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RESEARCH MEMORANDUM

INVESTIGATION OF HIGH-ANGLE-OF-ATTACK PERFORMANCE OF A 14° RAMP-TYPE
INLET IN VARIOUS CIRCUMFERENTIAL BODY LOCATIONS
MACH NUMBER RANGE 1.5 TO 2.0

By Glenn A. Mitchell and Bruce G. Chiccine

SUMMARY

An experimental investigation to determine the internal flow per-
formance of a fixed 14° ramp inlet from zero to 20° angle of attack was
conducted at free-stream Mach numbers of 1.5, 1.8, and 2.0. The inlet
was mounted in three circumferential fuselage locations and utilized in-
let throat and fuselage boundary-layer removal.

Results indicate a superiority of a bottom inlet location over a
side or top inlet location at angles of attack; relatively low pressure
recoveries and high distortions were obtained with side and top inlets.
Some improvement in side inlet performance was obtained with the use of
flow deflector plates mounted at the top side of the inlet. Improve-
ments in top inlet performance resulted from the substitution of a
rounded approach for the original flat approach to the inlet. Distor-
tion levels for these modifications to the original side and top inlet
configurations remained prohibitively high. However, placing a canopy
in front of the top inlet, although decreasing the performance at low
angles of attack, improved pressure recovery and greatly reduced distor-
tions at higher angles.

INTRODUCTION

Past research has shown that body crossflow phenomena and variable
boundary-layer thickness along the circumference of a fuselage at angles
of attack have significant effects on the angle-of-attack performance of
an inlet in various circumferential locations (refs. 1 to 4). Specifi-
cally, pressure recovery performance for bottom inlet locations was main-
tained up to the highest angles of attack tested, 10° to 12°, whereas
sizable reductions in pressure recovery were incurred by side and top
inlets. The performance of these inlets was obtained with fuselage
boundary-layer removal generally adequate for the case at zero angle of
attack.
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More recent investigations (such as ref. 5) with aft inlets utiliz-
ing fuselage boundary-layer removal have indicated increased performance
at zero angle of attack by bleeding off boundary layer in the vicinity
of the inlet throat. With proper throat bleed this performance gain
could be maintained independently of the amount of fuselage boundary-
layer removal. As an extension of this work, a study was conducted to
determine if the beneficial effects of bleed could be extended to the
case of aft inlets at angles of attack. A fixed 14° ramp inlet with
fuselage and inlet throat boundary-layer removal was tested alternately
in the bottom, side, and top positions on a body of revolution in the
8- by 6-foot supersonic wind tunnel at Mach numbers of 1.5, 1:8, and
2.0 and angles of attack from zero to 20°.

SYMBOLS
A area, sq in.
Ay bleed minimum exit area, sq in.
A inlet capture area, 19.51 sq in.
At inlet throat area, 13.55 sq in.
Ao diffuser flow area at model station 85.0, 18.31 sq in.
AS‘ diffuser flow area at model station 99.2, 22.99 sq in.
' hydraulic diameter 44

Pn J < ? wetted perimeter
h _ fuselage pboundary-layer diverter height, in.
M “Mach number
ms/mo main-duct mass-flow ratio, mein-duct iass flow

o A
A(ms/mo) : stable range of mass-flow ratio,

(m /m (mS/ )mln stable

P : total pressure
Py measured total pressure (pitot pressure) at boundary-

layer survey station

Pz,max - P2,min
P2

total-pressure-distbrtion

maximum total-pressure variation at pressure rake at

Pz,max - PZ,min
model station 85.0
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t fuselage boundary-layer thickness at zero angle of
attack (0.55 in. at model station 55.1)

