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SUMMARY

An investigation has been made to determine the effect of wing fences,
a wing leading-edge extension, changing wing sweepback angle from 40°
to 450 and 500, fuselage contouring, and varying horizontal tail height
upon the buffeting response of some typical airplane configurations
employing sweptback wings with high aspect ratios. The tests were con-
ducted through an angle-of-attack range at Mach numbers varying from 0.60
to 0.92 at a Reynolds number of 2 million.

For the combinations with L4O® of sweepback, the addition of wing
fences usually decreased the intensity of buffeting at moderate and high
1lift coefficients, and reduced the erratic variations of buffeting inten-
sity with increasing lift coefficient and Mach number. Fuselage contouring
also reduced buffeting, but was not as effective as wing fences. The
leading-edge extension was ineffective as a means of alleviating buffeting
and for some test conditions caused increases in buffeting. Increasing the
angle of sweepback of the wing from 40° to 45° and 50° usually reduced
buffeting at moderate lift coefficients at high subsonic speeds.

At high subsonic Mach numbers, heavy buffeting usually occurred at
1ift coefficients which were considerably lower than the lift coefficients
for pitch-up. The addition of wing fences increased both the 1lift coeffi-
cients for pitch-up and heavy buffeting; however, heavy buffeting still
occurred at lift coefficlents which were significantly lower than those
for pitch-up. Also, at these Mach numbers, the boundaries for light buf-
feting approximated the 1lift coefficient and Mach number boundary for drag
divergence.

For most test conditions and model configurations, the root-mean-
square and the maximum values measured for relative buffeting indicated
similar effects and trends; however, the maximum buffeting loads were
usually two to three times the root-mean-square intensities.
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Increasing the height of the horizontal tail increased tail buffeting
at low to moderate lift coefficients, but reduced tail buffeting at moder-
ately high 1ift coefficients.

INTRODUCTION

The performance requirements of long-range alrcraft designed to fly
at high subsonic speeds have usually resulted in configurations which
employ sweptback wings of relatively high aspect ratio, and the research
described in references 1 through 3 was directed toward the development
of satisfactory aerodynamic characteristics for such wings. The wings
used in the reference investigations generally experienced, at moderate
1ift coefficients and high subsonic speeds, a severe decrease in longitu-
dinal stability and heavy buffeting due to shock-induced separation. It
was shown by the reference investigations that the 1lift coefficients at
which instability occurred could be increased considerably by the use of
chordwise wing fences or leading-edge extensions. However, the effect of
such devices on the buffet characteristics of these wings was unknown, and
it was believed some of the benefits derived from their use would be at
least partially nullified because of heavy buffeting.

The present investigation was conducted to obtain an indication of
the effects of a leading-edge extension and multiple chordwise fences on
the buffet characteristics of some typical airplane configurations employ-
ing sweptback wings of high aspect ratio. In addition to these devices,
configurations tested included a Klichemann type fuselage modification, two
vertical locations of the horizontal tail, and wing sweepback angles of
40, 45°, and 50°. Longitudinal force data and fluctuations of wing-root
and horizontal tail-root bending moment were measured at Mach numbers up
to 0.92 at a Reynolds number of 2 million.

NOTATION

All areas and dimensions used in the notation refer to the wings
without leading-edge extensions.

'b2
A aspect ratio, —
25
a mean-line designation, fraction of chord over which design load

is uniform

al normal acceleration
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BM

N o

ol

bending moment

wing semispan perpendicular to the plane of symmetry

drag
aS

drag coefficient,

1ift coefficient, Elgﬁ
s

inflection 1ift coefficient, lowest positive 1lift coefficient at

ai
which L _ 0
dcy,

pitching-moment coefficient about the quarter point of the wing
pitching moment
qQsc

mean aerodynamic chord,

fluctuating normal-force coefficient
local chord parallel to the plane of symmetry

local chord perpendicular to the wing sweep axis

b/2
o

fb/2cdy
[o)

