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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

COMPARISON OF RESULTS OF EXPERIMENTAL AND THEORETICAL STUDIES OF
BLADE-OUTLET BOUNDARY-LAYER CHARACTERISTICS 'OF STATOR BLADE
FOR A HIGH SUBSONIC MACH NUMBER TURBINE

By Cavour H. Hauser and William J. Nusbaum

SUMMARY

Experimental boundary-layer-flow surveys for a stator blade are ana-
lyzed and compared with results obtained from a theoretical analysis,
Results of surveys of the boundary-layer thickness at the blade mean
radius in the plane of the blade trailing edge are compared with a theo-
retical calculation of the momentum thickness assuwning a turbulent bound-
ary layer. Also, the over-all total-pressure ratio across the stator
calculated from the mean-radius boundary-layer surveys is compared with
a value obtained from the over-all annular survey a short distance down-
stream of the blade row.

Although good agreement is obtained at low velocities, the measured
values of boundary-layer momentum thickness from the mean-radius trailing-
edge surveys are greater than the theoretical values at the higher exit
velocities., This difference is probably due in part to inward radial
flow of the low-momentum boundary-layer fluid near the outer portion
of the blade.

The over-all total-pressure ratio calculated from the mean-radius
trailing-edge surveys is somewhat less than that obtained from the annular
surveys over a range of exlt critical velocity ratio. Apparently, radial
inward flow of the low-momentum fluid near the blade tip caused the loss
measured at the mean radius to be greater than an average value for the
whole blade passage.

INTRODUCTION

In order to obtain a better understanding of the fundemental nature
of the losses occurring in turbomachine blade rows, & research program is
being carried out at the NACA Lewis laboratory in which the results of
both theoretical and experimental studies of the boundary-layer flow
phenomena of the turbine stator blade rows are analyzed and compared.
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In reference 1 the blade boundary-layer losses are described in
terms of basic parameters that may be calculated from the measured total-
pressure losses in the blade wakes. The results of an experimental mean-
radius flow survey taken a few thousandths of an inch downstream of the
trailing edges of a set of transonic turbine stator blades are presented
in terms of the fundamental boundary-layer parameters in reference 2. A
method for theoretically calculating the boundary-layer thickness from
turbulent~boundary-layer theory is also presented in the reference. The
experimental and theoretical data are in reasonable agreement. .The re-
sults of an experimental annular flow survey about 1/4 inch downstream
of the trailing edges of similar blades are presented in reference 3. A
method is given for calculating the total stator loss for known mean-
radius losses.

In the current investigation, experimental flow surveys similar to
those described in references 2 and 3 have been made for the stator used
in the two high subsonic Mach number turbines of references 4 and 5.
Theoretical calculations for the turbulent-boundary-layer thickness have
also been made using the method of reference 2. The method of reference
3 is used to calculate the three-dimensional stator loss from mean-radius
flow surveys. The results of these experimental and theoretical stator
blade-outlet boundary-layer studies are presented and compared herein.

SYMBOLS
o7 aspect ratio based on mean-section chord
agy critical velocity of sound, ‘/Y le gRT?Y, ft/sec
c mean-section chord length, ft
E energy factor, ¥/6 or y*/o%
g - acceleration due to gravity, 32.17 ft/secz
H  form factor, 8/6 or &%/6¥*
n exponent used in describing boundary-layer velocity profile
P Pressure factor, E/G or E*/G*
P Pressure, lb/sq in,
R gas constant, 53.35 f£t-1b/(1b)(°R)
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r radius, in.

8 mean-section blade spacing, ft

T total temperature, °R

v gas velocity, ft/sec

Qg mean—seétion stagger angle measured from axial direction, deg
g blade-outlet flow angle measured from axial direction, deg
Y ratio of specific heats

s} boundary-layer displacement thickness, ft

5%  displacement-thickness parameter, 8/ (s cos B)

0 boundary-layer momentum thickness, ft

o* momentum-thickness parameter, 9/(5 cos B)

3 boundary-layer pressure thickness, ft

g* pressure-thickness parameter, &/(s cos B)

o mean-section solidity

g boundary-layer energy thickness, £t

i eneré&-thickness parameter, /(s cos B)
Subscripts:

fs free stream

m mean

meas measured

P vpressure surface

s suction surface

t tip

tot sum of suction- and pressure~surface quantities
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0 station about 1 in. upstream of stator leading edge

1 station immediately downstream of stator trailing edge where
mean~radius surveys were made

la station about 1/4 in. downstream of stator trailing edge where
annular surveys were made

