
RM L58B18 
00 .----------------------------------------------------, 
rl 

I,~ 
" ~ 
~, 

~ 
U 
~ 
~ 

\, 

RESEARCH MEMORAND UM; 

HEAT TRANSFER FOR MACH NUMBERS UP 

TO 2.2 AND PRESSURE DISTRIBUTIONS FOR MACH NUMBERS UP 

TO 4.7 FROM FLIGHT INVESTIGATIONS OF A FLAT-FACE-CONE 

AND A HEMISPHERE -CONE 

By Katherine C . Speegle , Leo T. Chauvin, 
and Jack C. Heberlig 

Langley Aeronautical Laboratory 
Langley Field , Va. 

NATIONAL ADVISORY COMMITTEE 
FOR AERONAUTI CS 

WASHINGTON 

May 8, 1958 
Declassified May 29, 1961 



1M 

I 

l 

NACA RM L58B18 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 
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HEAT TRANSFER FOR MACH NUMBERS UP 

TO 2 . 2 AND PRESSURE DISTRIBUTIONS FOR MACH NUMBERS UP 

TO 4.7 FROM FLIGHT INVESTIGATIONS OF A FLAT-FACE-CONE 

AND A HEMISPHERE-CONE 

By Katherine C. Speegle , Leo T. Chauvin, 
and Jack C. Heberlig 

SUMMARY 

Two blunt -nose models, a flat -face - cone and a hemisphere - cone, 
have been flight tested for Mach numbers up to 4.7. The flat face had 
a radius of 5 inches and the hemisphere had a radius of 6 .5 inches. 
The conical sections had 14 . 50 half -angles. Heating data are presented 
for Mach numbers up to 2 . 2 and pressure data are presented for Mach 
numbers up to 4.6 for the flat -face - cone and up to 4.7 for the hemisphere ­
cone. Measured stagnation heating rates were lower than theoretical 
stagnation heating rates for both configurations. The measured laminar 
heating rates on the flat face were lower than those predicted by theory 
whereas the measured and theoretical laminar heating rates on the hemi ­
sphere were in good agreement . On both models transition occurred just 
ahead of the corner or hemisphere - cone juncture at a Mach number of 2 . 
The transition Reynolds numbers based on momentum thickness were between 
320 and 400 on the flat face and between 840 and 1,140 on the hemisphere . 
The turbulent heating rates along the conical sides of the flat-face 
model were much lower than those for the conical sides of the hemisphere ­
nose model. 

Measured pressures at the corner and along the sides of the flat ­
face - cone were lower than those predicted by modified Newtonian theory . 
Measured pressures around the hemisphere - cone juncture were somewhat 
lower than those pr edicted by the Newtonian theory; however, the pres­
sures measured along the conical sides of the hemisphere-cone were in 
very good agreement with the modified Newtonian theory. 
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INTRODUCTION 

The aerodynamic -heating characteristics of blunt noses are of basic 
importance in the design of long -range ballistic missiles. The Langley 
Pilotless Aircraft Research Division is conducting investigations to 
determine the heating characteristics for various blunt noses. (See 
refs. 1, 2, and 3.) Presented herein are the results of flight tests 
made at the L~ngley Pilotless Aircraft Research Station at Wallops 
Island, Va . , for two noses : a truncated cone having a half -angle of 
14 . 50 and nose -to -base radius ratio of about 0 . 6 where the base diameter 
is 17 .6 inches, and a hemisphere - cone (half -angle of 14 . 50 ) having a 
nose -to -base radius ratio of about 0 . 7 where the base diameter is also 
17 . 6 inches . Basic flight data and heat -transfer data for the hemisphere ­
cone have already been published for Mach numbers from 2 . 32 to 3 .14 in 
reference 4 . The lower Mach number data not given in reference 4 were 
reduced and are presented herein in order that a more realistic compari ­
son could be made with the dat a of the truncated cone . 

Heat -transfer data for both models are presented for Mach numbers 
up to 2 . 2 and free - stream Reynolds number based on a length of 1 foot 

up to 14 . 5 x 106 whereas the pressure data for both models are presented 
for Mach numbers up to appr oximately 4.7 . 

SYMBOLS 

pressure coefficient, 

local skin- friction coefficient 

specific heat, Btu/lb -~ 

h altitude , ft 

M Mach number 

Stanton number 

pressure stations (see figs . 2(a) and 3(a)) 

p pressure, lb/sq in . abs 
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q heating rate, Btu/sq ft - sec 

R Reynolds number 

r nose radius, in . 

