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LATERAL STABILITY INVESTIGATION AT MACH NUMBERS FROM
0.8 TO 1.7 OF TWO ROCKET-BOOSTED MODELS OF
AN AIRPLANE CONFIGURATION WITH A
45° SWEPT WING AND A LOW
HORIZONTAL TAIL

By John C. McFall, Jr., Jesse L. Mitchell,
and A. James Vitale

SUMMARY

Rocket-boosted free-flight tests of two models of an airplane con-
figuration having a 45° swept wing and a low horizontal-tail position
have provided lateral stability derivatives and control effectiveness
data for a Mach number range from 0.8 to 1.7. The experimental lateral
stability derivatives presented are corrected to rigid conditions and
compared with theoretically calculated rigid derivatives. The results
are presented without detailed analysis.

INTRODUCTION

A general research program investigating the longitudinal stability
and control effectiveness of airplane configurations in rocket-boosted
free flight has been conducted by the National Advisory Committee for
Aeronautics over the past several years (refs. 1 to 4). Some lateral
stability data have been obtained as secondary results of these inves-
tigations (ref. 5). Since then some airplane configurations have been
flown primarily to determine lateral stability characteristics (refs. 6
to 8). This paper presents the results obtained from the flight tests
of two rocket-boosted models of an airplane configuration instrumented
and pulse-control disturbed to provide lateral stability and control
effectiveness data over a range of Mach numbers from 0.8 to 1.7 and

Reynolds numbers from 3 X 106 to 11 x 106 based on the wing mean aero-
dynamic chord. The models of this investigation had 45° swept wings of
aspect ratio 4.0 and taper ratio 0.3 with a low horizontal-tail position.
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Both models were disturbed in coasting flight; one by abrupt movements
of a differentially deflected horizontal tail and the other by deflec-
tions of a rudder. Analysis of the motions of the models following the
control deflections by the time-vector methods discussed in references 6
to 9, provided the lateral stability and control effectiveness data pre-
sented herein. The control effectiveness data from the differentially
deflected horizontal-tail model have been reported in reference 10.

The experimental lateral stability derivatives reported herein are cor-
rected to rigid conditions and compared with theoretically calculated
rigid derivatives with no detailed analysis.

SYMBOLS

The measured quantities and aerodynamic derivatives of this inves-
tigation are referenced to the body axis system illustrated in figure 1.

a damping factor, :%Légé
1/2
ay longitudinal accelerometer reading, positive in the positive

X-direction, g units

an normal accelerometer reading, positive in the negative
Z-direction, g units
at transverse accelerometer reading, positive in the positive
Y-direction, g units
b wing span, ft
& chord-force coefficient, -a, LA
as
Cy rolling-moment coefficient, Relllng noment
aSb
s W
Cn normal-force coefficient, anp ag
o yawing-moment coefficient, PLLER R
qsSb
G W
C lateral-force coefficient a, —
e > tqs
C coefficient
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mean aerodynamic chord of the wing, ft
chord, ft

cycles per second

acceleration of gravity, 32.2 ft/sec?

moment of inertia about X-axis, slug—ft2

moment of inertia about Y-axis, slug-ft2

moment of inertia about Z-axis, slug—ft2
: - 1 2
product of inertia, 5 (IZ - IX>tan 2e, slug-ft

horizontal-tail incidence (parallel to free stream, positive
for trailing edge down, and measured in plane parallel to
plane of symmetry), deg

differential-tail incidence (it of left tail - it of right
tail), deg

elasticity correction factor, C KC

rigid = ““flexible
length, ft

Mach number

mass, slugs

period of oscillation, sec

static pressure, lb/sq £t; or zolisveloeity, @, radians/sec
dynamic pressure, lb/sq ft

Reynolds number, based on ¢

yawing velocity, radians/sec

wing area, sq ft

time for oscillation to damp to one-half amplitude, sec
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t time, sec

v velocity, ft/sec

W weight, 1b

25 vy b coordinate axes

o angle of attack, deg or radians

B angle of sideslip, deg or radians

€ inclination of principal axis, deg

o) angular control displacement, deg

n lateral distance along Y-axis in wing semispans, S%E
% local streamwise wing twist angle per unit load, radians/lb
Al damping-in-roll root