2 station representing blade exit conditions after mixing
3~D  three-dimensional
Superscript:

' total state

DESCRIPTION OF STATOR AND EXPERIMENTAL PROCEDURE

A detailed description of the stator blades and the method used in
their design is given in reference 4., The stator was designed for free-
vortex flow at the exit with a design exit critical velocity ratio at
the mean section of about 0.91. The blade suction surface downstream of
the throat is straight. There is a considerable amount of taper in the
axial chord of the blade, varying from 0.69 inch at the hub section to
1.79 inches at the tip (fig. 1). Thirty blades were used, having values
of solidity of 1.3, 1.5, and 1.6 for the hub, mean, and tip sections,
respectively.

The experimental data were obtained from both mean-radius and annular
surveys. The annular surveys were taken while the turbine was running at
rotor blade speed corresponding approximately to the point of maximum
over-all efficiency at each pressure ratio. The instrumentation for the
mean-radius surveys required that the rotor be removed for these tests.
For all the tests, the absolute inlet total pressure was maintained at
about 50 inches of mercury (24.6 lb/Sq in. abs) and the temperature was
about 70° F. All traverse-probe measurements for both the mean-radius
and annular surveys were transmitted to a recorder and plotted against
the circumferential distance traversed by the probe. The free-stream
total conditions at the survey stations were determined by four total-
Pressure probes and four thermocouples located upstream in the plenum
chamber. The stator-inlet static pressure was measured by averaging the
readings from 12 taps, six on the inner and six on the outer wall of the
annulus about 1 inch upstream oi the stator leading edge (station 0, fig.
1(b)). Using the measured values of inlet static Pressure, inlet total
temperature, weight flow, and annulus area, the stator-inlet total pres-
sure pj was calculated from equation (4) of reference 4. The inner- and
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outer-shroud static pressures at the blade exit were measured by 18 taps,
15 located in the inner shroud and three located in the outer shroud, all
about 1/4 inch downstream of the blade trailing edge (station la).

The mean-radius surveys consisted of circumferential traverses
across 1/2 blade spacing (including one complete blade wake) with a
total-pressure probe that was alined with the flow angle. The probe was
a single-tube hook type with a sensing element 0.015 inch wide. It was
adjusted to only a few thousandths of an inch axial clearance with the
blade trailing edge (station 1). Twenty-one surveys were made over a
range of blade-exit critical velocity ratio (V/aér)fs,m,l from approxi-

mately 0.5 to 1.1 by adjusting the blade-exit static pressure,

The annular surveys consisted of circumferential traverses across
approximately l% blade spacings at each of 24 radial stations about 1/4

inch downstream from the stator blade trailing edge (station la). The
distance between radial stations in the regions near the hub and tip was
less than that for the remainder of the blade because of the greater
variation of losses in those regions. Total-pressure and flow-angle
measurements were made with a cobra-type probe. A wedge~type probe was
used to measure static pressure. Photographs of similar probes are shown
in figure 2 of reference 6. The annular surveys were mede at values of
mean~-radius blade-exit critical velocity ratio (V/aér)fs,m,l of 0.630,

0.757, 0.837, and 1.083.

Where the flow velocities were supersonic, no correction was made
for the normal-shock loss of a detached bow wave ahead of the probe.
The observed loss in total pressure for this condition of operation was
probably caused by oblique shock waves in the blade passage and at the
trailing edge in addition to a weakend normal-shock loss shead of the
probe, as discussed in reference 2. Thus, the application of a normal-
shock-loss correction based on the isentropic free-stream velocity would
overcompensate for this loss. The results obtained with supersonic flow
velocities are therefore subject to error. '

THEORETICAL CALCULATIONS AND ANALYSIS OF DATA

Two separste analyses of the stator survey data are considered here-
in. First, the results of the mean-radius survey of the blade wake just
dovnstream of the trailing edges (station 1) are compared with a theoret-
ical calculation of the boundary-layer momentum thickness. Secondly, the
over-all stator total-pressure ratio as determined by the complete annular
surveys at station la is compared with calculated values based on the
mean-radius surveys at station 1.
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Comparison of Measured Boundary-Layer Characteristics
with Theoretical Results

Several of the blade-outlet total-pressure traces over a range of
pressure ratios are presented in figure 2. These traces were analyzed
in the same manner as described in reference 2. The blade over-all

¥* R
boundary-layer parameters By i, Oiotr Etoty @nd Vio were obtained

by integrating the velocity, mass flow, and total pressure along a cir-
cumferential path across one blade pitch using equations (17) of refer-
ence 1. The free-stream total pressure was assumed over the portions of
the circumferential distance not covered in the surveys. Figure 2(f)
shows the relations among various momentum-thickness parameters. The
relations among the other thickness parameters are similar. The param-
eters Higi, Pgots and Egyy Wwere obtained from these calculated

parameters.