\'s velocity, ft/sec

Egéé weight flow Pper unit area, referenced to standard sea-
level conditions, (1b/sec)(sq ft)

o ) angle of attack, deg

5 ratio of total pressure to NACA standard sea-level

' total pressure of 2116.22 1b/sq ft

e ratio of total temperature to NACA standard sea-level
temperature of 518.688° R

o] : mass density

Subscripts:

cr critical

max maximum

min minimum

¢ free stream

1 ‘fuselage boundary-layer survey station, model station
55.1

2 ‘ diffuser total-pressure survey statlon, model station
.85.0

3 . diffuser statlc-pressure survey station,. model station
‘99.2

APPARATUS AND PROCEDURE

A schematic drawing of the fuselage, inlet, and boundary-layer re-
moval system of the bottom inlet configuration is presented in figure
1, and a photograph of the inlet appears in figure 2. Photographs of
‘the sidé and top inlet configurations are shown in flgures 3 and 4. The
inlet-diffuser assembly was mounted, with one exception, on the flat side
of a basic body-of-revolution consisting of an ogive nose and a 10-inch-
diameter cylindrical afterbody aft of model station 46.2. For the
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exception (fig. 4(b)) the flat was eliminated and the inlet was mounted
directly on the cylindrical body. In the other top inlet configura-
tions (figs. 4(a) and (c)) the inlet was mounted on the flat. The in-
let cowl 1lip for all configurations was located at model station 61.9.
Swept side fairings, used on the inlet, extended from the cowl sides to

the leading edge of the ramp.

Fuselage boundary-layer diverter height was varied with spacers
inserted between the body and the inlet-diffuser installation. Two di-
verter heights were investigated, 0.183 and 0.55 inch (h/t = 1/3 and 1).
In the top inlet configuration with the inlet mounted on the cylindrical
body, the diverter height was 0.55 inch only on the vertical center
plane. The diffuser reference line was maintained parallel to the
body axis at all times.

Boundary layer entering the inlet of the bottom and side inlet con-
figurations was removed by a flush slot located on the compression ramp
inside the inlet and extending from wall to wall. Mass flow drawn
through this slot and dumped into the bleed chamber was ejected through
openings in either side of the inlet cowl. Variation in bleed mass flow
was accomplished by varying back pressure in the bleed chamber with a
pair of remotely controlled doors at the bleed exits.

Except for details of the bleed system, the inlet was identical to
that reported in reference 5. The flush slot bleed system of reference
5 does not have a bleed chamber such as shown in figure 1 but has a
smoothly faired duct from the slot to the bleed exit. The slot area of
the present configuration was 4.48 square inches; that of reference 5
was 4.25 square inches.

The top inlet configurations had, in addition to the flush slot,
ramp perforations lying almost wholly forward of the cowl 1lip. The open
area of the perforations was 2.5 square inches or 18.4 percent of the
throat area, and the porosity of this perforated area was 24 percent
(hole diam., 0.07 in.; plate thickness, 0.12 in.). Both the flush slot
and the perforations were open to the same bleed chamber. In an attempt
to provide additional bleed exit area, slots were cut into the sides of
the ramp and vents were added as shown in figure 4(a).

The flow deflector plates used with the side inlet (figs. 3(b) and
(c)) were mounted 0.25 inch from the side of the ramp and extended for-
ward of the ramp leading edge 3.64 and 8.39 inches or 76 and 154 percent
of the inlet width for the short and long deflector plates, respectively.

The diffuser area variation is shown in figure 5. The area de-
crease at a point about 20 inches downstream of the cowl lip is due to
the presence of the centerbody shown in figure 1.
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The model was connected directly to the support sting. Data were
taken in two angle-of-attack ranges. Angle-of-attack data from zero to
8.6° were obtained with a straight sting; a skewed flange aft of the
model was used to provide a range of angle of attack of 8.6° to 200.
Inlet mass flow was varied by means of a remotely controlled movable
tailpipe plug attached to the sting.

The flow field ahead of the inlet was determined from a survey rake
at model station 55.1. The average total pressure at the diffuser exit
was obtained from an area-weighted average of 32 total-pressure tubes
located at station 85.0. The tubes were arranged in eight rakes equally
spaced around the diffuser centerbody. The static-pressure orifices at
station 85.0 were located both on the centerbody and the diffuser wall.
Main duct mass-flow ratioc was determined from the six static-pressure
orifices (equally spaced around the diffuser wall) at station 99.2 and
the known area ratio between that station and the exit plug where the
flow was assumed to be choked.

