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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

THEORETICAL ANATYSIS OF THE INTERFERENCE EFFECTS OF
SEVERAL: SUPERSONIC-TUNNEL WALLS CAPABLE OF
ABSORBING THE SEOCK CAUSED BY
THE NOSE OF A MODEL

By Clarence W. Matthews
SUMMARY

A theoreticel snalysis was made of the supersonic flow ebout two-
dimensionel and three-dimensional axislly symmetric models restricted
by theoreticsl walls cepeble of removing the nose shock. Wells which
obeyed & nonreflecting condition were found to be not necessarily non-
interfering; severe interference might occur if the wazll did not tie
the flow to & free-field or f{ree-streem condition. The noninterfering
condition was found to be more stringent then the nonreflecting condition
and also was found to be practically unattainable in any tumnel. A rela-
tion between the pressure difierence across the wall and the flow through
the wall was used to determine the effects of porous walls. Even though
the porous walls removed the effects of the initial shock, they generally
produced other rather severe interference effects. A comparison of some
theoretical results of this paper with experimental results of a similar
study suggested that the thick boundary layer which results from inflow
through the wall has a very strong influence on the effective porosity
of the tunnel.

INTRODUCTION

Wind-tunnel interference &t Mach nurbers only & little greater than
ity mey be both severe and difficult ©to correct. Such interference is
rost evident as a reflection of the bow wave striking the test model.
The reflected disturbance may be observed by the schlieren method or by
measurements of the pressure wave at the surfsce of the model. Other
types of interference not so easily observed are not, however, precluded.
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With the minimization or elimination of the subsonic blocksge inter-
ference by means of partly open and partly closed walls (refs. 1 and 2),
the ides occurred of trying to solve the interference problem in ihe
supersonic part of ths transonic Mach number range. The first stiempts
were directed, not without some success (refs. 3 and L), towerd preven-
tion of the bow-wave reflection responsiple for the most evident inter-
ference effect. Indeed, it was sometimes supposed that a "nonreflecting"
wall, or & wall that would not reflect the bow wave, would eliminate the
interference. More careful consideration indicated the possipility of
other types of interference due not to reflection of disturbances from
the mocel, but to a failure of the bounded wind-tunmel stream to repre-
sent the constraints imposed by infinite flow to which the wind-tunnel
results must be applied.

Some effects of the boundary layer on the operation of "shock
absorpving" walls were very soon apparent (refs. 3, 5, 6, 7, and 8), and
the general corplexity of the problem had to be faced when an attempt
was made to design a practical wind tunnel with minimunm interference in
the supersonic range (see ref. 5).

The present rerport is concerned with the general nature of the
supersonic intertference. These problems are investigated by comparing
flow fields about a mocel enclosed between appropriate walls with the
infinitely extended flow sbout the samme model. The calculations were
mede by means of the characteristics method. (See ref. 9.) This method
of investigation is for theoreticel purposes preferable to wind-tummel
testing irn that it permits more freedom in choice of wzll boundary con-
ditions ard eliminates the obscuring effect of the boundary layer. A
quelitative estiwation of the effects of the boundary layer is made Dby
comparing tne resuits of this study with the results of & similar experi-
mental study presented in references 5, 6, and 8.

SYMBOLS
CD,t drag coefficlent of model in tunnel
CD,ff érag coefficient of model in free Tield
Cp pressure coeflicient
D pipe or nole diameter
Py total pressure
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Subscripts:
a,b,c

h

defined in equation (6)

porosity factor, 1/k1
porosity factor to remove shock

number of tubes per unit wall area
Mach number

volume rate of discharge

thickness of wall

velocity

coordinate axes

ratic of open wall aree to total wall area
viscosity of air

flow angle

density

locetion of points in characteristic system
properties of flow through a hole in the wall
local

reference

immediately downstream of the nose shock

x component at point (x,y)
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0,1,2, . . . 1 swrmation indices