c2dy

mean aerodynamic chord,

section design 1lift coefficient

acceleration factor due to gravity
leading edge
free-stream Mach number

. a
normal acceleration factor, —

free-stream dynamic pressure

Reynolds number based on mean aerodynamic chord of wing
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area of semispan wing

distance from the intersection of the leading edge of the wing
and the plane of symmetry to the moment center, measured
parallel to the fuselage center line

lateral distance from plane of symmetry
wing height from the quarter point of the mean aerodynamic chord

to the fuselage center line, measured in a plane parallel to
the plane of symmetry

angle of attack, measured with respect to a reference plane through

the leading edge and root chord of the wings

ratio of measured damping to critical damping

streamwise distance from the junction of the leading edge of
the h5° sweptback wing with the basic fuselage, dimensionless
with respect to the wing chord at the juncture

angle of twist, the angle between the local wing chord and the
reference plane through the leading edge and the root chord

of the wing (positive for washin and measured in planes
parallel to the plane of symmetry)

. J
fraction of semispan, ——
pan, b/2

angle of sweepback of the line through the quarter-chord points
of the reference sections

c 1

wing taper ratio, 7?—
T

Subscripts

aerodynamic
wing root

root mean square
structural

tail
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t! wing tip

T total
MODEL DESCRIPTION

The wing-fuselage-tail combinations employed the semispan twisted and
cambered wing, fuselage, and horizontal tail described in references 1
and 2. For the present investigation, these components were assembled with
the root chord of the wing near the center line of the fuselage at an angle
of incidence of about 3°. (See fig. 1(a).)

The wing employed sections derived by combining an NACA 64A thickness
distribution with an a = 0.8 modified mean line having an ideal 1ift coef-
ficient of 0.4, These sections were perpendicular to the quarter-chord
line of the wing panel and had thickness-chord ratios which varied from 1k
percent at the root to 11 percent at the tip. Twist was introduced by
rotating the streamwise sections of the wing with 40° of sweepback about
the leading edge while maintaining the projected plan form. The variations
of Twist and thickness ratio along the semispan of the unmodified wing are
shown in figure 1(b). The sweepback angle of the wing could be set at koo
45°, and 50° resulting in respective aspect ratios of about 7, 6, and 5.
The leading-edge extension used in the investigation projected 15 percent
of the chord ahead of the leading edge of the wing and extended from 60
percent of the wing span to the wing tip. The wing was also tested with
multiple fences which were mounted at 33, 50, 70, and 85 percent of the
semispan and extended from 10 percent of the chord ahead of the leading -
edge to the trailing edge. The wing fences and the leading-edge extension
are shown in figures 1(c) and 1(d), and are described in detail in refer-
ences 2 and 3, respectively. The wing was constructed of solid steel,
welghed about 375 pounds, and had a fundamental bending frequency of
about 15.9 cycles per second. The fences had no appreciable effect on
these characteristics; however, the leading-edge extension increased the
weight of the wing about 14 pounds and decreased the frequency of funda-
mental bending to about 15 cycles per second.

The horizontal tail had an aspect ratio of 3.0, a taper ratio of 0.5,
NACA 0010 thickness distributions perpendicular to the quarter chord,
and 40° of sweepback. It was mounted either on the fuselage center Llne
or at 10.6 inches above the fuselage center line at an angle of incidence
of -4°. The tail was constructed of solid steel.

For the present investigation, the wing and tail were weakened locally
near the roots to increase the stress level in bending (see fig. 1(e)).
Strain-gage bridge elements oriented to respond primarily to bending about
an axis perpendicular to the elastic axis were installed on the weakened
portions.
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The fuselag- was assembled with either a cylindrical or an
axisvmmesoi- 2" indented midsection with simple fairings fore and aft.
‘ ___m~""Contours of the indented fuselage were determined by the Kiichemann
=T technique described in reference L4, and the modification is described in
| detail in reference 5. The coordinates for the basic fuselage are listed
in table I and details of the contoured portion of the fuselage are shown
in figure 1(f). The fuselage was relieved at the wing-fuselage juncture
and the resultant gap sealed with sponge rubber to maintain an air seal
yet minimize mechanical restraint of the wing by the fuselage.

