due to control 
rotation, and the wing was fitted with a tip store of variable mass to 
control the wing response motion to the control-induced aerodynamic 
forcing function. Wing bending and torsion responses of the general 
magnitude encountered in these tests were approximated by simple wing 
translation and rotation and analyzed by the theoretical methods pre­
sented in references 4 and 5. The effects of this wing motion on the 
calculated control hinge-moment parameters for a control hinged at the 
leading edge was very small. Therefore, in this investigation, wing 
motion was considered to have only secondary effects on the control 
hinge-moment parameters. 

The control-system response was nonlinear due to the fact that the 
aerodynamic spring and damping-moment derivatives depended on the con­
trol displacement. Some compromise of the actual aerodynamic spring 
and damping constants of the system was undoubtedly made by the methods 
used to analyze the nonlinear system. This compromise is expected to 
be larger for the spring moments than for the damping moments. However, 
it is believed that for the range of physical constants of these tests, 
the method of analysis gives sufficient accuracy for practical purposes. 

CORRECTIONS 

No corrections have been applied to the data for the chordwise and 
spanwis~ velocity gradients or for the effects of the tunnel walls. It 
is shown in reference 6 that a tunnel resonance phenomenon can appre­
ciably decrease the magnitude of forces and moments measured in 
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oscillatiGn tests. However) it is believed that this phenomenon had no 
appreciable effect on the results of the present investigation . I n gen­
eral, most of the test frequencies were well removed from the calculated 
resonant frequencies and there was no apparent decrease in moments for 
the test frequencies that were close to resonant frequencies . It is 
possible that the magnitude of the resonant effects would be relieved by 
the model tip effects and the nonuniformity of the velocity field in the 
test section. 

Static control- deflection correC~lons have been applied to the out­
put of the position pic~~p to give the deflection at the midspan of the 
control surface . No dynamic corrections were applied to account for the 
twist of the control system outboard of the position pickup (fig. 4) 
Since) for the physical constants and frequencies involved) this was a 
secondary effect and generally negligible. 

RESULTS AND DISCUSSION 

Presentation of Data 

Static hinge-moment data are presented in figures 8 and 9 . The 
variation of aerodynamic damping derivative Ch~ with oscillating 

·~)w 

amplitude and Mach number together with the associated flutter charac ­
teristics are presented in figures 10 to 12 for the complete range of 
this investigation. The variation of the aerodynamic spring derivative 
Ch~ with 11ach number for the various test wind- off frequencies is 
·~,w 

shown in figures 13 and 14 and a comparison between static and dynamic 
spring-moment results is presented in figure 15. Figure 16 shows the 
effect of hinge-line position on the oscillating hinge-moment derivatives 
for various Mach numbers, and figure 17 compares the effect of hinge­
line position on the static and dynamic hinge - moment parameters as deter­
mined by experiment and theory. Figures 18 and 19 give additional com­
parison of the experimental oscillating hinge -moment results with theory. 
Figure 20 shows the effect of hinge - line pOSition, 11ach number, and 
reduced frequency on the resultant aerodynamic hinge- moment vector. 

The Cb/ca = 0.20 control reported in reference 1 and used herein 

in figures 16 to 20 for comparison was tested on the wing without a tip 
store and the overhang nose span was slightly different from the present 
controls; however, these effects are believed to be small. 
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Damping Moments and Flutter Characteristics 

The variation of aerodynamic damping-moment derivative Ch~ with 
."'0,(1) 

oscillating amplitude and Mach number along with associated flutter char­
acteristics is shown in figure 10 for the cb/ca = 0.35 control at 

~ = 00
, and in figures 11 and 12 for the ~/ca = 1.00 control at 

~ = 00 and 60 , respectively. Data are presented in the different parts 
of these figures for the various reduced frequencies of the controls 
tested. These plots of Ch~ with oscillating amplitude (figs. 10 

."'0, (1) 

to 12) present an equivalent linear viscous damping derivative for the 
system when it is oscillating over a complete cycle at the various 
amplitudes. 