o free-strean
THEORY OF WALLS CAPABLE OF ABSORBING BOW SHOCKS

Supersonic Wind-Tunnel Boundaries

The use of the characteristic system to calculate the flow field
about & model when the flow field is restrained by & wall requires only
that a relation be given between the local velocity V and the flow
angle 9 at the wall and that the location of the well be given. From
& theoreticzl viewpoint, both conditions can be quite general and need
not represent any opractical wall. With this viewpoint in mind, it is
possible to design & wall which will fulfill some particular condition
such as the absorption of a shock weve, the nonreflection of all dis-
turbances, the simulation of an ideelized porous or perforated wall, or
any other property the designer chooses.

The actual mechanics cf the computation of a flow field, once the
boundaery function of V and © is known, involves the simultaneous
solution of the ecquation locating the characteristic line which inter-
sects the wall with the equetion locating the tunnel wall, and a similar
simultaneous solution of the function giving V and 6 (see ref. 9)
along the characteristic line with the wall boundary function of V
and 0.

Conditions for Removal of a Nose Shock

In order to reduce to zero the disturbance set up at the intersec-
tion of the nose shock and tunnel wall, it is necessary that the veloclty
and flow directions irmedisately following the shock be exactly the same
as found in the free field, which is defined in this repcrt to be the
flow field which exists when the model is immersed in an infinite field.
If this condition is not met, then either an expansion wave or a shock
will originate at the intersection of the nose shock and tunnel wall.
The intensity of this disturbance is determined by the deviation of the
actual condition from the free-field condition. Thus, if the wall is
to eliminate the reflection of the shock, it 1s necessary that the
F(V,9) which represents the wall be exactly satisfied by the values
of V., and 85 Jjust downstream of the shock. Such a well can be said

to be nonreflecting in that 1t does not send a disturbance from the
intersection of the nose shock end tunnel wall pack to the model.
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Nonreflecting Walls

A nonreflecting wall is sometimes loosely defined as & wall that
will not show any disturbance in the field arising from the disturbances
due to the model. This definition does not yield a unigue mathematical
relation which can be used in conjunction with the characteristic equa-
tions to calculate flow fields.

A definition of a "nonreflecting" wall can be ascertained from
examination of the obvious two-dimensional nonreflecting field in which
no disturbances are returned to the flow field from the wall. (See
fig. 1.) The effects of this wall (or of any other wall) on the flow
field can be simulated by replacing the wall with an exterior hypothet-
icel flow field. In the two-dimensional case previously mentioned, the
effect of the nonreflecting wall is represented by a hypothetical exte-
rior ©low field behind a planar shock. The planar shock must be an
extension of the bow shock beyond the wall and must have properties
identical to those of the bow shock at the wall. An example of &a
reflecting wall is the closed-tumnnel case, which may be simulated by
restraining the interior flow field with a field of infinite velocity
and zero flow angle.

Both these examples show severel interesting features of non-
reflecting walls. It is observed that for the nonreflecting case the
disturbances from the model are lost to infinity along the extended
lower characteristic lines and hence are not returned to the model
(fig. 1), and thet no discontinuity in V or in 6 appears st the
wall location. On the other hand, in the reflecting case, the disturb-
ances are returned to the stream and discontinuities in V and 6
exist across the wall. Thus, it sppears reasonable to assume that a
wall is nonreflecting if no discontinuities in either V or 8 occur
along the lower family of characteristics in the hypothetical flow field
at the position of the wall.

This definition does not result in a single unique expression for
& nonreflecting wall because the condition of continuity of V and 6
at the wall does not determine the derivatives of V and & at the
wall. Thus the flow field cutside the hypothetical wall is not unique,
ané as a result meny nonreilecting walls exist mathematically. The
existence of meny nonreflecting walls indicetes a strong possibllity
that some of these wealls can crezte severe disturbances, and so the
conclusion must be drawn that nonreflecting walls are not necessarily
noninterfering walls.