Figure 2 is a photograph of the model mounted in the wind tunnel.
The turntable upon which the model was mounted is directly connected to
the balance system.

APPARATUS

The investigation was conducted in the Ames 12-foot pressure wind
tunnel which has a contraction ratio of 25 to 1 and eight fine wire mesh
screens upstream of the test section. These combine to effect an unusually
low turbulence level and hence minimize the possibility of tunnel streanm

" disturbances affecting the test results (see ref. 6).

The static aerodynamic forces and moments were measured with the
scale-balance system usually employed for semispan tests, and the steady-
state and fluctuating bending moments of the wing and horizontal tall were
measured with strain gages installed on the weakened portions of these
surfaces.

Preliminary tests indicated that the peak values of the fluctuating
bending moments could be used as a measure of buffeting if data samples
long enough to provide maximum peak values could be measured for each
test condition. Consequently, electronic instrumentation was constructed
which conveniently recorded and analyzed data samples corresponding to
several thousand cycles of bending moment. This apparatus provided the
largest peak values of successive 10-second samples of data, the root-
mean-square signal levels of the fluctuations of wing bending moment, and
the steady-state wing and tail bending moments. These values were recorded
with a multichannel recording potentiometer. DPeak values were determined
with diode-capacitor circuits. The capacitors were charged to values pro-
portional to the largest signal input. Steady-state values were obtained
by sending the signals through low-pass filters to remove the fluctuating
portions of the signals. Root-mean-square values were measured with a
thermocouple meter element which drove a selsyn unit. .

A typical data sample from the recording analyzer is shown in
figure 3. Buffeting response was determined from the difference between
the maximum fluctuations of bending moment and the average bending moments
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or the difference between the rms bending moment and the rms zero. The
bridge outputs were also tape recorded for selected test conditions for
the later determination of frequency spectrums.

The instrumentation for measuring maximum fluctuating and steady-
state signals was calibrated by applying static bending loads to the wing
and tail. The resulting calibrations of the channels for measuring the
maximum signals were assumed to apply to dynamic loads., The root-mean-
square data channel for the wing was calibrated by vibrating the wing
with an electromagnetic shaker at its natural frequency for several inputs
of constant amplitude while recording the root-mean-square and maximum -
(peak) signals. A comparison of these signals provided an rms calibration.

REDUCTION OF DATA

_ The fluctuations of bending moment measured at the wing root have
been converted into fictitious fluctuating normal-force coefficients,
*ACy, to provide an indication of the relative wing normal force response
of the various configurations to buffet. These values were computed from
the following relations:

ch=Aﬂ4.L
s y!
where
ABM fluctuating bending moment
. steady-state bending moment
y

CLqS(cos a) + CDqS(sin a)

These coefficients correspond to the incremental normal force which, if
applied to the wing as a steady load at the lateral position of center of
steady-state load, would produce a bending moment of the same magnitude as
the measured fluctuating bending moment. The following assumptions were
necessary for the calculations. It was assumed that the bending-moment
fluctuations at the wing root were not affected by wind-tunnel turbulence
and were entirely due to separated flow on the wing. This was substanti-
ated by the negligible fluctuations of wing bending moment near zero lift
at most Mach numbers, It was also assumed that the centers of pressure
of the wings computed for steady-state conditions applied to fluctuating
loads. This assumption was supported by flow studies of the basic wings
(see ref. 1) which indicated that shock-induced separation was generally
centered near the centers of pressure. This assumption might be less
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valid for configurations where the buffeting occurred either inboard or
outboard of the center of pressure. Another assumption made for the cal-
culations of fluctuating normal-force coefficient was that the lift of the
wing-fuselage-tail combinations at positive angles of attack was close to
the 1ift of the exposed portion of the wing. This assumption is reasonable
because of the proximity of the strain-gage bridge used to measure wing
bending moments (see fig. 1l(e)) to the model plane of symmetry and the
negative angle of the fuselage (-3°) for zero angle of attack of the wing.