cb/ca = 0.35 control.- Aerodynamic results for the cb/ca = 0.35 

control (fig. 10) show that the damping was stable for all amplitudes 
and reduced frequencies tested at Mach numbers from 0.60 to about 0.90 
and was generally unstable in the Mach number range from about 0.92 
to 1.01, the maximum Mach number tested. The damping derivative Ch; 

""0,(1) 

was generally fairly constant to maximum test oscillating amplitudes of 
about 100 at the lower test Mach numbers (M = 0.6 to 0.8) and became 
less stable with increasing amplitude at the intermediate test Mach num­
bers (M = 0.85 to 0.92) such that the aerodynamic damping became slightly 
unstable for some high test oscillating conditions. At the higher test 
Mach numbers (M = 0.94 to 1.01) maximum unstable values of Ch~ gen-

""'0,(1) 

erally occurred at the low oscillating amplitudes with unstable values 
of Ch~ decreasing with an increase in oscillating amplitude, thus 

""'0,(1) 

leading to the limited amplitude type of flutter response obtained. For 
this control, cb/ca = 0.35, changes in test oscillation amplitude did 
not change the general variation in ~_~ with Mach number. -no, (1) 

When comparing the flutter characteristics with the aerodynamic 
damping values (fig. 10), it should be remembered that the control system 
had a certain level of nonaerodynamic damping. Flutter was a self-excited 
oscillation involving only the degree of freedom of control rotation 
about the hinge line. In all cases tested for this control, flutter was 
self-starting (see section entitled "Symbols") and built up in amplitude 
until a steady-state condition was reached, wherein the aerodynamic 
energy fed into the oscillation over a complete cycle was equal to the 
energy dissipated by nonaerodynamic damping (see fig. 7(c)). The flutter 
frequencies and amplitudes given are for the steady-state oscillatory 
conditions of this model. 

I 
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In the Mach number region where the aerodynamic damping was stable, 
variation within the test reduced-frequency range had little effect on 
the magnitude of Cn~ (see figs. 10 and 18). For the region where 

''0, (1) 

the aerodynamic damping was unstable, the damping derivative Cn; 
.'0, (1) 

generally became more unstable 
and for this model the flutter 
in reduced frequency. 

as the test reduced frequency was decreased 
amplitude also increased with the decrease 

cb/ca = 1.00 control.- The variation of Cn: with oscillating 
.'0, (1) 

amplitude for the ~/ca = 1.00 control was very nonlinear for the com-

plete Mach number and reduced- frequency range tested at both ~ = 00 
and ~ = 60 (figs. 11 and 12). As such, the variation in Cn~ with 

.'0, (1) 

Mach number can be markedly changed depending on the oscillating ampli­
tude in question. This pronounced effect of oscillation amplitude on 
the damping results might have been expected in view of the extreme non­
linearities in the variation of static hinge moment with deflection angle 
for a flap-type control with the hinge line located this far rearward. 
(See ref. 3.) At the low test oscillating amplitudes, Cn; was essen-

''0,(1) 

tially constant at a relatively low level of stable damping for Mach 
numbers from 0.40 to 0.70 and increased to a very high level of stable 
damping near M = 0.88 (figs. 11 and 12). The damping derivative 
Ch6 (1) at M = 0. 88 was several times larger than the values below , 
M = 0.70. Above M = 0. 88 (at low amplitudes), there was a 
tion in aerodynamic damping with increasing Mach number and 

rapid reduc-
C· was ho,m 

unstable from M ~ 0.95 to M = 1.01, the maximum for these tests. For 
this hinge-line position, Ch; generally became less stable with 

u , (1) 

increasing amplitude at the lower test Mach numbers and more stable at 
the higher test Mach numbers. Therefore, at the higher test oscillating 
amplitudes, Cn; was unstable at low test Mach numbers and stable at ·'O, m 
high test Mach numbers, just the opposite of the variation of Ch~ 