¢ roll angle, deg or radians

v yaw angle, deg or radians

w oscillation frequency, radians/sec

QCY phase angle by which Cy leads B, deg

Q. phase angle by which r leads B, deg

Qp phase angle by which p leads B, deg

Subscripts:

r rudder

0 sea-level conditions

B refers to oscillation in sideslip

A single dot over a symbol indicates the derivative of the quantity
with respect to time; a double dot represents the second derivative with
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respect to time. Amplitude ratios of the oscillatory components of the

o

% and so forth. The static sta-

motion are designated as 5

bility derivatives are indicated in the following manner: CY = %91
p B
and so forth, whereas the rotary and acceleration derivatives are indi-
ac,, o,
cated g G = y Cpn. = —, and so forth.
e b Bb
o — -
2v 2v

MODELS AND TESTS

Physical characteristics of the models are shown in figures 2 and 3,
and table I. The models flown in this investigation were geometrically
the same as the model in a longitudinal stebility investigation (ref. L4).
An electrohydraulic system was used to move the differentially deflected
horizontal tails about the L4L2-percent chord lines from itd = 0° to

lig = 8°. TFor the other model, the rudder was deflected between -0.25°

The vibrational characteristics of the models were determined by
shaking the models mechanically and noting the bending and torsion fre-
quencies. The frequencies recorded were as follows:

Frequency, cps
Components Pulsed Pulsed
horizontal tail rudder
model model
Wing: First-bending . . . . . . . « % 65.0 68.5
Sepend BeIIDE . . .. v s a e 25550 234 .0
Bivet Borpsion . . . .. . 0% &% 430.0 430.0
Horizontal tail: First bending . . . . 102.0 95.0
Vertical teil: First bending . . . . .| = cec—ca—a- 555,

The structural influence coefficients for the vertical tail were
determined experimentally by the methods of reference 11. The influence
coefficients for both models were the same and are presented in figure L.
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Influence coefficients for the wing and horizontal tail may be
found in references 4 and 10, respectively. These influence coefficients,
along with those of figure 4, were used in computing the K-factor elas-
ticity correetion (£ig. 5) discussed in a subsequent section.

FLIGHT TEST AND INSTRUMENTATION

The models were launched from & mobile launcher (fig. 3(c)) at an
angle of 70O from the horizontal. Acceleration to a maximum Mach number
of about 1.7 was accomplished with two Deacon solid-propellant rocket
motors which separated from the model when burned out. Data were
obtained throughout the coasting portion of the flight.

Instrumentation contained in the model measured the following
quantities: total pressure, static pressure, normal force, transverse
force (at two stations), airflow angularity (pitch and yaw), roll rate,
longitudinal force, and angular position of the pulsed controls. Ground
instrumentation consisted of tracking radar, velocity radar, and telem-
eter receiving and recording stations. Atmospheric data were obtained
with a rawinsonde unit.

The test conditions of the flights (R, Ve ﬁl’ and q) are shown
0
in figure 6 with Reynolds number based on the wing mean aerodynamic
chord. The models were tested at the Langley Pilotless Aircraft
Research Station at Wallops Island, Va.

ACCURACY AND CORRECTIONS

The estimated accuracy of the basic measurements which affect the
stability derivatives is presented at representative Mach numbers for
the pulsed rudder model in table II. Approximately the same accuracies
will also apply for the pulsed horizontal-tail model.

Following the methods presented in reference 6, the probable accu-
racy of the stability derivatives as affected by the estimated values
of table II are shown in table III as both incremental values and per-
centage of the measured derivative.

For this analysis, the solution of a vectorial representation of
the equations of motion requires that certain derivatives be estimated
in order to obtain the other derivatives. The damping-in-roll deriva-
tive CZ (discussed in a subsequent section) was determined for the

b
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pulsed horizontal-tail model from the subsidence of the roll parameter

L and was assumed to be applicable for both models. The effect of
2v
the maximum probable error in Clp on the final derivatives is shown

in the lower part of table III. The effect of a 100-percent change in
the estimated derivative Cnp is shown in the lower part of table III.

Corrections were made to the measured quantities for small errors
caused by instruments which were located off the model center line or
off the model center of gravity. The airflow angularity indicator
readings were corrected for model pitching and yawing velocities to
obtain angles of attack and angles of sideslip, by the method of
reference 12,

Corrections were made to the phase angles QP and QCY for instru-

ment frequency response. These corrections were less than 50 for Qp
and less than 4° for QCY.