Fluctuating normal-force coefficients were computed from both maximum
and root-mean-square intensities of wing root bending moment. For maximum
loads, the coefficients, *ACy , were determined from the largest recorded

max

fluctuations of wing bending moment. Fluctuating normal-force coefficients
for the root-mean-square values of the buffet loads, iACNrmS, were computed

from the average of the values recorded after the instrumentation had
stabilized for a particular test condition.

The structural and aerodynamic damping ratios of the wing were also
determined. These characteristics and the methods used to calculate them
are discussed in the appendix.

Fluctuations of tail bending moment, *ABM;, measured as an indication

of tail buffet are presented as such, and represent the largest fluctua-
tions recorded for the tail.

CORRECTIONS

The data have been corrected for constriction effects due to the
presence of the tunnel walls by the method of reference 7, for tunnel-
wall interference originating from lift on the model by the method of
reference 8, and for drag tares caused by aerodynamic forces on the
turntable upon which the model was mounted.

The corrections to dynamic pressure, Mach number, angle of attack,
drag coefficient, and to pitching-moment coefficient were the same as
those used for references 2, 3, and 5 and are listed in table II.

No corrections were made to the buffet data for tunnel resonance
effects or for tunnel noise as the fluctuations of wing bending moment
measured near zero lift were usually negligible.



NACA RM A5TFO6a 9

RESULTS AND DISCUSSION

General Remarks

The results presented herein for buffeting may have been influenced
by several extraneous factors. 1In addition to possible discrepancies
arising from the conversion of the bending-moment fluctuations to *ACy)

there would be large differences between the mass and stiffness distribu-

tion and the damping characteristics (see the appendix) of the model wings
and similar full-scale wings. Also it should be emphasized that values of
*AC,, as presented herein, are only proportional to the buffeting response

of the wing and are undoubtedly larger than the actual fluctuations of
aerodynamic normal force causing the buffeting. This difference stems from
the relationship between the resonance characteristic of the wing and the
frequency of the fluctuating air loads. In addition, reference 9 indicates
that the test results may have been affected by the comparatively low
Reynolds number (2 million) at which they were obtained.

With the semispan model technique used for this investigation, the
pitch and roll motions which can be troublesome with sting-mounted models
(see ref. 10) were insignificant. The buffet response. of the semispan
models was almost entirely limited to the primary bending frequency of the
wings and was very similar in this respect to the response of a full-scale
airplane (see ref. 11). A typical model frequency spectrum for buffeting
conditions is shown in figure L.

Consideration of these factors indicates that the results can be
regarded as a qualitative indication of buffet response for the various
configurations tested.

Discussion of Results

Comparison of maximum and root-mean-square buffet intensities.- The
fluctuating normal-force coefficients measured for the various configura-
tions tested are presented in figures 5 through 9. These values are shown
for both root-mean-square and maximum intensities. Examination of the
results indicates that both criteria generally indicated similar effects
and trends. However, it is significant that the maximum buffeting inten-
sities were usually two to three times the root-mean-square intensities.
These results are in good agreement with the probability and frequency
analysis of buffet loads shown in reference 12 and demonstrate the neces-
sity of applying proper statistical factors to root-mean-square loads to
obtain reliable estimates of maximum loads.

Effects of modifications with 40° sweptback wings.- The effects of
wing fences, a leading-edge extension, and a Kiichemann type fuselage
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modification on the buffet intensities of the wing-fuselage-tall combina-
tion with the low horizontal tail are compared in figures 5, 6, and 7. At
most Mach numbers, the wing fences reduced the erratic variation of buffet-
ing with increasing lift coefficient, and decreased buffet intensities at
moderate and high 1lift coefficients. The leading-edge extension was inef-
fective as a means of reducing buffeting, and for some test conditions
increased buffeting. The effect of the additional mass at the wing tip

due to the presence of the extension is not known. However, it is believed
to be small and reference 13 shows that this effect, if any, would act to
reduce buffeting.

