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RESEARCH MEMORANDUM 

EXPERIMENTAL DETERMINATION 

OF THE IFCTS OF FREQUENCY AND AIVFLITUDE OF OSCILLATION 

ON THE ROLL-STABILITY DERIVATIVES FOR A 

60° DELTA-WING AIRPLANE MODEL 

By Lewis R. Fisher 

0 
A 60 delta-wing airplane model was oscillated in roll for several 

frequencies and amplitudes of oscillation to determine the effects of 
the oscillatory motion on the roll-stability derivatives for the model. 
The derivatives were measured at a Reynolds number of 1,600,000 for the 
wing alone, the wing-fuselage combination, and the complete model which 
included a triangular-plan-form vertical tail. 

Both rolling and yawing moments due to rolling velocity exhibited 
large frequency effectE for angles of attack higher than 16°. The largest 
variations in these derivatives were measured for the lowest frequencies 
of oscillation; as the frequency increased, the derivatives became more 
nearly linear with angle of attack. Both velocity derivatives were con-
siderably different at high angles of attack from the corresponding 
derivatives measured by the steady-state rolling-flow technique. 

Rolling and yawing moments due to rolling acceleration were measured 
and similarly found to be highly dependent on frequency at high angles of 
attack. Some period and time-to-damp computations, which were made to 
reveal the significance of the acceleration derivatives, indicated that 
inclusion of the measured derivatives in the equations of' motion length-
ened the period of the lateral oscillation by 10 percent for a typical 
delta-wing airplane and increased the time to damp to one-half amplitude 
by 50 percent.
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ThTRODUCTION 

The results of several experimental investigations (refs. 1 to 3) 
have demonstrated that large-magnitude lateral-stability derivatives may 
exist under oscillatory conditions for delta- aM sweptback-plan-form 
wings and that at high angles of attack these oscillatory derivatives 
may be much different from those measured under steady-flow conditions. 
The stability derivatives which have been measured by oscillation tests 
are those which determine the directional stability, 	 and 

and. those which determine the damping in yaw, 	 and	 These 

derivatives have been measured individually by oscillating the models 
with a sideslipping motion (ref. 1) or a yawing motion (ref. 2), and in 
combination by oscillating the models in yaw about their vertical axes 
(ref. 3). 

Because the sideslipping and yawing derivatives of certain configu-
rations are affected to a large degree by the frequency and amplitude of 
an oscillatory motion, it would seem likely that the phenomena which 
produce these results would affect the roll-stability derivatives in a 
like inenner. A preliminary investigation in this area is reported in 
reference 14 , for which an unswept-wing airplane model was oscillated in 
roll primarily at zero angle of attack. Certain of the higher angle-of-
attack data in reference Ii. gave an indication that differences do exist 
between the oscillatory and the steady-state rolling derivatives. 

In the present investigation, an airplane model with a 60 0 delta 
wing was oscillated in roll about its longitudinal stability axis for 
several frequencies and amplitudes of oscillation in order to measure 
the effects of oscillatory motion on the roll-stability derivatives 
of the model. For a basis of comparison, the model was also tested in 
steady rolling flow, the resulting data being regarded as zero frequency 

•data. The tests were made for the complete model, for the wing-fuselage 
combination, and for the wing alone at a Reynolds number of 1,600,000. 

SYMBOLS 

The data are referred to the stability system of axes (fig. i) and 
are presented in the form of coefficients of the forces and moments 
about a point which is the projection of the quarter-chord location of 
the wing mean aerodynamic chord on the plane of symmetry. The coeffi-
cients and. symbols used herein axe defined as follows: 
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b	 wing span, ft 

CD	 drag coefficint, Drag 
qS 

CL	 lift coefficient, Lift 
ciS 

C 1,	 rolling-moment coefficient, 

Ôc =	 l,s 
p

\2V) 

C1 = 
P(2

TMYs 
Cm	 pitching-moment coefficient,	 - 

qSc 

yawing-moment coefficient, 

C = n,w 

2V 

C	 n,w 

c	 chord, ft 

mean aerodynamic chord, ft 

f	 frequency, cps 

Ic	 U)b 
2V
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K	 radius of gyration about X-axis, nondimensionalized. with 
respect to b (see ref. 5) 