Inlet stability was determined from oscillographs of a pressure
transducer located in the diffuser at model station 85.0. The 1limit of
stability, or the minimum stable point, of inlet operation was defined
as a static-pressure pulsation with an amplitude of 5 percent of the
diffuser total pressure.

The model was tested with the inlet in three circumferential loca-
tions at angles of attack from zero to 20° and at free-stream Mach num-
bers of 1.5, 1.8, and 2.0. The configurations investigated are listed
in the following table:

Configuration Bleed system Side Fuselage
fairings | diverter height
parameter,
h/t
Bottom inlet Flush slot On 1, 1/3
Side inlet Flush slot Off 1
Side inlet with short|Flush slot off 1
deflector plate
Side inlet with long [Flush slot off 1
deflector plate
Top inlet Flush slot and On 1
ramp perforations
Top inlet with Flush slot and On S |
rounded approach ramp perforations
Top inlet with canopy|Flush slot and On 1
ramp perforations

2 Wy i ey
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Survey of Body Flow Field

Measured total-pressure profiles ahead of the inlet station for )
some of the configurations investigated are presented in figure 6. (The
profiles shown in fig. G(a) for a rounded approach on top of the body
were obtained with the flat on the bottom of the body.) Outside of the
boundary layer, flat or uniform profiles over the complete range of )
angle of attack were obtained only on the bottom of the body (fig. 6(b)).
The flat profiles obtained on the top of the body up to an angle of at-
“tack of 14° (fig. 6(a)) may be misleading in that variations in total
Pressure across the span of the inlet due to crossflow effects and
boundary-layer thickening (ref. 2} could affect the performance of an
inlet situated in this top position. Figures 6(c) and (d) show the de-
velopment of low-energy regions on the side of the body leading to sep-
aration at an angle of attack of about 20°. '

Variation of boundary-layer thickness on the flat bottom of the
fuselage with angle of attack is shown in figure 7 for free-stream Mach
numbers of 1.5, 1.8, ‘and 2.0. The major decrease in boundary-layer
thickness occurred at angles of attack between zero and 8°. At an angle
of attack of 8° the boundary-layer thickness was about 55 percent of the
thickness at zero angle of attack. The zero-angle-of-attack boundary-
layer thickness of 0.55 inch was obtained from reference 5. '

Bottom Inlet Configuration: Flush Slot Bleed and Inlet Sidé Fairings

- Inlet performance characteristics (total-pressure recovery and dis-
tortions) at zero angle of attack for the bottom inlet with full fuse-
lage boundary-layer removal (h/t = 1) are presented in figure 8. The
data are plotted as a function of the main-duct mass-flow ratioc for sev-
eral values of bleed exit area. Both total-pressure recovery and dis-
tortion were improved by bleeding at the inlet throat as reported in
reference 5. The pressure recovery levels of this configuration were
similar to those of the flush slot bleed configuration of reference 5.
However, a rather large decrease in critical mass-flow ratio with in-
creasing inlet throat bleed was reported in reference 5 while the pres-
ent configuration exhibited only small decreases with bleed. Evidently,
the present configuration had a very low supercritical flow coefficient
through the bleed system. The similarity of performance of the two con-
figurations suggests that the subcritical flow coefficients were about
the same. ' : :

The angle-of-attack performance was obtained with a fixed bleed
door position of 'AB/At = 0.155 which corresponded to the value shown

W swcr gy
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in reference 5 to provide nearly optimum pressure recovery and thrust-
minus-drag. Angle-of-attack performance for the bottom inlet configura-
tion with a fuselage diverter height equal to the boundary-layer thick-
ness at zero angle of attack is presented in figure 9(a). Peak pressure
recovery at each free-stream Mach number varied only 2 percent over the
range of angles of attack up to 20°. Reduction in peak recovery with.
angle of attack occurred only at a free-stream Mach number of 1.8. An
increase in both peak and critical pressure recovery was observed at a
free-stream Mach number of 2.0. Total-pressure distortions at critical
mass-flow ratio were below 15 percent at angles of attack from zero to
200,

If the inlet was operated at the corrected weight flow which
appears to give optimum performance at zero angle of attack Egég = 2

at My = 2.0/, angle-of-attack operation would make the inlet slightly

more subcritical. - With this.type of inlet operation total-pfessure re-
covery would vary less than 2 percent and distortions would remain be-
low 15 percent over the angle-of-attack range.