Some unpublished results from flight tests have indicated that in
particular instances buffeting originated from interference effects at the
intersection of a swept wing and a fuselage. Consequently, the combination
with 40° of sweepback was tested with a fuselage modification which was
designed to reduce these interference effects (refs. 4 and 5). It is shown
in figure 7 that the modification reduced buffeting at most 1ift coeffi-
cients. However, it was.not as effective in this respect as the wing
fences. This result might have been influenced by the inboard location of
the modification. The combination with the modified fuselage was also
tested with fences to determine if the beneficial effects of these devices
were cumulative. The results of these tests are also shown in figure 7.

A comparison of the data presented in this figure and in figures 5 and 6
show no appreciable cumulative effect; the buffet levels measured for the
model with wing fences and a modified fuselage were comparable to those
measured for the combination with the unmodified fuselage and fences.

Effects of sweepback.- The buffet intensities, with and without wing
fences, of wing-fuselage-tail combinations having wings swept 459 and 50°
and the tail in the low position are shown in figures 8 and 9, respec-
tively. A comparison of the data presented in these figures, with the
data of figures 5 and 6, shows that at moderate 1ift coefficients the
intensity of buffet and the beneficial effect of wing fences on these
intensities decreased with increasing angle of sweepback. These results
might have been anticipated and probably stem from reductions in compres-
sibility effects which accompanied the change in sweepback angle.

Tail buffet.- Figures 10 and 11 show, for the combination with 40°
of sweepback, the effect of wing fences, a fuselage modification, and tail
height on tail buffeting as indicated by the fluctuating bending moments
measured at the root of the horizontal tail. Because of the erratic nature
of the data, no noticeable trend was evident from the addition of wing
fences or from modifying the fuselage (fig. 10). However, the data of fig-
ure 11 show that changing to the higher tail usually increased the magni-
tude of the bending-moment fluctuations at low to moderate lift coeffi-
cients and reduced these fluctuations at moderately high 1ift coefficients.
The data showing the effects of tail height (fig. 11) were obtained from
tests of the combination with the leading-edge extension on the wing while
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the data showing the effects of the other configuration changes (fig. 10)
were measured with the extension removed. This probably accounts for the
small discrepancies between the low tail data of figure 11 and the basic
wing, basic fuselage data of figure 10.

Static force data.- Static longitudinal force data for the various
combinations with 40° of sweepback and the low horizontal tail position
are presented in figures 12 and 13. Figure 14 shows these data for the
combinations with 459 and 50° of sweepback., No static force data are
presented for the combination with the high tail since, for the range of
conditions investigated, the effect of raising the tail on the static
characteristics of the model was small (see ref. 2).

Buffet boundaries.- Figures 15 through 18 present 1lift coefficient
and Mach number boundaries for constant-intensity buffeting. A few root-
mean-square measurements of relatively low intensity buffet were not
obtained because of instrumentation difficulties. These conditions are
indicated in figure 16(a) by the short dashed lines which were used to
connect the available data points.

The relative effects of wing fences, a wing leading-edge extension,
and a fuselage modification on boundaries for buffeting of comparatively
moderate intensity are compared in figure 15 for the combination with 40°
of sweepback. Over most of the Mach number range, the buffet boundary for
the combination with fences was at the highest 1ift levels. The buffet
characteristics of the combination with and without wing fences are shown
in detail in figure 16 by boundaries for constant buffeting intensities
which range from the first perceptible traces of buffeting to buffeting
of extreme degree. The increments of *ACy (0.005 for root-mean-square
values and 0.0l for maximums) chosen for these plots were not intended to
imply the accuracy or repeatability of the data (which was equivalent to
a FACNpys ©F 0.002 or a *ACNp,yx of about 0.005), but were only selected
to convey the extremely erratic nature of the buffeting of the unmodified
wing-fuselage-tail combination. The bubble-like curves are due to
decreases in buffeting intensities with increasing lift coefficient or
angle of attack. This effect is also shown by the investigation reported
in reference 9. Fences usually increased the 1ift levels for most con-
stant buffeting intensities and somewhat reduced the erratic variation of
the maximum intensities with increasing Mach number.