Tl ,T2, . .. T18 thermocouple stations (see figs. 2(a) and 3(a)) 

T temperature, ~ 

t time, sec 

x surface distance from stagnation point, in. 

p denSity of air, slugs/cu ft 

denSity of wall material, lb/cu ft 

T thickness, ft 

meridian angle, deg 

Subscripts: 

outside boundary layer 

t stagnation 

w pertaining to wall 

00 free stream 

1 based on a length of 1 foot 

2 behind normal shock 

MODELS 

Model A, Flat-Face -Cone 

The general configuration of the flat-face-cone model (model A) is 
shown in figure 1 on the launcher. This test nose was mounted on the 

~ forward end of a standard Nike booster rocket motor, designated JATO, 
2.5-DS-59000, X2l6A2, which is stabilized by four fins equally spaced 
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about the rea rward end of the rocket motor. The first - stage booster 

was a standard Honest J ohn rocket motor, designated JATO, 4-DS- 105,000,M6 . 

The length of the nose was 14 . 25 inches. The flat face had a radius 

of 5 inches and the conical section had a base radius of 8 . 8 inches . The 

flat -face - cone juncture was rounded to a radius of 0 . 25 inch. A sketch 

of the nose section is shown in figure 2(a). The nose was constructed 

from I nconel approximately 0 . 031 inch thick . The exterior surface of 

the flat face was highly polished to a finish of 2 microinches (as meas ­

ured by an interferometer) while the sides of the model were polished to 

a finish of 5 microinches . A closeup photograph of the nose is shown in 

figure 2(b) . The measured thi cknesses of the skin after polishing are 

presented in table I. For structural purpose the nose skin was backed 

with a layer of 3/8- inch balsa, mounted on a 3/8- inch magnesium structure 

which also served to shield the telemeter from thermoradiation . 

Model B, Hemisphere -Cone 

The booster and sustainer system of the hemisphere - cone model 

(model B) was identical to model A. I n general, the construction details 

were the same as model A, with model B having a length of 15 . 72 inches . 

The hemispher e had a r adius of 6 . 5 inches . The hemisphere - cone juncture 

occurred at a point 760 along the hemisphere from the stagnation point. 

A sketch of the nose section is presented in figure 3(a) and a photograph 

showing the high degree of poli sh is presented in figure 3(b) . The hemi ­

spherical por tion of the nose was polished to a roughness of 2 to 3 micro­

inches and the conical portion to a roughness of 3 to 5 microinches as 

measured with an interferometer . Mor e detailed ·construction information 

is presented in reference 4 . Measured skin thicknesses after polishing 

are given in table II. 

I NSTRUMENTATION 

Model A 

An NACA 10- channel telemet er was carried in the forward portion of 

the model and transmitted wa l l temperatures, pressures, and accelerations . 

There were 18 temperature pickups . The 12 pickups on the conical section 

were commutated every 0 . 2 second and the 6 pickups on the face were com­

mutated every 0 .1 second . No . 30 chromel -alumel thermocouples were 

welded in rays to the inner surface of the skin at the stations shown in 

figure 2(a). Twelve thermocouples were located in one ray beginning at 

the stagnation point and cont inuing toward the base of the nose . Two 

rays containing three thermocouples each were located 750 and 2550 from 

the first r ay . 



NACA RM L58B18 

In or der to reduce heat losses to the balsa backing, cutouts were 

made in the balsa in the region of each thermocouple on the flat face 

by drilling 1 / 2- inch-diameter holes and by making a groove 1 . 5 inches 

wide by 1 / 8 inch deep along each ray of thermocouples on the conical 

section . 

The six pressure orifices were made by welding stainless - steel 

tubing (outer diameter, 0 .09 inch; inner diameter, 0.06 inch) to the 

skin and were located along a ray 1800 from the 12-thermocouple ray. 

The pressure cells read absolute pressures . 

Model B 

The instr umentation details for model B were similar to model A. 

5 

There were 12 chromel-alumel thermocouples located as shown in figure 3(a) . 

Temperatures were sampled for al l thermocouples at about every 0.1 second. 

Six pressures were measured at locations shown in figure 3(a) . The model 

also conta ined thrust and drag accelerometers . 