The range of stable mass-flow ratio increased with angle of attack.
At a free-stream Mach number of 2.0 the range of stable mass-flow ratio
increased from 0.05 at zero angle of attack to at least O. 69 at an angle
of attack of 20° (fig. 9(a)).

Reduction of the fuselage diverter height to one-third the boundary-
layer thickness at zero angle of attack (fig. 9(b)) resulted in perform-
ance that was practically identical to the performance of the inlet with
complete boundary-layer removal. These data corroborate somewhat those
of reference 5 where at zero angle of attack it was found that, with
sufficient inlet throat bleed, inlet peak pressure recovery is relatively
insensitive to boundary-layer diverter height.

Side Inlet Configuration: Flush Slot Bleed and No Inlet Side Fairings

The angle-of-attack performance of the side inlet configurations
(basic configuration or inlet with no deflector, inlet with short de-
flector, and inlet with long deflector) is presented in figure 10. The
performance of the three configurations is compared with that of the
bottom inlet in figure 11. The comparisons are made at selected values
of corrected weight flow which appear to be those for nearly optimum per-
formance of the side inlet at zero angle of attack. ILarge decreases in
pressure recovery and increases in distortion with angle of attack were
observed for all three side inlet configurations. At a free-stream Mach
nunmber of 2.0 peak pressure recovery dropped from a value of 0.87 at
zero angle of attack to about 0.50 at an angle of attack of 20°.
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Total-pressure distortions at critical mass-flow ratio were generally
in excess of 50 percent at an angle of attack of 20° for all free-stream
Mach numbers.

The differences in performance between the bottom and side inlets
at zero angle of attack result from the fact that side fairings were not
used on the side inlet configurations. (These were omitted because of
possible detrimental effects at angle of attack in the presence of body
crossflow.) The effects of removing the side fairings (at zero angle of
attack) were typical (ref. 6) in that pressure recovery and mass-flow
ratio were decreased (distbrtion was decreased slightly also) while
stability was somewhat increased.

- The flow deflector plates (examlned only in the angle-of-attack
range from 8.6° to 20°) produced significant improvements in peak pres-
sure recovery (6 to 8 percent) only at a free-stream Mach number of 2.0
and an angle of attack of 8.6°. Here the deflector plates maintained
peak recovery within 2 to 4 percent of the peak recovery at zero angle
of attack.

Operation of the inlet along the selected match lines (fig. 11) gen-
erally caused the basic configuration to become supercritical as angle
of attack was increased. However, inlet operation went subcritical at
angle of attack for both configurations with a deflector plate. This
shift to more subcritical operation generally lowered the distortion at
a free-stream Mach number of 2.0. The use of the deflector plates con-
sistently lowered critical distortions only at a free-stream Mach number
of 1.5.

In general, the stability range of the side inlet configurations
decreased as the angle of attack was increased. At the higher angles of
attack the basic configuration had almost no stability. Both flow de-
flector plates were able to improve the stability, but the greatest im-
provement was obtained with the long deflector plate which had a stable
mass-flow range of about 0.20 at an angle of attack of 20° (fig. 11).

In contrast to the bottom inlet performance, if the side inlets were con-
trolled to operate at a constant corrected weight flow, the inlet may be
forced into buzz at angles of attack, dependlng on the matech line

selected.
Top Inlet Configuration: Flush Slot and Ramp
Perforations ﬁith Inlet Side Fairings
The inlet conflguration tested in the bottom position had a rela-
tively small stable range at zero angle of attack. It was felt that an

inlet having a potential for greater stability was necessary for the top
fuselage position. Previous work (such as ref. 7) has shown stability

Rt
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improvement with the use of perforations on the compression surface ahead
of the inlet. Accordingly, the top inlet configuration was modified to
include the perforated ramp as well as the flush slot at the throat.
Vents were cut into the sides of the ramp (fig. 4(a)) to provide addi-
tional bleed exit area which would be in close proximity to the
perforations.