Kz	 radius of rration about Z-axis, nondimensionalized with 
respect to b (see ref. 5) 

Kxz	 product of inertia factor (see ref. 5) 

Mx5	 roiling moment in phase with velocity of oscillation, ft-lb 

M s	 rolling moment out of phase with velocity of oscillation, 
2	 ft-lb 

Mys	 pitching moment, ft-lb 

Mz51	 yawing moment in phase with velocity of oscillation, ft-lb 

Mz5 yawing moment out of phase with velocity of oscillation, 
2 ft-lb 

P period of oscillation, sec 

kx radius of gyration about X-axis, ft (see ref. 5) 

kz radius of gyration about Z-axis, ft (see ref. 5) 

kxz product of inertia factor (see ref. 5)

m	 mass of airplane, slugs 

v	 lateral component of velocity, ft/sec 

angle of yaw, radians 

1.1	 relative density factor, m/psb 

dØ 

dt 

dt2

dynamic pressure,	 pV2, lb/sq. ft 
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S	 wing area, sq ft 

t	 time, sec 

T112	 time for oscillatory motion to damp to half-amplitude, sec 

V	 free-stream velocity, ft/sec 

X, Y, Z	 system of stability axes (fig. 1) 

a.	 angle of attack, d.eg 

angle of attack of principal longitudinal axis of inertia, 
deg (see ref. 5) 

y	 angle of climb, deg (see ref. 5) 

p	 mass density of air, slugs/cu ft 

0	 angle of roll, deg or radians 

00	 amplitude of oscillation, deg or radians 

(A) = 2itf 

•	 The symbol w following the subscript of a derivative denotes the 
oscillatory derivative; for example, 	 is the oscillatory value 

of C1.

APPARATUS 

Oscillation Equipment 

The tests were conducted in the 6-foot-diameter rolling-flow test 
section of the Langley stability tunnel. A motor-driven flywheel shown 
in figure 2 and mounted externally on the tunnel test section was used 
to oscillate the models. A connecting rod pinned to an eccentric center 
on the flywheel passed through a hole in the tunnel wall and transmitted 
an essentially sinusoidal motion to the model support sting by means of 
a crank arm attached to the sting. • This equipment is shown in figures 2 
and 3. The roll axis of the sting was aimed at all times with the wind 
stream.

CONFIDENTIAL
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The apparatus was driven by a 1-horsepower direct-current motor 
through a geared speed reducer. The frequency of oscillation was varied 
by controlling the voltage supplied to the motor and the amplitude of 
qscillation was varied by adjusting the throw of the eccentric on the 
flywheel.

Model 

The model tested had a triagular wing with a 600 apex angle, an 
aspect ratio of 2.31, and. NACA 65A003 sections parallel to the plane of 
symmetry. The fuselage was a body of revolution which had a sharp nose 
and a truncated afterbod.y with the wing mounted at the midfuselage height 
The fuselage contained a two-component wire strain-gage balance to which 
the model was mounted at the quarter-chord point of the wing mean aero-
dynamic chord. The model was also equipped with the triangular-plan-
form vertical tail shown in figures Ii. and. 5. The entire model was con-
structed of balsa wood to minimize inertia moments during oscillation 
and was covered with a thin layer of fiberglass-reinforced plastic to 
provide strength. Additional geometric characteristics of the model are 
presented in table I.

Recording of Data 

The model was mounted to the support sting by means of a resistance-
type wire strain-gage balance which measured rolling and yawing moments. 
The strain-gage signals, during oscillation, were modified by a sine-
cosine resolver driven by the oscillating mechanism so that the measured 
signals of the strain gages were proportional to the in-phase and out-
of-phase components of the strain-gage moments. These signals were read 
visually on a highly damped direct-current galvanometer and the aerodynamic 
coefficients were obtained by multiplying the meter readings by the appro-
priate constants, one of which was the system calibration constant. This 
data recording system is described in detail in reference . 2. 