General 

Model velocities were obtained from CW Doppler radar. Atmospheric 

conditions were measured by means of radiosondes launched near the time 

of flight and tracked by a Rawin set AN/GMD - lA. Trajectory data were 

obtained by using an NACA modified SCR- 584 position radar. 

TESTS 

The models were launched at an elevation angle of 550 • The Honest 

John booster accelerated the models to a Mach number of 2 . 2. Model A 

coasted for 0 . 7 second and was then accelerated to a Mach number of 4 . 6 

by the Nike . Model B had a coast period of 1.7 seconds before the Nike 

f i red and accelerated the model to a Mach number of 4.7 . Time histories 

of free - stream Reynolds number based on a length of 1 foot, free-stream 

Mach number, and altitude for each model are shown in figure 4. Atmos ­

pheriC conditions as obtained from the radiosonde measurements are pre­

sented in figure 5. 
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DKrA REDUCTION 

Temperature measurements for both models were reduced to heating 
rates by using the following relation 

q dT P T c 
dt w w p)w 

The skin thickness TW was measured (tables I and II)) the denSity 
of Inconel Pw was known) and the specific heat of I nconel ~)w as 

a function of temperature was obtained from reference 5. The rate of 

temperature change with time dT was found by mechanically different i -
dt 

ating the measured temperature -time curve. 

Heating -Rate Theories 

The theoretical heating rates for the stagnation point of both 
models were evaluated by the theory of Sibulkin (ref . 6) . The stagnation­
point theory was modified by us ing the measured pressure distribution at 
a Mach number of 2 as presented in reference 7 for the flat face . For 
the hemisphere) Sibulkin theory was used along with the velocity distri ­
bution of Roshotko and Cohen (ref . 8). 

The theory for the laminar heat -transfer distribution along the 
hemisphere was taken from reference 9. The theory for the laminar heat ­
transfer distribution across the flat face was determined by the theory 
of Stine and Wanlass (ref . 10) in conjunction with the pressure distri ­
tion from reference 7 . This theory is presented for only 70 percent of 
the flat face since the evaluat i on of the pressure -gradient parameter 
for this theory becomes inaccurate as the corner of the flat face is 
approached . Lees ' blunt -nose theory (ref. 9) was used for the flat face 
also . The measured pressure distribution across the face as shown in 
reference 7 and the measured pr essures along the 0 . 25- inch radius of the 
corner as presented in this report were faired and used to get the veloc ­
ity distribution for this specific blunt -nose shape . 

The theory presented for the sides of both models is Van Driest's 
conical theory (ref . 11) with the assumption that the length used in the 
Reynolds number is the surface length from the stagnation point and that 
NSt ::: 0 . 5cf • 
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Local Conditions 

The local conditions for model A were calculated by using the 

experimental flat - face pressure distribution for Moo = 2 of reference 7. 

The six measured pressures were used to calculate local conditions from 

the flat - face - cone juncture back along the side of the nose . The most 

rearward pressure measurement was assumed constant for the remaining 

conical section. 

The local conditions for model B were calculated for the hemisphere 

by using modified Newtonian theory (ref . 12). The pressures over the 

conical portion of the nose were measured and used for obtaining local 

conditions . 

RESULTS AND DISCUSSION 

Pressure Measurements 

Model A. - Pressures were measured near the corner and on the sides 

of model A at the locations shown in figure 2(a). The ratios of the 

measured local pressure to the total pressure behind the normal shock 

are shown for several Mach numbers in figure 6(a) along with the measured 

pressure ratios for the flat faces of references 7 and 13. For the flat­

face portion of the nose the theoretical pressure distribution of Maccoll 

and Codd for Mach number of 1 . 5 (ref . 14) is presented. The data obtained 

from the measurements on the two flat faces are in good agreement with 

the Maccoll and Codd theory and substantiate its use later in this report 

to obtain heat-transfer theory on the flat face. Results obtained with 

the use of the modified Newtonian theory for Mach numbers of 1.5 and 4.55 

(ref . 12) along the conical side of the nose are also shown. The meas­

urements on the O. 25- inch radius of the flat - face cone are much lower 

than theory and are possibly due to separation or overexpansion. After 

the corner the pressures only tend to approach those predicted by the 

Newtonian theory for a blunt -nose cone for the lower Mach numbers but 

reach those predicted by the theory for the highest reported Mach number) 

which is 4.55. This is a normal trend since overexpansion decreases with 

incr easing Mach number . 