Figure 17 compares for the models with 40°, 450, and 50° of sweepback,
lift coefficient and Mach numbeér boundaries for relatively light, moderate,
and heavy intensities of buffeting. Boundaries are shown for the model
with and without wing fences. Although these data are relatively erratic,
it is indicated that for the selected buffeting intensities increasing
sweepback usually raised the 1lift level of the buffet boundaries at the
higher test Mach numbers,
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Comparison of buffet boundaries with static longltudinal parameters.-
The 1ift coefficients for drag divergence (C;, for dCp/dM = 0.10) and for

pitching-moment curve inflection or pitch-up (Lowest positive C;, at which
dCp,/dCr, = 0) have often been considered important design parameters in ana-

lyzing the static longitudinal characteristics of airplanes for flow sepa-
ration. These parameters are compared in figure 18 with Mach number and
1lift coefficient boundaries for light and heavy buffeting. The intensity
selected for light buffeting, tACNmaX = 0.02, is believed to approximate

the buffet onset criteria used for full-scale airplanes. The intensity
chosen for heavy buffeting, *ACy = 0.08, is purely arbitrary and is

only intended to indicate constant-intensity buffeting of relatively heavy
degree. At the higher Mach numbers, the 1ift coefficients for drag diver-
gence are close to the boundaries for light buffeting for both the model
with and without wing fences. However, heavy buffeting was indicated at
1ift coefficients considerably lower than those for moment-curve inflec-
tion, and this is significant since the occurrence of heavy buffeting at
these comparatively low 1lift coefficients indicates that the usable range
of 1lift coefficients would probably be much less than the 1ift coefficient
range for stability. Wing fences did much to lessen this difference, but
heavy buffeting was still indicated at 1ift coefficients which were
appreciably lower than those for pitch-up.

Hypothetical buffet characteristics of an assumed airplane.- Because
of the model stiffness and mode shape limitations mentioned earlier in the
paper, no attempt was made to use the scaling relationship presented in
references 11 and 14 in analyzing the results. However, incremental values
of normal acceleration factor, *An, have been calculated for an assumed
airplane from some of the response data showing maximum peak values of
fluctuating normal-force coefficients, iACNmax' It was assumed that this

airplane had the same geometry and dynamic response characteristics as the
model with 40° of sweepback and was in flight at an altitude of 40,000 feet
with a wing loading of 70 pounds per square foot. Since the normal accel-
eration factors, *An, were calculated from fictitious normal-force coef-
ficients (see the section on reduction of data), they are subject to the
same limitations which affect the absolute magnitude of these normal-force
coefficients. However, the presentation in figure 19 of the fluctuations
of normal acceleration as a function of Mach number and constant normal
acceleration factor emphasizes the alleviating effect of wing fences on
buffeting at the higher Mach numbers of the test. Buffeting due to
increasing Mach number at constant normal acceleration factor and buffet-
ing due to increases in normal acceleration factor at constant Mach number
were greatly reduced by the addition of the fences. '
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CONCLUSIONS

An investigation has been made to determine the effect of wing fences,
a wing leading-edge extension, wing sweepback angle, fuselage contouring,
and horizontal tail height upon the buffeting response of some typical air-
plane configurations employing sweptback wings of high aspect ratio. The
following conclusions were indicated:

1. TFor the combinations with 40° of sweepback, the addition of wing
fences usually decreased buffeting at moderate and high 1lift coefficients,
and reduced the erratic variation of buffet intensities with increasing
1ift coefficient and Mach number. Fuselage contouring also reduced buffet-
ing, but was not as effective as the wing fences. The leading-edge exten-
sion was ineffective as a means of alleviating buffeting and for some test
conditions increased buffeting.