The three-dimensional nonreflecting wall, like the two-dimensional

one, may be simulated by an infinite number of hypothetical exterior
fields. In order to study and compare the megnitudes of the interference
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effects of various nonreflecting walls, three nonreflecting three-
dimensional walls were set up for calculation. In the first case a
conical-shock Tlow field was used to simulate the wall, just as the
rlanar shock was used in the two-dimensional example. The second case,
called a constant V,0 field, was based on the assumption that the
velocity and flow angles were held constant along esch characteristic
line to the first point of the computed network outside the tunnel.
Continuity of V and © 1s assured by deiinition so that this wall is
nonreflecting. In the third case V and 06 and the first derivatives
of V and © ealong the characteristic line were assumed to be contin-
uous at the wall. his wall elso sstisfies the nonreflective condition.

All these walls are matherstical concepts developed to show that a
nonreflecting wall is not nescessarily a noninterfering wall and that by
actusl demonstration nonreflecting walls can cause serious interference.
Since these walls are watlhematical and cannot be experimentally set up
without prior knowledge of the free fielé, it becomes necessary to con-
sider wsll boundary conditions which do not generally obey the nonreflec-
tive definitior but do apvroximate experimental walls that are capable
of absorbing the initial sghock even though they may reflect other
disturbances.

Porous ané Perforated Wells

The pcrous wall, for which the flow through the wall is assumed to
be proporticnal to the vressure difference across the wall, is non-
reflecting at certain points where the free-stream velocity, flow angle,
end vorosity obey a specific relationship. An extension of the porous
wall which is also nonreflecting at certain points is an idealized perfo-
rated wall, for which the mass flow through the wall is assumed to be
proportional to the square root of tre pressure difference across the
wall. In either case, the voints of nonreflection may be chosen to
eliminate the serious refiections, such as those due to the initial
shock.

It might be supposed that by elimination of the reflection of the
primary shock, the remaining part of the interference could also be
reduced to such an extent that the walls would be practically noninter-
fering. The results of experiments given in references 5 and 6 have
shown, however, that shock-gbsorbing porous walls will reflect disturb-
ances other than the bow shock and will, in general, produce interference.
In order tc study theoretically the nature of the interference of such
walls, it is necessary to express the wall boundery conditions as func-
tions of wvelocity and flow angle.
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The funetion of V and © which expresses the influence of the
porous wall on the stream is derived in the following memmer. First,
in order to obtain the ratioc between the pressure across the wall and
the flow through the wall, it is necessary to know the pressure at the
wall in terms of the veloecity. If V4 is the x-component of the local
velocity at & point in the flow field and V_, 1s the reference, or free-
stream, velocity, the linearized pressure coefficient may be expressed by

If V3 1is the total local velocity at the point x, then Vy =V, cos 8;.
On the assumption that 6; is smell, V, =7V; and thus the pressure
coefricient at the wall may be approximated with

Vg = V
Cp=2-2__1 (2)
Ve

The pressure outside the wall for the porous or perforated cese is
assured to be equal to free-stream pressure, and so the difference in
pressure coefficient across the wall is equal to the pressure coefficient
as given by equation (2). The normel component of the velocity at the
wall 1s V,; sin 6; or, if sin 6, 1s approximeted with 6,, it becomes

V;8,. Thus, the relation between V and 6 at the wall becomes, for
the porous wall,

2(Ve - Vg)
where k;' 1s a factor that contains the constant of proportionality,

the stream dynamic pressure, and the local density. Egquation (3) may be
rewritten as

KiV,87 = Vo = Vy (k)
The verforated wall is cobtained from equation (k) by substituting

k2V12612 for k,V,0;, thus making the pressure across the wall vropor-

tional to the squere of the veloecity through the wall and allowing den-
sity and other factors to be absorbed in the constant ks. Then

k2V7‘291d = (Vm - VI} (5)
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The addition of equations (4) and (5) results in the relation between
V and 6 for another theoretically possible wall and suggests that
the following power series may be used for the generel case in which
the pressure difference is a Tunction of the velocity through the wall:

(5]
Ve = Vy = Z kv, 70" (6)
n=0

Theoretically, equation (6) and the equation for the velocity along a
characteristic line can be sclved as simultaneous equations, but obtaining
such solutioms for values of n larger than 2 is difficult.