ANALYSTS

Experimental Results

Time histories of Mach number, rate of roll, angle of attack, and
angle of sideslip for the supersonic portion of the flights of both the
pulsed horizontal-tail model and the pulsed rudder model are shown in

‘figure 7. The portions of the time histories used in the data analysis

are noted on the figure.

For the pulsed horizontal-tail model the high roll-rate oscillations
show the coupled motions in angle of attack and angle of sideslip which
could not be used for the present analysis.

The roll rate of the pulsed rudder model was relatively low and
very little coupling motion was observed. The lateral oscillation B
was of greater amplitude than the pitch oscillation o and most of the
oscillations had the characteristics of a damped sinusoid and could be
used in the present analysis.

The flight-test data obtained in this investigation were analyzed
by the time-vector methods discussed and illustrated in detail in refer-
ences 6 to 9. Basically the data reductions for the models reported
herein were as follows: oscillations in B, p, and Cy following

each control deflection were plotted against time and envelopes were
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faired about the peak values to aid in determining trim values; trim
lines were faired through each oscillation and the times when the oscil-
lations crossed the trim lines were noted; cross plots were made of the
trim crossing times against time and fairings of the plotted points were
made by using the method of least squares; from these cross plots, phase
angles and periods were determined; the time to damp to one-half ampli-
tude was determined from the slope which fitted plots of the amplitude
ratios of CY, B, and p on semilog paper against time.

The damping-in-roll derivative C1P was determined for the pulsed

horizontal-tail model by finding the damping-in-roll root Kl from the

subsidence of the roll parameter g% following the control disturbance.

The value of steady-state roll parameter was subtracted from the tran-
sient response then Clp was calculated from the damping of the remaining

motion through the following approximation:
¢, - EAIIX
P qsb?

Theoretical Calculations

The most important contributor to the derivatives is the vertical
tail. Calculations were made of the vertical-tail contributions to the
derivatives C € 8 © and C by the approximations

YB: nBJ n.’ 1.2 ZB e PP

given by reference 13. The isolated tail lift-curve slope was estimated
from slender-body theory of reference 14 for M = 0.8 to 1.0 and from
reference 15 at supersonic Mach numbers, trailing edge supersonic. The
isolated tail lift curve was then multiplied by a factor, obtained from
the slender-body theory of reference 14 to account for the end-plate
effect of the fuselage and horizontal tail. For this calculation it was
assumed that the fuselage was effectively cylindrical in the region of
the vertical tail with a radius equal to 0.207 of the tail span. (This
radius makes the effective exposed tail area the same as on the model.)
The center of pressure was estimated from the same references and was
found to be essentially invariant with Mach number for the range of
investigation.

The aseroelastic characteristics of the vertical tail were estimated

from the influence coefficients of figure 4, the atmospheric test condi-
tions of figure 6, and simple trapezoidal loadings.

CONFIDENTIAL




o=y

NACA R L5762 LI dgmipmmda. i RELED 9

The contributions of the various components to the total derivatives
were estimated from the sources indicated in the following listing:

References used for estimating contribution of -
Components

considered
Fuselage| Wing |Empennage elastic

Derivatives Vertical |Horizontal

tail taidl

Horizontal

o 13, 1k, 15 10 13, %5l and vertical
tall

Horizontal

CnB 13, Ay 15 10 15,0 and vertical
tail

Horizontal

“n,. ¥, Ay 15 10 and vertical
tail

Horizontal

ZB 1%, Bl 115 10 and vertical
tail

Horizontal

- F5idhy 15 10 and vertical
tail

15, 16
17, 18,| 16, 17, Wing
20 19

The values of the derivatives were estimated for the rigid configu-
ration and for the elastic model. The ratios of rigid to elastic deriva-
tives were calculated. These ratios presented in figure 5 were used to
correct the measured model data for aeroelasticity. No inertial loadings
were considered except for rolling inertia effect on rolling moments.