2. Increasing the angle of sweepback of the wing from hOo to L45°
and 50° usually reduced buffeting at moderate lift coefficients at high
subsonic speeds.

3. At high subsonic speeds, heavy buffeting was usually indicated
at 1ift coefficients which were considerably lower than the 1ift coeffi-
cients for pitch-up. The addition of wing fences increased both the 1ift
coefficients for pitch-up and for heavy buffeting; however, heavy buffeting
still occurred at 1lift coefficients significantly lower than the lift
coefficients for pitch-up.

4, At high subsonic speeds, the boundaries for light buffeting were
close to the lift coefficient and Mach number boundary for drag divergence.

5. For most test conditions and model configurations, the root-mean-
square and the maximum values measured for relative buffeting indicated
similar effects and trends; however, the maximum buffeting loads were
usually two to three times the root-mean-square intensities.

6. Increasing the height of the horizontal tail increased tail
buffeting at low to moderate lift coefficients, but reduced tail buffeting
at moderately high 1ift coefficients.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., June 6, 1957



e e T T

1h NACA RM AS5TFO6a.
APPENDIX
WING DAMPING CHARACTERISTICS

The damping characteristics of the wing for several test conditions
were determined from frequency analyses of the fluctuating wing-root bend-
ing moments. Magnetic tape recordings of these moments taken during the
test were formed into loops and played into an electrical frequency ana-
lyzer having a narrow band-pass filter with a band width of about l/2 cycle
per second. A typical frequency analysis is presented in figure 4 which
shows the variation with frequency of the wing structural response. In
this case, the response was proportional to inch-pounds instead of the
usually used (inch-pounds)2.

The results of these analyses showed that almost all of the response
appeared in the first bending mode (see fig. 4) and the following relation
from reference 15 was used to obtain an approximation of the total damping
ratio, Y from the response spectrums. '

N
T 2u)N
where
y total damping present
T critical damping
Wy first natural bending frequency, cps
A band width at the half-power points

The half-power points are defined as the points on the response curves
where the power is one-half peak power. For example, the half-power
points of the curve shown in figure 4 correspond to 0.707 peak amplitude.
The damping results obtained with this technique were very erratic because
of inherent limitations in the frequency analyzer. For some test condi-
¢ions, the band width of the half-power points approached the band width
of the filter, and for these conditions it was probable that large errors
were present in the results. However, when the band width of the half-
power point was considerably wider than the band width of the filter, the
resulting damping values were believed to be reasonably accurate, and the
maxigum measured value of total damping thus obtained was of the order of
0.026.
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The structural damping ratio of the wing, I~ was determined from the
following relationship.

-2m'y,  amplitude at cycle n'
initial amplitude

e

where

structural damping
critical ‘damping

n' number of cycles (in this case to damp to half amplitude)

The number of cycles to damp to half amplitude, n', was determined by
striking the wing and recording the response decay with an oscillograph,
The value of 7s ‘thus obtained was 0.0055,

The aerodynamic damping ratio of the wing, 7gs Was assumed to be
the total damping ratio less the structural damping ratio. Consequently,
the maximum measured aerodynamic damping ratio was about 0.020.