Equetion (6) presents an interesting possibility in that it does not
require that 6; be zero when the locel wall pressure is equal to free-

stream pressure, as is the case for equations (4) end (5). A study of
the porosity curves of slented-hole walls presented in reference 8 shows
that equation (€) is to be preferred, especially if the constants kg

and k; are used and if the specification is made that the constants
ko ané k; Dbe allowed two different values depending on whether the

local pressure at the wall is less than or greater than free-stream
pressure.

It may be observed that equation (6) contains no requirement that
the velocity and flow angle of the hypothetical flow field which would
represent the wall be continuous along the characteristic line at the
wall location. Thus, porous or other similar vartially open walls
designed in accordance with equation (6) must to some degree reflect
disturbances due to the model with the exception of those at certain
design vpoints such e&s the nose shock or other selected points.

Noninterfering Walls

Since the ronreflecting wall condition was found to be insufficient
to insure a noninterfering wall condition, it is apparent that the non-
interfering wall must wreet more stringent requirements. A tumel is to
be defined as noninterfering if the properties of the flow along the
model in the tunmel are identical to those of the flow along the model
in the free fi=ld. This condition will be satisfied if the flow in the
vert of the characteristic quadrangle between the wall and the model is
the same for the tumnel as for the free-field condition (see uniqueness
theorem, ref. 10). A necessary snd sufficient condition for the equiva-
lence of the two flows is that the distributions of velocity and flow
engles along the wall be identicel. This condition is far more stringent
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than the nonreflecting condition and for all practlcal cases requires
that a wall be designed with prior knowledge of the free-field flow.

An example of such requirements in wall design may be seen by
assuming & varisable porosity along the length of & porous well, so that
the parameter k; of equation (4) becomes Xxj(T1), where T is a veri-

eble zlong the wall. Since for the noninterfering condition V and 6
ere unique along the wall line, ky(7} 1is also uniquely determined along

that line. The porosity distribution is determined by the free field
about the model and is different for every different model. Since the
porosity distribution is different for each test condition, it would
then seem that the problems involved in the design of a generally non-
interfering wall would be almost insurmountable.

A corollary to the discussion of the porous-wall example is that
the porosity required to absorb & shoek is unique for each shock and
must be determined from the properties of the particuler shock to be
absorbed. Thus, it must be possible to vary the porosity of the wall
if the effects of & variety of shocks are to be removed.

Approximste Relation Between Porosity Factor kj and
Percentage of Opening B of a Porous Wall

In order to simplify the relation between k3 and B, the assump-

tion mesy be mede that the wall consists of a lerge number of small tubes,
that the flow through each tube is wninfluenced by the flow through its
neighboring tube, and that the flow through each tube obeys the Hagen-
Poiseuille lew. This lew (ref. 1i) states that the volume rate of dis-
charge through a tube is given by

in
= K or_
Q—ptAPlEB (n

where p is the viscosity, t i1s the thickness of the wall or length
of the tube through the wall, Ap is the pressure across the tube, and
D is the diameter of the tube. In order for this law to be valid the
Reynolds number of the tube pVhD/u must be less than 2,000, p Dbeing

the density of the fluid, and V, the velocity through the tube.