Figure 6(b) also shows the measured pressures in the form of pres­

sure coefficients along with the measurements of reference 13 and the 

theory of reference 12 (Newtonian blunt -nose theory) . The coefficients 

show a rather large Mach number effect and possibly a Reynolds number 

effect around the corner . Again it may be noted that the overexpansion 

is larger for the lower Mach numbers . The experimental data only tend 

to approach Newtonian theory) with the lea st - expanded higher Mach number 
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data along the conical sides showing the best agreement - the lower the 
Mach number) the progressively poorer the agreement. 

Model B.- Pressures were also measured on model B for station loca­
tions on the hemisphere and on the conical sides as shown in figure 3(a) . 
The ratios of the measured local pressure to the total pressure behind 
the normal shock are given for several Mach numbers in figure 7(a) along 
with Newtonian theory for the entire blunt shape . The data are in good 
agreement with theory except in the region around the hemispherical-cone 
juncture where the pressures are reduced probably from overexpansion. 
The data are in very good agreement with theory on the conical sides. 

The measured pressures are presented for model B as pressure coef­
ficients in figure 7(b) . The good agreement with Newtonian theory is 
again noted except in the vicinity of the hemisphere-cone juncture. 
The lower Mach number data show a strong overexpansion with the expan­
sion decreasing with increasing Mach number . For a Mach number of 4.7) 
the expansion is barely detected . The Reynolds number along with Mach 
number may also have some effect . 

General. - The measured pressures on both model A and model B indi ­
cate an overexpansion near the junctures of the faces and sides of the 
noses . The expansion is much greater for the flat - face - cone with the 
pressures remaining lower than those obtained by using the Newtonian 
theory along the conical sides. The pressures along the conical sides 
of the hemisphere - cone model are in very good agreement after the slight 
overexpansion at the juncture . 

Heat Transfer 

Model A.- The faired temperature -time curve for each measuring 
station is shown for model A in figure 8. Temperature channel teleme­
tering failed at sustainer firing; therefore) temperatures are presented 
for only 0 to 5 . 6 seconds of the flight. The temperature distributions 
across the face and along the side of the nose are shown for several 
times and Mach numbers in figure 9. Transition is indicated by the 
sudden rise in temperature between the 70- and 95 -percent flat -face 
stations . The temperatures in the region around the corner stay low 
for the entire measuring period with the station just after the corner 
x/r = 1 . 2 having a maximum temperature rise of about 300 ) less than 
one - half the laminar temperature rise of the face. 

The measured heating rates are presented for the 18 temperature 
stations as a variation with time in figure 10. The stagnation point 
heating rates predicted by the Sibulkin theory) modified for a flat 
face) are shown in figure 10(a) along with the measured heating rate . 



~M NACA RM L58B18 9 

At the point of maximum measured heating rate the measured rate is only 
85 percent of the predicted rate . For earlier flight times, the measured 
rate is less than 85 percent of theory . However, data are less reliable 
at these earlier times because of the low rates being measured. Previous 
tests (ref . 15) on a blunt -nose model have also shown rates of around 
85 percent of that predicted by theory . Since the reference model was 
not backed with balsa, it is felt that this disagreement with theory is 
probably not an indication of heat loss to the backing material. Heating 
rates for three points around the conical section of the nose - all the 
same distance from the stagnation point - are shown in the top plot of 
figure lO(d) for comparison. The heating rates for station 18 are as 
much as 20 percent lower than those for station 12 but both are still 
of a turbulent level as will be noted later . 

Figure 11 shows the ratio of the measured heating rate across the 
flat face to the theoretical stagnation heating rate for several Mach 
numbers, along with the theoretical laminar distributions of Stine and 
Wanlass and of Lees, based on the pressure data of reference 7. The 
measurements fall far below theory for all Mach numbers up t o the 
50-percent station . Transition apparently is starting between the 70-
and 95 -percent stations. Even though the measurements on the corner 
generally fall lower than the laminar measurements on the flat face, 
they are higher than laminar theory and indicate turbulence . 

The r atio of measured heating rate on ~he flat face to the measured 
stagnation heating rate is shown in figure 12 . The theories of Stine 
and Wanlass and of Lees are also shown . The percentage variation of the 
heating rate across the face agrees well with the laminar theory until 
transition begins between the 70 -percent and 95 -percent stations. The 
95 -percent - station measurements are somewhat higher than theory and 
indicate transition . 