The analysis of the tapes for several test conditions showed that
the first natural bending frequency of the wing varied between 16.9 and
17.6 cycles per second. The static wing natural bending frequency was
15.9 cps. The increase in natural frequency was believed due to the
added stiffness contributed by the aerodynamic forces that arise when
the wing vibrates in a moving air stream.
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TABLE I.- COORDINATES OF BASIC FUSELAGE

Distance from . Distance from

nose, Raqlus, nose, Radius,
in. in. in. in.
0 o 60.00 5.00
1.27 1.04 70.00 5.00
2.54 1.57 76.00 k.96
5.08 2.35 82.00 4.83

10.16 3.36 88.00 4.61

20.31 Chohh ok.00 4. 27
30.47 4,90 100.00 3.77
39.44 5.00 106.00 3.03

50.00 5.00 126.00 0

TABLE II.- CORRECTIONS TO DATA
(a) Corrections for constriction effects

Corrected Uncorrected Qeorrected
Mach number | Mach number | Quncorrected
0.60 0.590 1.006
.70 .696 1.007
.80 .793 1.010
.83 .821 1.012
.86 .848 1.015
.88 : .866 1.017
.90 .883 1.020
.92 .899 1.024

(b) Corrections for tunnel-wall interference

L= 0.455 ¢
ACp = 0.00662 Cp?

A = K.C
Copail off 1"Ligil off

3Cm }
AC = K.C - | (x,C - o) B
Mgail on ' Dtail off [(Ké Ltail off ) diy

where: /

M Ky Ko

0.60 | 0.0038 [ 0.7k
70| .ook3z| .76
80| .ook9 | .79
.83 .0050} .80
86| .0053| .83
.88 .o054 | .8k
.90{ .0056| .86
.92 .0057( .88
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e X
Sweep oxis and ©/4 line ]
70 b
b < T ° 2
0.605 4
y ¥
15.08
| 2.
/ I.’, / 4'14\ { D TG]O
7 7
“— Cr —"IT\Moment center L
—13.40
7042 46.32 ——o
|
See table I and figure | (f) Tail positions
for fuselage coordinates .
/ ww—-?—
10.60
__t

Geometry of the wings

A A A b/2 Cr ct' < X y 4 S ar

40° | 700 | 0.4 |54.61 {22.29| 8.92 | 16.56 [25.35| 2340 ] 1.45 | 592 3.00°

45° | 6.03 0.4 |5041 2390 9.56 | 17.76 | 27.76 [ 21.60| 145 5.86 2.95°

50° | 5.04 0.4 |45.82(2598(10.39 | 19.30{30.13 | 19.64]| 145 5.79 2.90°

Note: All dimensions in inches and areas In
square feet.

(a) General arrangement.

Figure 1l.- Geometry of the models.
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+‘.|5 c*[« ¢ a—\

——

L¢—.52 c'—>

The mean line for the quding-edge extension
(a= 0.8, c,= 0.31) fairs into the original mean
line (a= 08 c,=0.4) at the point of zero slope.

Mean-line modification

Profiles for the leading-edge extensions fair into
the original wing at approximately 40 percent of
the original chord and are similar to the forward
portion of the original section except for reduced
thickness ratio and leading-edge radii.

A‘ IScLOrlglnol leading edge

Typical modified section

(d) Details of leading-edge extension.

Figure l.- Continued.
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Lateral distance, inches

NACA RM A5TFO6a

] L A |—d ]

2 . Jv— - v /7

// //

I-Basic
Vi e et e = = — — __/__:-___.___.. —— e e —
/ I Modified 7
/‘-Wing Wing
_eading edge Troiling edge »/
A /|
/ /

42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Body station, inches

Body Body
station, 13 radius,

inches inches
38.437 -0.428 5.000
39.437 -.384 5.000
43.567 -2 5.000
45815 =1 5047
48.063 o] 5.166
50.311 i 5266
52.559 2 5.115
54.806 .3 4911
57.054 .4 4718
59.302 5 4.585
61.550 6 4452
63.798 7 4427
66.045 8 4.426
68.293 .9 4505
70541 1.0 4799
72.000 1.065 4985
73000 1109 5000

(f) Fuselage contouring details.

Figure 1.- Concluded.

74
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Figure 2.- Photograph of the model in the

A-21695

wind tunnel.
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‘}igure 19.- Some hypothetical buffet characteristics of an assumed
airplene in flight at 40,000 feet with an assumed wing loading

of 70 pounds per square foot.
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