The performance of the combined ramp- and throat-bleed configura-
tion is shown in figure 12 at zero angle of attack for varying amounts
of bleed flow. The minimum bleed value AB/At of 0.130 represents

bleed through vents only (bleed doors closed); higher values indicate
opening of the bleed doors toward the maximum position. Schlieren ob-
servation showed thatyover a large part of the subcritical range, re-
verse flow occurred through the forward rows of the perforations even

at the maximum bleed door opening. Despite this, peak pressure recovery
and distortion levels were comparable to those obtained with throat bleed
alone (fig. 8), although critical recovery decreased somewhat. Inlet
stability was approximately doubled to a maximum value of about 20 per-
cent of the critical mass flow.

The performance of the top inlet configurations at angle of attack
is shown in figure 13, and performance comparisons are made in figure 14
at the same values of corrected weight flow selected for the side inlets.
(In some instances data were obtained only in the range of angles of
attack from 8.6° to 20°.) For these configurations the bleed flow ra-
tios AB/At include a value of 0.130 which represents bleed through the

vents alone. Data for the top inlet configurationms (basic configuration
or flat approach to the inlet, rounded approach, and flat approach with
canopy) were obtained at an AB/At of 0.285. Limited data at an

Ag/A, of 0.595 with the flat approach to the inlet (fig. 13(b)) showed
no improvement in performance with this increased bleed exit area.

As with the side inlet, large decreases 1in pressure recovery re-
sulted from increased angle of attack. At a free-stream Mach number of
2.0 peak pressure recovery dropped from a value of 0.91 for the basic
configuration at zero angle of attack to values of 0.50 to 0.55 for all
configurations at an angle of attack of 20°. Distortions of the basic
configuration were high at the intermediate angles of attack (28 to 37
percent) but dropped to values near 15 percent at an angle of attack of
200 (fig. 14).

Significant gains in pressure recovery at all Mach numbers and an-
gles of attack were obtained by the substitution of a rounded for a flat
approach to the inlet (fig. 14). Distortions were reduced but remained
relatively high, generally over 20 percent at the intermediate angles of
attack. These performance improvements were in part due to better
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streamlining in the direction of crossflow and in part to the greater
boundary-layer removal capabilities of the rounded approach which had
an h/t as small as 1 only in the vertical center plane.

The use of a canopy in front of the inlet with the flat approach
adversely affected pressure recovery and distortion at low angles of
attack (less than 4°). However, at higher angles of attack pressure re-
covery was improved somewhat and very large gains were made in reducing
distortion; for example, at a free-stream Mach number of 2.0 and an an-
%le of attack of 14°, distortion decreased from 37 to 7 percent

fig. 14).

Figure 13 illustrates that the top inlet configurations, when op-
erated at a constant corrected weight flow, are forced into a more sub-
critical operation by angle of attack without generally being forced
into buzz as were the side inlets. The stability of the top inlet con-
figurations was generally maintained with angle of attack at a mass-flow
ratio range of 0.20 to 0.40. In some instances, however, the stability
decreased to a mass-flow ratio range of 0.10 or less at the intermediate -
angles of attack.