Distributions of the heating rates for the entire flat - face-cone 
nose are shown in figure 13 for four different flight times j also shown 
are the distributions of local Reynolds number, local Mach number, and 
ratio of wall temperature to local static temperature . The flat - face 
portion of the data is presented again in this figure only to show the 
comparison of heating rates on the sides with those on the flat face. 
The expansion occurr ing at the flat -face - cone juncture results in heating 
rates of a laminar level after transitional flow existed at the last 
station, RI = 4 . 5 X 106 on the flat face . The data indicate that the 

heating r emains at the laminar level for approximately 1 inch after the 
corner. The measured heating rates in the region around the corner for 
the test Mach numbers between 1 . 5 and 2 . 2 are in good agreement with the 
Lees blunt - nose theory extended past the corner . The data are also 
approximatel y on the same level as those predicted by the Van Driest 
conical l ami nar theor y . I n the absence of a simpl e method for predicting 
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heating in the low-pressure r egion at the corner, the Van Driest theory 
appears to be adequate . The measured turbulent heating rates along the 
conical surface of the nose agree well with the rates predicted by the 
Van Driest conical turbulent t heory by assuming the pressures measured 
for temperature station 10 exist along the r ear portion of the cone. 
The r esults predicted by the Van Driest conical turbulent theory is also 
presented for the case in which the modified Newtonian pressure distri ­
bution is assumed . The measured heating rate is shown to be lower than 
that which might be e stimated by using this theoretical pressure 
di stribution . 

Model B.- Faired curves for skin - temperature measurements for the 
early part of the flight for model B are pre sented in figure 14 as a 
f unction of time . Cross plot s of the temperature are presented in 
figure 15 as a function of x/r for several times and Mach numbers . 
At 4 . 7 seconds and later, t r ansition is indicated for station 9 
(x/r = 1 . 33) , the tangent point of the hemisphere - cone, by the sudden 
rise in temperature . 

The measured heating rates are given in figure 16 as a function of 
time for all temperature measuring stations . The maximum measured 
stagnation heating rate is 87 . 5 percent of the hemispherical stagnation­
point heating rate as given by Sibulkin . 

The measured heating rate s for the hemisphere are given in figure 17 
as a ratio of measured heating rate to theoretical heat i ng rate at the 
stagnation point (ref . 6) a s a function of x/r for various Mach numbers . 
The figure shows that transition begins between station 7 (x/r = 0.78) 
and station B (x/r = 1 . 05) for Moo = 2 . 0 and 2 . 2 . The Reynolds number 
based on momentum t hickness, as computed from reference 16 , at station B 
i s approximately 1,150 . Exper iment and theory are in rather good agr ee ­
ment for the forward portion of the hemi sphere . 

Experimental heating rates around the hemisphere as a percent of 
experimental stagnation heating rates are shown in figure l B. The per ­
centage variat ion is again in very good agreement with theory, and transi ­
t ion is again shown to occur between station 7 and station B for 
Moo = 2 . 0 and 2 . 2 . 

Distributions of the heating rates for the entire nose section of 
the hemisphere - cone are shown in figure 19 for several Mach numbers; 
also shown are the distributions of local Reynolds number, local Mach 
number, and. ratio of wall temperature to local static temperature. For 
Moo = 1 . 5, transit i on possibly occurs between x/r = 1 . 64 and 2 .10 

(Rl between B.5 and 11 . 5 x 106) . This is between 2 and 5 inches behind 

the hemisphere - cone juncture and is shown in figure 19(a). This indication 

,. 
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of transition may be due to a stray point in the data inasmuch as the 
last station on the cone (x/r = 2 . 82) appears to be laminar. Fig­
ure 19(b) shows transition at the most rearward station on the cone 

(Rl = 17 · 2 X 106) and this station is 9.72 inches from the point of 

tangency for the hemisphere - cone. 

11 

As has been stated previously, transition occurs on the hemisphere 

for x/r between 0 .78 and 1.05 (Rl between 6 .0 and 6.5 x 106 ) for 
Moo = 2.0 and 2 . 2 as shown in figures 19(c) and 19(d). For Moo = 2.0, 

the heating rate does not reach a fully turbulent level until x/r = 2.82 . 
The heating rate reaches the turbulent level for Moo = 2.2 at 
x/r = l . 33, which is the hemisphere - cone tangent point. Results obtained 
with the Van Driest conical laminar and turbulent theories by using meas­
ured pressure distributions give accurate predictions for the heating 
rates along the conical portion of the hemisphere-cone. Modified 
Newtonian pressure distributions are in excellent agreement with the 
measured pressures in predicting heating rates on the conical sides. 