The K-factor for the Clp values includes the aeroelastic effect of

rolling moment of inertia. Comparisons between theoretical and experi-
mental derivatives presented herein are for rigid conditions.
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PRESENTATION OF DATA

Trim

Faired values of the mean line through the oscillations in angle
of attack, angle of sideslip, and the rolling parameter po are shown

in figure 8. The trim values for the pulsed horizontal-tail model were
also presented in reference 10 and as stated therein the trim values
below M = 1.0 indicate the test condition only, since too few cycles
were obtained to define trim before the control pulsed to the other
stop position. As pointed out in reference 10, the reason for the
apparent trim change below M = 1.0 is the occurrence of a divergent
motion as the rate of roll approaches the natural frequency of the
dutch-roll mode of motion. Trim angle of attack was less than 1° for
both models throughout the supersonic portion of the flights. This is
in agreement with data from the geometrically similar longitudinal sta-
bility model of reference 5 with the controls in their undeflected
position.

Characteristics of Lateral Oscillations

The frequencies of the lateral oscillations used in the present
analysis are shown in figure 9(a). Other characteristics of the lateral
motions shown in figures 9(b), 9(c), and 9(d) are the damping factor a;
the amplitude ratios of CY, p, and r with respect to B; and the

phase angles QCY, Qp, and Qp. A smooth variation with Mach number

is noted for all the lateral oscillation characteristics throughout the
present test range.

Lateral Stability Derivatives

Typical experimental cross plots of lateral-force coefficient and
total yawing-moment coefficient against angle of sideslip are shown in
figure 10 for the pulsed horizontal-tail model and in figure 11 for the
pulsed rudder model.

Linear fairings were made to permit comparison of slopes with values
obtained from the amplitude ratios used in the vector solutions. Fig-
ure 12 shows the variation of CYB with Mach number for both models

measured from these fairings, the amplitude ratios, and also estimated
theoretical values for this configuration. The experimental slopes in
figure 12 are corrected for elasticity by the K-factor of figure 5 and
the theoretical values were estimated for rigid conditions. -
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The slopes of the C,

plotted against Mach number and compared with the vector solution
(assuming Cnp = 0.15) in figure 13. Calculated theoretical values of

variation with B for both models are

CnB for this configuration are also shown in figure 13. Both the

experimental and theoretical values presented are for rigid conditions.

As mentioned in the section entitled "Experimental Results,"” the
rolling-moment disturbance for the model with the pulsed horizontal
tail was such that the subsidence of the roll-rate response could be
used to determine the damping-in-roll derivative CZP. The experimental

and theoretical values of CZP for rigid conditions are presented as a

function of Mach number in figure 1k.

The lateral stability derivative Clr = Cy . variation with Mach
B

number in figure 15 was obtained from the vector analysis by assuming
the Clp from the subsidence of the rolling parameter to be correct

for both models.

The variation of the effective dihedral derivative ClB with Mach

number from the vector solution for both models may be seen in figure 16.
The theoretical curve also shown on figure 16 was estimated for rigid
conditions and the vector determined points were corrected to rigid con-
ditions by the K-factor of figure 5.

The variation of the damping-in-yaw derivative Cnr - C,. with Mach
B

number from the vector solution corrected to rigid conditions is pre-
sented in figure 17. A theoretical curve, obtained as indicated in the
section entitled "Theoretical Calculations," is also presented for

Cnr - CnB at rigid conditions in figure 17.

Control Effectiveness

The control effectiveness of the pulsed horizontal tail was reported
in reference 10. For the rudder model the values of CYS’ Cnb’ and

Cla were determined from the incremental values of the coefficients
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following the abrupt control deflection divided by the incremental
change in control deflection and are shown in figure 18.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., July 9, 1957.
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TABLE T

MASS CHARACTERISTICS

eee oo 15

Whbals = i

2 Ix, slug-ft

Iy, slug-ft2

s Iy, slug—ft2
Iyy, slug-ft2 .

ERciEoa o 1, L 0
Center of gravity,
percent ¢

Pulsed horizontal-tail | Pulsed rudder
model model
15525 1565
1.106 0.942
9.06 25T
9.92 10.60
0.168 02O 2
k.20 2.20
25.90 26.08
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ESTIMATED ACCURACY OF BASIC MEASUREMENTS

FOR PULSED RUDDER MODEL

W, percent .
I, percent

Iy, percent

M, percent
q, percent .

p/B, percent .

at/g

, percent
Qp, deg

€, deg .