Steady Rolling-Flow Equipment 

In order to measure the steady rolling derivatives, the model was 
supported by the same strain-gage balance and support sting as were used 
for the oscillation tests with the angle of roll fixed at zero. The air 
flow over the model, however, was forced to roll by a rotor placed in 
the airstream ahead of the model. This is the standard rolling-flow 
test procedure employed in the Langley stability tunnel and is described 
in reference 6. For these tests, the resolver in the data recording 
equipment was bypassed and the total strain-gage output signals were 
read directly from the galvanometer. 
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TES9B 

Both the oscillation and the rolling-flow tests were made at a 
dynamic pressure of 2i-.9 pounds per square foot which corresponds to a 
free-stream velocity of 115 feet per second (under standard conditions), 
a Reynolds number of approximately 1,600,000 based on the wing mean 
aerodynamic chord, and a Mach number of 0.13. 

The oscillation tests were made at frequencies of oscillation of 
0. 5, 1, 2, and Ii- cycles per second, amplitudes of oscillation of ±5°, ±10°, 
and ±200, and angles of attack from 00 to 320. The oscillation frequencies 
correspond to a range of the reduced-frequency parameter from k = 0.035 to 
k = 0.263. For certain combinations of the highest frequencies and ampli-
tudes, the yawing moments due to the inertia of the model exceeded the 
maximum design moment of the strain-gage balance and, for this reason, 
tests for these conditions were not run. For all conditions of frequency, 
amplitude, and angle of attack both a wind-off and a wind-on run were made. 

In order to establish the magnitude of the damping of the wing due to 
its rotation in still air, some tests were made in which the wing was 
enclosed in a plywood box. The box, which was mounted to the sting below 
the model support, was forced to rotate with the sting so that the volume 
of air inunediately surrounding the wing was forced to oscillate with It. 
The still-air moments measured in this manner were found to be negligible 
and were not considered further. 

The steady rolling-flow tests were conducted for the same model con-
figuration and angles of attack as for the oscillation tests. The rotary 
helix angles of the air flow by the model during these tests corresponded 
to values of pb/2V of 0 . 059, 0.033, 0.010, -0.021, -0.039, and -0.065. 

REDUCTION OF DATA 

Subtracting the wind-off data from the wind-on data in order to 
eliminate the effects of model inertia on the derivatives and then multi-
plying the results by the strain-gage balance calibration factors gives 
the in-phase moments Mx51 and Mz51 in foot-pounds and the out-of-

phase moments Mx52 and Mz52 in foot-pounds. These moments were then 

reduced to coefficient derivative form by means of the following equations: 
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- ______	 M5 

1p,U) - q.SbkØ0	 - qSbkØ0 

Mx5 	 - M8 

Cl0) = qSbk2Ø0	 P,w - qSbk2Ø0 

where the reduced-frequency parameter ab/2V is represented by k. 

The steady rolling derivatives were determined by plotting the moments 
as functions of pb/2V and measuring the slopes of these curves. 

PRESENTATION OF RESULTS 

The static lift, drag, and pitching-moment coefficients for the wing, 
for the wing fuselage, and for the complete model are shown for reference 
in figure 6. In figure 7, the d.aznping in roll C 1	 measured during 

pU) 
oscillation in roll is shown for the three configurations tested as a 
function of the nominal angle of attack for four values of reduced frequency 
and three amplitudes of oscillation. The corresponding steady rolling-flow 
values of C 1 are also presented in figure 7. Figure 8 is a similar fig-

ure for the presentation of the oscillatory values of the yawing moment 
due to rolling velocity	 together with the steady rolling-flow 

derivative C. 

Figures 9 and 10 present, respectively, the rolling moment due to 
rolling acceleration C 1 .	 and the yawing moment due to rolling acceler-

p,O) 
ation	 In the steady rolling-flow case, the acceleration deriva-

tives are, of course, zero. 

The oscillatory rolling derivatives are cross-plotted directly as 
functions of reduced frequency in figures 11 to l i-i. for three. of the higher 
angles of attack. In these figures, the corresponding steady rolling-flow 
derivatives are shown as zero frequency values. 

CONFIDENTIAL



MACA BM L57L17	 CONFIDTIAL	 9 

DISCUSSION 

The Damping in Roll 

The oscillatory clamping in roll of the wing alone (fig. 7(a)) is 
shown to be largely dependent upon the frequency of oscillation for 
angles of attack higher than 16°. The values of C 2	 which become 

,U) 
most positive are those measured for the lowest frequency of oscillation. 
With higher frequencies, the curves become more nearly linear with angle 
of attack. The derivative remains negative for all angles of attack for 
only the two highest frequencies, but even for these frequencies a con-
siderable reduction in the damping (where positive damping is indicated 
by negative values of C2 ) takes place between the two extremes in 

p,O) 
angle of attack. A change in the amplitude of oscillation from 5° to 20° 
produced generally small effects on the damping-in-roll results. (See 
also fig. 11(a).) 