The theoretical boundary-layer momentum thickness from turbulent-
boundary-layer theory was calculated using equation (6) of reference 2
for values of free-stream mean-radius blade-outlet critical velocity
ratio (V/aér)fs,m,l of 0.512, 0.602, 0.691, 0.782, and 0.915. The blade

surface velocity distributions for these five points were calculated by a
three-dimensional design method (ref. 4) and are shown in figure 3.

Use of Mean-Radius Boundary-Layer Parameters in Predicting
Three-Dimensional Turbine Stator Losses and Comparison

with Values Obtained from Annular Surveys
The method of reference 3 was used to calculate three-dimensional

stator losses from the results of the experimental surveys at the blade
trailing edge at the mean radius. This method assumes that the average
momentum loss on the blade surfaces as well as that on the inner and
outer stator walls is represented by an effective momentum thickness oc-
curring at the blade mean section. With this assumption, the following
relation was developed (eq. (4), ref. 3):

o* 1+ cos ag f Oy o
1,3-D [sX2 \ ¢ /m,1 cos Bm,l

With this relation, along with those given by equations (5) and (6) of
reference 3 and equation (C22) of reference 1, the over-all three-
dimensional loss total-pressure ratio pé/pé can be calculated.
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The method used herein for calculating the boundary-layer parameters
and over-all loss total-pressure ratio pé/pé from the annular surveys

at station la is also identical to that given in reference 3.

For the test facility used in the subject investigation, the value
of the ratio of calculated inlet total pressure to free-stream total
pressure as measured in the plenum chamber pé/p' ) varied from

fs,meas

0.999 to 0.997 over the range of exit velocities investigated.

RESULTS AND DISCUSSION

As in the previous section, the two analyses are considered sepa-
rately. The results of the theoretical calculation of the turbulent
boundary-layer thickness are first compared with the experimental data
from the mean-radius trailing-edge surveys. The results obtained from
the annular surveys of the stator are also presented. The over-all
total-pressure ratio obtained from the annular surveys is compared with
that calculated from the mean-radius survey in the plane of the blade
trailing edge.

Comparison of Measured Boundary-Layer Characteristics

with Theoretical Results

Over-all form and loss factors. - The three boundary-layer factors
Hiots Brots and Pioy were evaluated for each of the mean-radius

trailing-edge surveys, and are shown as a function of the free-stream
critical velocity ratio (V/aér)fs,m,l in figure 4. The experimental

values of all three parameters agree closely with the theoretical curves
for a simple~power-law velocity profile evaluated by equations (Blz) to
(Bl4) of reference 1, using an exponent n of 1/7.

Blade surface boundary-layer momentum thickness. ~ The experimentally
obtained momentum-thickness-to-chord ratios for the blade pressure and
suction surfaces as well as the over-all or total value are compared with
the theoretically calculated values over a range of exit free-stream crit-
ical velocity ratio in figure 5. Although there is some scatter in the
experimentally obtained points, there is a slight trend toward decreased
momentum~-thickness ratio with increasing exit velocity.
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Good agreement is obtained between the measured and theoretical
values of boundary-layer momentum thickness at the relatively low
values of the blade-outlet free-stream critical velocity ratio of
" 0.50 to 0.60. However, at higher velocities the measured values, par-
ticularly on the blade suction surface, are somewhat higher than those
calculated theoretically. This is probably due in large part to sec-
ondary flow of the low~-momentum fluid in the boundary layer. Apparently,
a considerable portion of the boundary-layer fluid developed on the
outer annulus wall and on the blade surface at radii above the blade
mean radius flows radially inward and is measured as it flows off the
blade at the mean radius. Visual evidence of such radial inflow of
the low-momentum boundary layer along the blade suction surface,
particularly at high Mach number levels, is presented in reference
7.