''O, m 
with Mach number at low amplitudes (figs. 11 and 12). A possible expla­
nation for this high amplitude, low Mach number instability is associated 
with the phenomenon of stall flutter. Support for this belief can be 
seen by examining the variation of static hinge moment with deflection 
for this control shown in figure 9. For Mach numbers from 0.60 to 0.90, 
there are abrupt breaks in the variation of Ch with 0 in the deflec­
tion range from 50 to 100 . This type of static variation of moment with 
deflection can, for the oscillating case, lead to an aerodynamic hyster­
esis or stall-flutter type of self-excited instability. Examination of 
figures 11 and 12 shows that the aerodynamic damping of the control is 
generally reduced and under certain conditions becomes unstable if the 
control is oscillating at an amplitude which includes these static breaks. 

J 
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Flutter for the cb/ca = 1.00 control was also a one-degree - of­

freedom, self-excited oscillation and the flutter frequencies and ampli­
tudes given in figures 11 and 12 are again the steady- state oscillatory 
conditions for this model. Flutter which occurred in the Mach number 
range from 0.40 to 0.80 was a "bumped" flutter in that, to initiate the 
instability, the control had to be displaced to some intermediate ampli ­
tude and suddenly released. Flutter in the Mach number range from 0.94 
to 1.01 was self- starting and the flutter amplitude for this transonic 
instability was greatly reduced by shifting the hinge line rearward as 
can be seen by comparing the flutter amplitudes of figure 11 with those 
of figure 10. 

For a wind-off natural frequency of 160 cps and an angle of attack 
of 60 , the unstable aerodynamic damping at transonic speeds was reduced 
to a point where the nonaerodynamic damping stabilized the system and 
eliminated the flutter (figs. ll(c) and 12(c)). The effect of angle of 
attack and/or reduced frequency was not this pronounced for this control 
at the other test conditions . In general, variation of test reduced 
frequency and changing the angle of attack from 00 to 60 had small effects 
on the overall damping moments. 

Although it Was not actually done for all cases, it was the oplnlon 
of the writers that t he control-system flutter encountered in these tests 
could be eliminated by increasing the nonaerodynamic damping until the 
damping due to rotation of the control system about the hinge line 
remained stable throughout the test range. 

Spring Moments 

Static hinge -moment or spring-moment coefficients are shown in fig­
ures 8 and 9 for the two controls tested. These data indicate that the 
tip store generally had little effect on the static hinge moments. The 
cbjca = 0 . 35 control (fig. 8, a = 00 and 60 ) was closely balanced aero-

dynamically at low deflections, in the Mach number range from 0.60 to 0.90 
In this speed range, the variation of Ch with 5 was linear at the 
lower deflections (5 ~ ±5°) and became more underbalanced at the higher 
deflections. In the Mach number range from 0.95 to the maximum for these 
tests (1.02), Ch was linear over the complete test range of 5 and 

the aerodynamic -loading center shifted rearward so that the control was 
considerably underbalanced . With the control hinge line shifted to the 
midchord position (~/ca = 1.00, fig . 9 , a = 0 0

) the control was over 
balanced or statically unstable for the complete test speed and deflec­
tion range .... T~is is generally an undesirable aerodynamic feature; how­
ever, the oscillating hinge moments for this control were considered of 
interest because of the beneficial influence on damping shown by 

I 
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potential theory for rear ward located hinge axes . In the Mach number 
range from 0.60 to 0.90 there are abrupt breaks in the curves of Ch 

15 

plotted against 5 which are typical of flap-type controls having the 
hinge line this far rearward . (See, for example , ref. 3.) These extreme 
nonlinearities are alleviated somewhat by the rearward shift in aero­
dynamic loading in the test speed range above M = 0.90. 