12 sEe ¢

a5 l/sec .
%l’ percent

Accuracy at Mach number of -

1..05 L d57

O 0.7

2 2

L 4

2 i

6 4

2 2

2 2

5 ?
0.5 0.5
0.02 0.0
0.10 0.05

L j L
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TABLE IIT

CALCULATED ACCURACY OF PARAMETERS

Due to Ly &y &Ly &4 A(C - Cp ) A(Cz =07 )
estimated B 5 P B r g £
€XTOr 1M = M = 1.47[M =1.05|M =1.47| M=1.05[M = 1.47|M=1.05(M = L.U7| M= 1.05| M =1.47| M= 1.05| M= 1.47| M = 1.05
W 0.008 0.008 | =m=e=c | ~m==-s 0 0 0 0 0 0.010 0 0
I | mmemem | mmmeem | mmmee | mmeee- .006 Sople e [~ SEEEE e <027 ORI e
Ig | =memem | memee- 0.01k4 0.015 | -—-== [-e—-- .006 006 | —emeem | meeee- 0 0
q .053 .072 016 .021 .003 .010 .00k .006 .100 .110 .043 .008
| %‘ ......................... .00L .020 .002 .001 0 .010 .008 0
a_t
_s—- .026 026, 4] mmmme | aemaa- 0 0 0 0 (0] 0 0 0
O B e Bl IR .001 .01L .00L .001 .060 .070 2130 .10
Gt [ R e St 0 0 .012 .012 .003 .006 0 0 .011 0
B R M e [ e B ne s .025 .067 .005 .008 .020 .020 015 .001
e e | R i || e e .002 .007 0 0 .030 .140 .002 0
A | memmeem | mmmeee .002 o)1 DR (TR [PUee U [ SR RS (TS U S R i S
Probable error,
7 0.059 0.077 0.0214 0.0294 0.029 0.074 0.0096 0.0013 0.122 0.194 0.138 0.140
Value of
derivative -1.272 -1.358 =33k --370 -380 .600 -.103 -.105 -1.58 -1.37 .20 -.k425
Probable error,
percent of 4.63 5.68 6.41 7.95 7.63 12.38 9.30 12,38 7.72 14.16 69 33
derivative
Due to -
100-percent
change RSl C e oo aee U caamme | —m———— 0.003 0 | emmmme | mmemeae 0.390 0.290 | =m-eem | cceeee
C
'
Maximum
L Tl T [N SIsa S [T (P—— 0.0005 [ 0 | =;eemm | —meee- 0.06 0.05
error in Clp
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Priojettion ‘-Projection of

of B relative wind
X 3

Horizontal - qS

Horizontal—J ]
Principal axis

Projection of
relative wind

Rear view

Figure 1.- System of axes. Each view presents a plane of axes system viewed along positive
direction of third. Angular displacements as shown are positive. The center of gravity of
model is at 25 percent of wing c.
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Eo -3 indicator

<_—~3944__——-{ Tofol pressure pick-up

Figure 2.-

s =
RES —L 21.50

99.55

General arrangement of rudder model.

i e e 57
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Top view

Side view

(a) Pulsed rudder model. L-5T7-2716

Figure 3%.- Photographs of model and boost system.
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(b) Pulsed rudder.

Figure 3.- Continued.
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(c¢) Pulsed rudder model on booster in launching position.

Figure 3.- Concluded.
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Figure L4.- Structural influence coefficients for vertical tail for
loading along 0.40 chord line.
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(b) Velocity.

Figure 6.- Flight test conditions.
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Figure 6.- Concluded.
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(a) Differentially pulsed horizontal-tail model.

Figure T.- Portion of time history.
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Figure T7.- Concluded.
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(b) Angle of sideslip.
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Figure 8.- Variation of trim conditions with Mach number.
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(b) Damping factor.
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Figure 9.- Concluded.
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Figure 10.- Typical experimental variation of lateral-force and yawing-
moment coefficients with angle of sideslip and Mach number for pulsed
horizontal-tail model.
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- moment coefficients with angle of sideslip and Mach number for pulsed
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Figure 16.- Variation of effective dihedral derivative CZB with Mach
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Figure 17.- Variation of damping-in-yaw derivative Cnr with Mach

number for rigid conditions.
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(b) Variation with Mach number of yawing moment effectiveness,
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and rolling moment effectiveness, =l for pulsed rudder model.
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Figure 18.- Control effectiveness of pulsed rudder.
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