A notable difference exists between the oscillatory and the steady-
state damping at high angles of attack. The steady-flow results indicate 
an increase in the damping as the angle of attack becons large in con-
trast with the trends taken by the oscillation data. Similar differences 
between oscillatory and steady-state values of damping in yaw for a simi-
lar wing were observed in the investigation of reference 2. 

The addition of the fuselage (figs. 7(b) and 11(b)) and of the fuse-
lage and tail (figs. 7(c) and 11(c)) served to modify the large positive 
values of C 2	 which were measured for the wing alone at the highest 

p,a) 
angles of attack. The effects of frequency on the damping for these 
configurations are in the same direction as for the wing alone but are 
not as large. Certain effects of amplitude of oscillation appeared for 
the wing-fuselage and the complete model configurations in that the values 
of the damping derivative measured for the lowest frequencies become more 
negative and the variations generally become more nearly linear with angle 
of attack as the amplitude becomes larger. 

The Yawing Moment Due to Rolling Velocity 

The initial slopes of C 	 and	 at the low angles of attack 

for the wing (fig. 8(a)) and for the wing-fuselage configuration 
(fig. 8(b)) are small and positive. At angles of attack higher than 16°, 
the variations of the derivatives have trends in the negative direction 
in contrast with the steady-flow derivatives which become increasingly 
positive at the highest angles of attack. The most negative values of 
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C	 were measured for the lowest oscillation frequencies; as the flp,) 

frequency increased, the values became more positive and the curves more 
nearly linear with angle of attack. No particular effect of oscillation 
amplitude was evident for the wing-alone derivatives (fig. 12(a)); for 
the wing-fuselage combination, the higher amplitudes appear to make the 
lowest frequency data become more nearly positive and more linear with 
angle of attack (figs. 8 and 12(b)). 

The addition of the vertical tail (fig. 8(c)) resulted in a sub-




stantial negative slope of Cnp,w and	 with angle of attack at the 

low angles. The variation of C 	 diverged in the positive direction 

beginning at about a. = 20° whereas those of 	 remained relatively 

linear. The yawing-moment data for the complete model at the highest 
angle of attack includes a substantial amount of scatter because of the 
high degree of model buffeting which was present for this condition. The 
buffeting of the model was probably due to a combination of wing stall 
(see fig. 6) and an unsteady wake from the model support sting. 

The Rolling Moment Due to Rolling Acceleration 

A rolling moment which was out of phase with the rolling velocity 
was measured during the oscillation tests and was designated C 1 . . In 

p,U) 
general, this derivative has a small positive value up to an angle of 
attack of about 16° (fig. 9); thereafter, the derivative becomes more 
positive for the higher angles of attack particularly for the lowest 
frequencies of oscillation. An increase in frequency of oscillation 
decreases the magnitude of Cl	 throughout the angle-of-attack range, 

the largest frequency effects taking place in the high angle range. The 
variation of C 1	 with frequency shown for three angles of attack in 

p,U) 
figure 13 indicates that an increase in amplitude had. an effect on the 
derivative only at the lowest frequencies of oscillation. 

The Yawing Moment Due to Rolling Acceleration 

The derivative C . remained generally small for the wing alone 
p,cI) 

(fig. 10(a)) and the wing-fuselage (fig. 10(b)) at low angles of attack. 
At angles higher than about .a. = 16°, the derivative became increasingly 
negative with angle of attack for the low frequency of oscillation. At 
the higher frequencies for this angle-of-attack range, the effects of 
angle of attack were much smaller than those for the lowest frequency. The 

CONFIDENTIAL



NACA RN L57L17	 CONFIDENTIkL	 11 

addition of the vertical tail results in magnitudes of Cnw which are 

relatively large, particularly for the highest frequency of oscillation. 
(See fig. 10(c).) These large-magnitude derivatives, which are positive 
at low angles of attack, are modified considerably and tend toward 
becoming negative at high angles of attack. The variations of C 

with frequency, shown in figure 	 indicate that in the high' angle 
range the measured values of the derivative for all configurations 
became increasingly negative as the frequency was reduced. For the model 
with the vertical tail, however, the opposite'trend was shown at low 
angles of attack. Increasing the amplitude of oscillation also generally 
resulted in somewhat more positive values of the derivative. 