The oscillating aerodynamic spring-moment derivatives Cn~ 
·~,w 

obtained in this investigation are shown in figures 13 and 14. The 
reduced fre~uency for each data point on these figures is given on the 
corresponding damping curves in figures 10 to 12 . Since fre~uency could 
not be accurately determined from a few oscillati on cycles and since 
oscillation amplitude changes within each cycle for all but the steady­
state flutter conditions, any nonlinear variation of aerodynamic spring­
moment parameter with oscillation amplitude could not be determined by 
the test techni~ue used. Therefore the Cn~ values given were aver-

·~,w 

aged over some arbitrary oscillating amplitude range. When possible 
this oscillation amplitude range was chosen to be the same as the linear 
range over which static Cho values were measured. However, for the 

highly damped oscillatory conditions this was not feasible and the com­
plete amplitude range was used. Therefore, some difference in effective 
amplitude range exists for the static and oscillatory data comparison 
shown in figure 15. 

The oscillation spring-moment derivative Cn~ varies with Mach 
·~, w 

number in much the same IT inner as the static derivative Cllo and for 

the test conditions of these data, static hinge-moment data could be 
used to make fairly accurate frequency estimates for single-degree-of­
freedom transonic control-surface flutter. The aerodynamic balancing 
effect of shifting the hinge line rearward is clearly shown in figure 15 
for the test Mach number range and the effect is about the same for both 
the static and dynamic aerodynamic stiffness parameters. 

In general, changing the angle of attack from 00 to 60 and the varia­
tions within the test reduced-fre~uency range had little effect on the 
aerodynamic spring-moment parameter Cn~ . 

·~,w 

Effect of Hinge-Line Position and Comparison With Theory 

The effects of hinge-line position on the oscillating hinge-moment 
parameters, based on results reported herein and results for the 
cb /ca = 0.20 control reported in reference 1, are shown in figures 16 

to 20. In figure 16 the variation of aerodynamic stiffness and damping 
parameters with hinge -line position is shown for representative Mach num­
bers. These data were arbitrarily picked for a particular control-system 
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oscillation condition (01 ~ flo, fo ~ 175) and show typical effects 

although the results are dependent on the conditions chosen especially 
with regards to oscillation amplitude. Also shown in figure 16 is an 
auxiliary abscissa scale for convenience in converting cb/ca values to 

hinge-line location in percent total control chord from the control 
leading edge. The aerodynamic balancing effect on Ch~ of shifting 

L~, W 

the hinge line rearward is shown and this effect is smaller at sonic 
speed than at the lower test speeds due to the rearward shift in aero­
dynamic center of pressure associated with supersonic flow. Figure 16 
also shows that the control aerodynamic damping is affected considerably 
more by Mach number than by hinge-line position and the damping is 
unstable at sonic speeds for the range of hinge-line positions tested 
at low oscillation amplitudes. 

Figures 17 and 18 compare experimental data obtained at M = 0.60 
with results computed by the two-dimensional incompressible theory of 
reference 7. The linear theory would be of interest at low oscillation 
amplitudes and the differences caused by finite airfoil thickness in the 
experimental case should be relatively small for the thin wing investi­
gated. In computing results from reference 7, a mean camber-line param­
eter of 0.25 times the overhang length was used, as suggested, to phys­
ically represent the local flow at the nose of the control. The choice 
of this parameter can have a large effect on the magnitude of the com­
puted spring-moment parameters. Therefore better quantitative agreement 
between experimental and calculated spring moments could possibly be 
expected if sufficient information were available to establish the proper 
choice of mean camber-line parameter for the various overhangs. The 
parameter kCh; was used to represent the aerodynamic damping Since, 

L~, W 

as shown by equation 1, this results in representative numerical values 
for the spring- and damping-moment components. The data in figure 17 
show the variation of hinge-moment parameters for a range of control 
reduced frequencies and figure 18 is a cross plot of these data to show 
the variation with hinge-line position. Very good agreement is obtained 
between experiment and theory for the damping results and good qualita­
tive agreement is obtained for the spring results. The lack of quantita­
tive agreement for the spring-moment parameters can be attributed to 
uncertainties in the analytical treatment of the local flow at the nose 
of the control (theory does not permit flow through the gap) as well as 
aspect ratio and Mach number effects. The effect of Mach number is 
especially pronounced for the cb/ca = 1.00 control as shown in fig-