SUMMARY OF RESULTS

An experimental investigation to determine the total-pressure re-
covery, distortion, and stability up to an angle of attack of 20° of a
14° ramp-type inlet with throat bleed and located in three circumferen-
tial fuselage positions was conducted in the Lewis 8- by 6-foot super-
sonic wind tunnel at free-stream Mach numbers of 1.5, 1.8, and 2.0. The
following results were obtained:

1. The angle-of-attack performance of the bottom inlet was superior
to that of the side and top inlet configurations. Up to an angle of at-
tack of 20°, peak total-pressure recovery of the bottom inlet varied
less than 2 percent, distortions were below 15 percent, and the stable
mass-flow ratio range inecreased to values as large as 0.69. This angle-
of-attack performance was maintained with the fuselage diverter height
reduced to one-third the boundary-layer thickness at zero angle of attack.:

2. Angle of attack reduced peak pressure recoveries of all side in-
let configurations to values near 0.50 at an angle of attack of 20° and
a free-stream Mach number of 2.0 and increased critical distortions to
values in excess of 50 percent. The configurations with a flow deflector
plate produced significant improvements in peak pressure recovery (6 to 8
percent) only at a free-stream Mach number of 2.0 and an angle of attack

of 8.6°.

e s i ‘..ui.i.
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3. The pressure recoveries of the top inlet configurations were
also reduced with angle of attack to values near 0.50 at an angle of
attack of 20° and a free-stream Mach number of 2.0. The distortion of
the top inlet with flat approach was high (28 to 37 percent) at the in-
termediate angles of attack but at an angle of attack of 20° dropped to
about 15 percent or less. The substitution of a rounded for a flat ap-
proach to the inlet improved pressure recovery and distortions, but dis-
tortions were still relatively high, generally in excess of 20 percent.

4. Placing a canopy in front of the top inlet with the flat ap-
proach decreased pressure recovery and increased distortions at low an-
gles of attack. However, .at higher angles of attack the canopy improved
the pressure recovery somewhat and greatly reduced distortions.

5. At selected engine match conditions (constant corrected weight
flow close to optimum thrust-minus-drag at zero angle of attack) the top
and bottom inlet configurations were forced subcritical and the side in-
let was forced supercritical with angle of attack. With the use of flow
deflector plates side inlet operation at these same weight flows was sub-
critical over the entire range of angle of attack.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, March 19, 1957
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C-41739

(a) Basic configuration. (No deflector plate.)

C-41738 - L C-41737

(b) Side inlet with short flow deflector plate. (c) side inlet with long flow deflector plate.

Figure 3. - Side inlet configurations. Flush slot bleed, 14° ramp without side fairings.
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(a) Basic configuration. (Flat approach.)

Figure 4. - Top inlet configurations.




C-41736

(c) With canopy.

Figure 4. - Concluded. Top inlet
14° ramp inlet with side fairings.

slot bleed and ramp perforations,
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Range of stable mass-flow ratioc,
A(mé/mo)

(P2,max - P2,m1n)/P2

Total-pressure distortion,

Total-pressure recovery,
Pz/Po

NACA RM E5T7Cl2a

Bottom inlet
Basic side inlet
configuration

---- Side inlet with
short deflector

Side inlet with
long deflector
[ ] Limit of data
{maximum stable
range not
established)

N

1 /
LT /
.2 A -
,/’//’/,/ ——‘///,/// /////j// J—
o Weight flow per L Weight flow per |___VWeight flow per .|
unit area, unit area, unit area,
w8\ o wy/B) 5 wy/B) oy
0 55 |, — BE )y’ — 58 )’ -
p— 1
STy —
\\Q§ N T~
8 RN
\\
\ \\\
\\
\ \\\
.6
'40 4 8 12 16 20 0 8 12 16 20 [o] 4 3 1z 16 20

(a) Free-stream Mach number,
1.5.

4
Angle of attack, a, deg

(b) Free-stream Mach number,

(c) Free-stream Mach number,
.0.

Figure 11. - Summary of side inlet performance.
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Total-pressure recovery, P,/P,

7od0

Ratio of bleed minimum exit
area to inlet throat area,
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Tailed symbols denote data
taken in inlet pulsing
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total amplitude of pulses,
percent diffuser total
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- O
Weight flow per
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Mass-flow ratio, ms/mo

Figure 12. - Effect of inlet throat bleed on per-

formance of top inlet.

Free-stream Mach number,

2.0; angle of attack, 0°; fuselage diverter
height parameter, 1.
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Figure 14. - Summary of top inlet performance.
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