Significance of the	 Derivatives 

The existence of rolling and yawing moments due to rolling accelera-
tion having been established in the preceding results, it is now of immedi-
ate interest to question the significance of these derivatives. A step in 
this direction was taken in this investigation by computing the period and 
damping of the lateral oscillation for a typical delta-wing airplane. The 
same airplane, whose aerodynamic, dimensional, and mass characteristics 
are given in table II, was the subject o some similar period and damping 
computations carried out for the investigation of reference 1. The equa-
tions of motion including the moments due to rolling acceleration and the 
resulting coefficients of the characteristic stability equation are given 
in the appendix. The steady-state stability derivatives used for these 
calculations were taken from references 7 and 8 and are listed in table II. 
Representative measured values of the derivatives C-,. 	 and C .	 for 

an amplitude of ±100 were employed for several angles of attack from 
a = 20 to a = 211.0 . The procedure followed was to compute the reduced 
frequency k based on the periods of oscillation for the airplane when 
the	 derivatives were zero. Values of C 1	 and C .	 were picked 

p,U)	 flp,0) 

off the measured data curves similar to those of figures 13 and 111., 
respectively, for the proper value of the reduced frequency for each angle 
of attack. These values, which were used for the subsequent period and 
damping computations, are listed in table II. 

The results of the computations (fig. 15) indicate that inclusion of 
the measured C 1 .	 derivative alone in the equations of motion had a 

p,a) 
negligible effect on either the period of the lateral oscillation or the 
time to damp to one-half amplitude. Inclusion of the measured C. 

derivative, however, had a significant effect on the period'and damping 
in that the length of the period was increased by roughly 10 percent and 
the time to damp to one-half amplitude was lengthened by r6ughly 50 percent 
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over most of the angle-of-attack range. The inclusion of both derivatives 
simultaneously gave results which reflected the strong effect of C. 

p,U) 
The latter computation would indicate that the effects of the separate 
derivatives on the period and damping are additive. The relatively large 
effect of	 on the period and damping in contrast with the small 

effect of Cz	 is probably due to the relative magnitudes of these 

derivatives. A glance at table II will show that the complete model 
configuration gave measured values of C 	 which were very large in 

comparison with the measured values of C1. 
pU) 

CONCLUSIONS 

An airplane model with a 600 delta wing was oscillated in roll for 
a range of frequencies and amplitudes of oscillation to measure the 
effects of the oscillatory motions on the roll-stability derivatives of 
the model. The conclusions drawn from the results of this investigation 
can be stated as follows: 

1. For angles of attack lower than about 16°, the oscillatory damping 
in roll was generally in good agreement with the damping measured by means 
of steady rolling flow tests, and neither frequency nor amplitude of oscil-
lation had any important effect on the magnitude of the damping. At the 
higher angles of attack, however, the oscillatory damping departed radi-
cally from the steady-state damping, the largest departures taking place 
for the lowest frequencies of oscillation. Although the steady-state 
results indicated some increase in damping at high angles of attack, the 
oscillatory damping decreased and in some instances changed sign. 

2. The oscillation results exhibited trends for the yawing moment due 
to rolling that were similar to those for the damping in roll. At the 
high angles of attack the oscillatory derivative became more negative in 
contrast with the steady-state derivative which became more positive with 
increasing angle of attack. An increase in frequency reduced the dif-
ferences between the oscillatory and steady-state data by making the 
oscillatory derivative more nearly linear with angle of attack. 

3. Rolling and yawing moments in phase with the rolling acceleration 
were measured for the model and were also dependent on frequency at high 
angles of attack. The model with the vertical tail in particular showed 
relatively large values of the yawing moment due to roçLling acceleration. 

Il. . Some period and damping calculations, which were made to indicate 
the significance of the rolling acceleration derivatives, indicated that 
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inclusion of the measured derivatives in the equations of motion lengthened 
the period of the lateral oscillation by 10 percent for a typical delta-
wing airplane and increased the time to damp to one-half amplitude by 
50 percent. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., November 29, 1957. 
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APPENDIX 

STA3ILITY CALCULATIONS 

The stability roots were calculated from the lateral equations of 
motion: (For definition of symbols, see ref. 5.) 