ure 12. The very good agreement obtained for the damping parameters is 
somewhat surprising in view of the existing limitations of the theory. 
However, the same trends between experiment and theory were obtained at 
subsonic speeds with the empirically modified two-dimensional compress­
ible theory used for comparison in reference 1. Therefore the indication 
is that subs onic aerodynamic damping parameters for various hinge-line 
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positions and low oscillating amplitudes can be estimated reasonably 
well from available theory. The spring-moment parameters for these same 
conditions can be computed to a lesser degree of accuracy. The data in 
figure 17 indicate that, for a given hinge-line position and constant 
dynamic pressure, increasing the control reduced frequency increases the 
aerodynamic damping moment but has relatively little effect on the aero­
dynamic spring moment. The increase in damping moment is approximately 
proportional to the increase in k which means that Ch; remains 

""'0, ill 

essentially constant with k for a given control. Figure 18 shows tha~ 
the aerodynamic balancing effect on the spring-moment derivative of 
shifting the hinge line rearward is similar for both the static and 
dynamic case. The stable aerodynamic damping at subsonic speeds is 
reduced by a rearward movement of the hinge line. 

Test results are compared with theory through a Mach number range 
in figure 19. This comparison is made for the control hinge-line posi'­
tions tested, and the data are considered applicable only at low oscil­
lating amplitudes. Theoretical values at sonic and supersonic speeds 
were computed from wing-coefficient expressions given in references 5 
and 2. These calculations are permitted under the assumption that at 
these speeds the control oscillating forces are not influenced by the 
wing surface in the upstream direction. The qualitative agreement shown 
in figure 19 is considered good and the transonic experimental data pro­
vide a reasonable link between the incompressible and supersonic two­
dimensional potential flow theories. This is considered significant 
since transonic control-surface flutter has been associated with non­
potential or separated flow with emphasis placed on shock and boundary­
layer interaction (refs. 8, 9, and 10). It has been shown in refer­
ence 11, however, that single-degree-of-freedom flutter of a control 
surface is theoretically possible in potential flow and that the physi­
cal parameters necessary for flutter are more likely to be realized at 
high subsonic or low supersonic speeds than at lower speeds. Therefore, 
it is believed that the good qualitative agreement between theory and 
experiment shown here, indicates that dynamic hinge moments even at 
transonic speeds are strongly dependent on potential flow effects and 
that for the range of physical parameters tested, theory can serve as 
a useful guide in predicting the general variation of the control rota­
tion parameters. It must be emphasized, however, that potential and 
nonpotential f~ow effects could not be separated in the present tests 
and the results can certainly be modified by nonpotential factors. The 
nonlinear aerodynamics shown and the stall flutter at subsonic Mach num­
bers for the cb/ca = 1.00 control emphasize the nonpotential flow 
effects. 

Dynamic hinge-moment result~ for the complete range of parameters 
tested are summarized in figure 20. Data for these vector diagrams were 
chosen at oscillation amplitudes and reduced frequencies which would 
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establish phase angle boundaries that include all of the test data . The 
symbols locate the end point of the vector representing the resultant 
aerodynamic hinge moment, and multiple symbols for a particular Mach num­
ber indicate extreme values for that Mach number. For the hinge-line 
positions which gave underbalanced spring moments throughout the speed 
range (Cb/Ca = 0 . 20 and 0 .35), the results show in the unstable damping 
range a phase angle boundary of about 1500 • Since results also show 
that the oscillating and static aerodynamic spring-moment derivatives 
are approximately the same, static hinge-moment data at transonic speeds 
together with this phase angle (1500 ) would provide a satisfactory 
empirical representation of the maximum unstable aerodynamic damping 
moments encountered in this investigation . The phase angle boundaries 
change radically when the hinge line is moved to the midchord of the 
control (Cb/Ca = 1.00) such that the control becomes aerodynamically 

overbalanced. 