General. - The ratios of heating rate to hemisphere stagnation theory 
heating rate are presented in figure 20 for both flat-face-cone and the 
hemisphere - cone noses at Moo = 2.2. Transition occurred for both models 
at x/r ~ 0 . 9. The Reynolds number of transition based on momentum 
thickness on the flat face was between 320 and 400. For the hemisphere 
it was between 840 and 1,140 . The laminar heating rate before transition 
on the flat face was 40 to 50 percent lower than the hemisphere heating 
rate. However, the area of laminar heating on the flat face is between 
0 . 29 and 0 . 40 square foot and on the hemisphere between 0.46 and 0.62 
square foot, the area of laminar heating on the flat face being only 
60 to 80 percent of the area on the hemisphere. The maximum heating 
rate along the conical sides of the hemisphere-cone was about 100 percent 
greater than the heating rate on the conical sides of the flat-face-cone. 

CONCLUDING REMARKS 

Flight tests have been made on two blunt-nose shapes, one a flat 
face and the other a hemisphere, both having 14.50 half-angle conical 
sides. Boundary - layer transition occurred on the flat face just before 
the corner for Mach numbers of 1 . 5 and 2.2. Transition occurred on the 
conical sides of the hemisphere model for Mach numbers from 1.5 to 1.8 
and on the hemisphere just before the hemisphere - cone juncture for Mach 
numbers from 2.0 to 2 . 2. The laminar heating rate on the flat face was 
approximately 40 to 50 percent lower than on the hemisphere . However, 
the area of laminar heating on the flat face is between 0.29 and 0.40 



12 NACA RM L58BlB 

square foot and on the hemisphere between 0.46 and 0.62 square foot) 
the area of laminar heating on the flat face being only 60 to Bo percent 
of the area on the hemisphere. The maximum turbulent heating rate along 
the conical sides of the hemisphere-cone was about 100 percent greater 
than the maximum turbulent heating rate on the conical sides of the 
flat -face -cone . 

The measured pressures at the corner and along the sides of the 
flat-face - cone are lower than those predicted by modified Newtonian 
theory. Measured pressures around the hemisphere-cone juncture are 
also somewhat lower than those predicted by the Newtonian theory; how­
ever) the measured pressures along the conical sides of the hemisphere­
cone model are in very good agreement with modified Newtonian theory. 

Langley Aeronautical Laboratory) 
National Advisory Committee for Aeronautics) 

Langley Field) Va.) February 4) 195B. 
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TABLE I 

STATION LOCATION AND SKIN THICKNESS 

FOR MODEL A 

Station 
xjr 

Skin thickness, 
( see fig . 2(a )) in . 

Tl 0 0 .029 

T2 .3 . 027 

T3 · 5 .028 

T4 ·7 .030 

T5 .95 .025 
T6 . 97 . 022 

T7 1.10 . 021 

T8 1. 20 . 020 

T9 1.50 .023 
TlO 2 .00 . 026 

Tll 2 ·70 . 025 

T12 3 .60 . 027 

T13 1. 60 . 027 

T14 2 . 40 . 027 

T15 3 . 60 . 028 

T16 1. 60 . 024 

T17 2 . 40 .026 

T18 3 . 60 . 028 

Pl 0 . 95 

P2 . 97 
P3 1.10 

P4 1. 20 

P5 1. 50 
P6 2 . 00 
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TABLE II 

STATION LOCATI ON AND SKIN THI CKNESS 

FOR MODEL B 

Station x/r Skin thickness, 
( see fig . 3(a) ) in . 

Tl 0 0 .024 
T2 .17 . 025 
T3 · 30 . 026 

T4 . 42 . 025 

T5 . 54 . 025 
T6 .66 .023 

T7 . 78 . 024 

T8 1. 05 . 027 

T9 1. 33 . 028 
T10 1. 64 . 031 

Tll 2 .10 . 030 

T12 2 . 82 . 030 

Pl 0 . 96 

P2 1. 13 

P3 1. 33 
P4 1. 50 
P5 1. 67 
P6 2 . 74 
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L-57-3250 
Figure 1.- Photograph of the flat - face configuration, model A, on the 

launcher. 
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(b) Photograph of the nose. L-57-3252 

Figure 2.- Concluded. 
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