Rolling moment: 

2	 - Xs d2Ø - Xs dØ	 d4i - Xs th - ____ = o 

X dt2	 3P dt2	 p dt - '
111XZ	 r dt	 v 

Yawing moment: 

- ZS d2Ø - Zs	 + in12	 - Zs V - zs = 

dt2	 P dt2	 p dt	 dt2	 r dt	 v 

Lateral force: 

-	 - (Lift)Ø +mV!L -	 - (Lift)(tan	 dv + m— - -V = 0 
)p dt	 dt	 r dt	 dt	 v 

These equations are the same as those of reference 5 except for the 

Xs	 Mz5 
addition of the	 and	 terms and a change in the sign of k. 

When reduced to nondimensional form, these equations become 

21.L (KX2D2Ø - KD4i) = C1DØ +
	 + C1 + tCzD2Ø 

2p.(Kz2D24 - K7D2Ø) = nr1)P + npDø + C 13 3 + CD2Ø 

2i(Df3 + Thjf) = Cyl3 + CyDØ + CL0 + Yr + ( CL tan 
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Frcun these equations, there follows the characteristic stability equation 

A1 + B1? + C1? 2 + D1) + E1= 0 

It can be shown that 

A1 = A -	 + Kc) 

B1 = B +	 + czc) - C(C 1 - 2KyCy)J 

= c ^ {Ci.[Cn(CY -
	

- cc] - C[CZ(CY -
	

- CyC]} 

= D 

E1 = E 

The coefficients A, B, C, D, and E are the standard coefficients 
of . the stability equation as given, for example, in reference 9. 
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TABLE I. - GEOMETRIC PROPERTIES OF MODEL 

Fuselage: 
Length, in.......................... 
Maximum diameter, d, in	 .................. 6.0 
Fineness ratio ........................9.0 
Body-size ratio, d/b ..................... 0.167 
Volume, cu in	 .......................990 
Side area, sq in....................... 272 

Wing: 
Aspect ratio ......................... 2.31 
Taper ratio	 ......................... 0 
Leading-edge sweep angle, deg ................. 6o 
Airfoil section .................... NACA 65AO03 
Area, sq in.	 ........................ 776.7 
Span, in........................... 36.5 
Mean aerodynamic chord, in................... 21.1 
Root chord, in........................ 31.6 

Vertical tail: 
Aspect ratio .......................... 2.18 
Taper ratio	 ..........................o 
Leading-edge sweep angle, deg 
Airfoil section .................... NACA 65-006 
Area, sq in.	 ........................ 66.o 
Span, in........................... 12.00 
Root chord, in........................ 11.00 
Mean aerodynamic chord, in ................... 7.35 
Tail length, in.	 ...................... 21.7 
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Figure 1.- System of stability axes. Arrows indicate positive forces, 

moments, angular displacements, and angular velocities. 
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Figure 10. - The effects of amplitude and freq .uency of oscillation on the 
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Figure 10.- Concluded. 
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Figure 11.- The damping in roll as a function of reduced frequency of 

oscillation for three high angles of attack. 
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Figure 11.- Continued. 
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Figure 12.- The yawing moment due to rolling velocity as a function of 

reduced frequency of oscillation for three high angles of attack. 
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Figure 12. - Concluded. 
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Figure 15.- The rolling moment due to rolling acceleration as a function 
of reduced frequency of oscillation for three high angles of attack. 

CONFIDENTIAL



CONFIDEI'TIAL	 NACA RM L57L17 

LV =16° 

C,.
(U

-I

-0--- 5 ---0--- /0 
--0-- 20 

30 

20 

lp	 /0 

0 

-/0

LV =240 

5() 

20 

/0 

0 

I P -, (I	 .04	 .08	 .12	 .16	 .20	 .24	 .28 

* 

(b) Wing and fuselage. 

Figure 13.- Continued. 
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Figure lii-. - The yawing mornert due to rolling acc'eleration as a function 
of reduced frequency of oscillation for tbree high angles of attack. 
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Figure 17.- Period and time to damp for a typical delta-wing airplane. 
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equations of motion for the computations. 
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