CONCLUSIONS 

Oscillating hinge-moment tests at Mach numbers from 0.40 to 1.02 
for a flap-type control hinged at three different positions (ratios of 
balance chord to control chord cb/ca of 0.20, 0.35, and 1 .00) indicate 

the following conclusions: 

1. Aerodynamic damping derivatives vary considerably with control 
oscillation amplitude and the nonlinear effects of amplitude were gen­
erally larger for the midchord (cb/ca = 1.00) hinge position. 

2. Control aerodynami c damping was unstable for all hinge-line 
positions tested in the l~ch number range from about 0.90 to the maxi­
mum speed tested. 

3. The damping was generally stable at t1ach numbers below 0.90, 
a lthough it was unstable at subsonic speeds for high oscillation ampli­
tude of the control hinged at midchord. 

4. A self-excited flutter involving only r otation of the control 
about the hinge line was associated with the unstable damping. Flutter 
amplitude in a ll cases was self-limiting and, at transonic speeds, the 
flutter amplitude was decreased by a rearward movement of the hinge line. 

5. The aerodynamic spring moments varied from underbalanced to over­
balanced for the range of hinge-line positions tested and the oscillating 
spring-moment derivative (Cho,w) varied with Mach number in much the 

same manner as the static derivative (Cho) . 
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6. Changing the angle of attack from 00 to 60 and/or variations 
within the test reduced-frequency range generally had little effect on 
the oscillating hinge-moment derivatives Ch~ and Ch~ . 

·~,rn ·~, rn 

7 . Existing incompressible theory predicted very well the damping 
results and to a lesser degree the spring results obtained at low test 
speeds for the range of hinge positions tested. This theory together 
with supersonic theory can be used as a guide in predicting the general 
variation of dynamic hinge -moment parameters with Mach number at tran­
sonic speeds for low oscillating amplitudes . 

8. The good qualitative agreement between theory and experiment 
indicates the strong possibility of single-degree-of-freedom flutter of 
a control surface at transonic speeds even in potential flow; however, 
the tests also indicate that results can be modified by nonpotential 
effects. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., February 20, 1957. 
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TABLE I 

TIP-STORE ORDINATES 

j!ercent of store length] 

x r 

0 0 
1.95 ·95 
4.72 2.03 
7. 51 2.88 

10.29 3. 52 
15.85 4.43 
21.40 5.04 
26.93 5·49 
29·73 5.67 
32·53 5.80 
35 ·33 5·84 

Straight line 
49.73 5.84 
52 .53 5.81 
55·33 5.76 
60 .93 5·51 
66 .40 5 ·13 
72 .00 4.63 
77.60 4.03 
83.20 3.35 
88 .66 2 .63 
93.73 1.95 
96.00 1.63 
98.13 1.28 

100 .00 0 

Trailing-edge 0 .56 radius 
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TABLE II 

NATURAL FIRST BENDING AND TORSI ON FREQUENC IES OF WING 1 

Test condition Bendi ng , cps Torsion, cps 

Light tip store 120 330 
Heavy tip store 67 160 

lThe control surface was clamped at 8 .2 inches along the hinge 
line (fig . 5) when measuring t hese fre~uencies . 

TABLE III 

MOMENT OF INERTIA OF CONTROL SYSTEM 

Control I, slug- ft2 Figures 

cb/ca = 0.35 1.22 X 10- 5 10(a) to 10(d) 

cb/ca = 0 . 35 4 . 34 10(e ) 

cb/ca = 1.00 1.09 11 and 12 

------ ---
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Figure 8.- Variation of static hinge-moment coefficient with control 
deflection for various Mach numbers. Flagged symbols denote tip-store 
on model; cb/ca = 0.35. 
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Flutter Characteristics 
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Figure 10.- Flutter characteristics and variation of aerodynamic damping 
derivative with oscillation amplitude for various Mach numbers. 
cb/Ca = 0.35; a, = 00 
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Flutter Characteristics 
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Figure 10.- Continued. 
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