Results of Annular Surveys and Comparison with Over-All Stator
Loss Calculated from Mean-Radius Surveys

The ratios of the measured total pressure pia/ are plotted

1
pfs,meas
as contours in figure 6 for four values of blade-outlet critical velocity
ratio (V/aér)fs,m,l- There is a marked change in the distribution of

losses with increasing velocity. The area of the loss region along the
outer annulus wall is nearly constant, while the total-pressure losses in
the blade wake and in the area near the hub increase considerably with
increasing exit velocity. These results support the premise that there
is a radial inflow of low-momentum boundary-layer fluid and that the
amount of radial inflow increases with increasing velocity level. This
effect would explain in part the result obtained in the previous section
where the measured value of momentum loss at the mean radius at the
higher velocity levels was greater than the theoretical value based on
two-dimensional theoretical analysis of the turbulent boundary layer.

For the three annular surveys at subsonic exit velocities, the radial
variation of the static pressure was determined from the wall static-
Pressure taps and average readings of the exit static pressure obtained
from the circumferential surveys at each radius. For the high-velocity
survey, for which (V/aér)fs,m,l was equal to 1.083, a linear variation

between the hub and tip wall static-pressure tap readings was assumed.
The radial variation of velocity corresponding to these static pressures
and the free-stream total pressure is presented in figure 7 for the four
annular surveys.
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The radial variations of the boundary-layer parameters Gia and
8§a for the four annular surveys are shown in figure 8. The hub losses

are again shown to be considerably higher than those occurring at the tip
and increase with the higher exit velocities.

The over-all loss total-pressure ratio as determined from the annular
surveys is compared in figure 9 with that calculated from the mean-radius
boundary-layer characteristics measured at station 1. The values of loss
total-pressure ratio as computed from the four annular surveys are all
somewhat higher than the values computed from mean-radius surveys. It is
likely that radial inward flow of the low-momentum fluid near the blade
tip caused the loss measured at the mean radius to be greater than an
average value for the whole blade passage.

SUMMARY OF RESULTS

Theoretical and experimental studies of the boundary-layer flow for
a turbine stator over a range of velocities have been made, The follow-
ing results were obtained:

1. The values of the boundary-layer form and loss factors, Hiots
Egots and Py, calculated from mean-radius trailing-edge surveys agree

closely with theoretical values for a simple-power-law velocity profile
having an exponent of 1/7.

2. For exit critical velocities of about 0.5 to 0.6, good agreement
was obtained between measured values of boundary-layer momentum thick-
ness and theoretical values calculated assuming a turbulent boundary
layer on the blade surface. At the higher velocity levels, the measured
values are higher than those calculated theoretically. It is probable
that the higher measured values were caused by inward radial flow of
low-momentum boundary-layer fluids from the outer portion of the blade.

3. The annular surveys to obtain total-pressure contours downstream
of the stator indicate that the losses measured near the hub of the stator
are considerably greater than those near the tip section. This effect,
which increases at higher velocity levels, may also be due to the radial
inflow of low-momentum fluids along the blade surfaces as well as in the
wake region downstream of the blade trailing edges.

4., The over-all total-pressure ratio across the stator was calculated
both from the annular-survey results and from the mean-radius-survey re-
sults assuming that the measured boundary-layer momentum loss at the mean
section could be used as the average for the whole blade passage. The
values of over-all total-pressure ratio as calculated from the annular-
survey results are somewhat higher than the values calculated from the
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mean-radius-survey results over the range of stator-outlet velocities
investigated. Apparently, radial inward flow of the low-momentum fluid
near the blade tip caused the loss measured at the mean section to be
greater than an average value for the whole blade passage.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronsutics-
Cleveland, Ohio, November 28, 1956
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Tip section

Mean section

Hub section

(a) Stator blade passages and profiles.

Figure 1. - Stator blade passages and profiles and a sketch of
station nomenclature.
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Outer wall
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(b) Station nomenclature.

Figure 1. - Concluded. ©Stator blade passages and profiles
and a sketch of station nomenclature.
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Figure 3. - Theoretical blade surface velocity distributions
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Critical velocity ratio, V/al,
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Free-stream critical velocity ratio, (V/aér)fs,l
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Figure 7. - Radial variation in free-stream critical
velocity ratio based on results of four annular

surveys.
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(b) Blade-outlet critical velocity ratio (V/aér)fs,m,l’ 0.757.

Figure 8. - Radial variation of displacement-thickness and
momentum-thickness parameters based on annular surveys.
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Displacement-thickness parameter, ﬁia
Momentum-thickness parameter, 6},
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Figure 8. - Concluded.
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(d) Blade-outlet critical velocity ratio (v/aér)fs,m,ll 1.083.

Radial variation of displacement-thickness

and momentum-thickness parameters based on annular surveys.
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