In spplying this equation to a tumnel wall, it is necessary to know
he pressure difference Ap across the tunnel wall. The pressure coef-
icient on the inside of the wall is given by equation (2):

Iy ct

ST
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2(Ve - Vy)
e
[=2)

Now assume stetic or free-stream pressure on the exterior of the tunnel.
Then, since Cp 1s equal to the local pressure less the static pressure,

divided by q, 4Ap is given by

o = oV (V, - Vq) (8)
The substitution of equation (&) into equation (7) gives

Vo Voo = V) D*
q - eeled 2 ()
128ut

Now assume that :x tubes exist per unit wall ares. Since the normal
cormpcenent must flow through the well the rate of discharge will be
Vl sin BZ times the unit area, or with the approximetion assumed, the

rate of discherge is expressed as V;8;. Then

TtQ = V403 (10}

Also, the total tube area in a unit area is equal to mnDz/H or, if the
ratio cf open to total area is called B, it may be expressed as

2
_ mxD
B = S (11)

The substitution of ecuastion (9) into equation (10) gives

7eVeo Voo = V1) DH

V.6, = (12)
128ut
and substitution of equation (11) irto equation (12) gives
Veo( Vo - V) D2
Vzez = cho co( -] 1) (13)

A2ut

The porosity coefficient kq has been defined in equation (L) as

5

Ky =
- Vi1

N

Voo - V5
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The use of equation (L&) in equation (13) gives the relation between Ky
and B as

32ut
p=——7 (1k)
klpoovcaD

Tre Reynolds number of the flow through the tube must be less than
2,000, or

V,D
Peo'M < 2,000 15)

The meximum value for V,, is given in reference 12 as

v = £pD?
h,max ~ 18;;

On substitution of equation (8) for Ap,

;oo 2
v.h - pcovm(vco VI)D 16)
16pt

However, the aversge value of V,, equal to Vh,max/es is to be used for
the Reynolds number cslculation. Thus

0,2V (Ve - V4)D3

< 2,000 (1n
32p%%

or

64,0002t
pco2vm(vm - VZ)

D3 < (18)

This condition must be met if the wall is to be considered as porous.
If it is not met, the dynamic effects of the flow entering and leaving
the well will ceuse the well to act more like & perforated wall than a
porous wall.

A demonstration of the size and number of holes required for a typi-

cel tunnel opersting condition is given in the following calculations.
Assumed values are as follows:



12 SN, NACA RM 1L58B21

B, SLUZS/FE-SEC + « v v v v v v s e v e e e e e e e .. kx0T
Py BLUES/CU L & v v v v v i v e e e e e e e e e e e e 0.002
Ve, Tt/sec o v 0 v 0 b 0 o e s e s e e d e e e e e 1,200
N 27 41 1,100
By, TE o v v v e e et e e e e e e e e e e e e e e e e e e 1/:8

Substituting these values into expression (18) gives
D < 0.000763 foot

So, assume
D = 0.0005 foot

If k; is assumed to be equal to 4.0, equation (14) gives for B the
value

B = 0.1111, or 11l.1 percent open (19)

and equation (11) gives for n the value 565,800 holes per square foot,
which is equivalent to a spacing of 0.016 inch between centers, with a
hole diameter of 0.006 inch.

A study of equation (14) shows that with a fixed well - that is,
with B, t, and D fixed - the possibility exists of varying the poros-
ity factor k; by adjusting either the velocity or the density of the
free stream. However, not much variation in velocity is possible because
for a given free-stream Mach number the velocity varies as the square
root of the temperature.

Approximate Relation Between Perforation Factor k, and

Percentege of Opening B of a Perforated Wall

A perforated wall, for which the pressure across the wall is propor-
tional to the dynamic pressure of the flow through the wall, may also be
used. to cancel the effecis of a shock. In order to calculate the perfo-
ration factor ko required to cancel the shock, it is necessary to make

the simplifying assumptions that the velocity through each hole cbeys
Bernoulli's law and that each hole acts independently of the other holes.
No assurption need be made concerning the size of number of the holes;
however, if the fiow in the tunnel is to be reasonebly smooth, the
diameter of the holes should be very small compared with tummel dimensions.
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Upon the assumption that tne flow through a perforated wall obeys
Bernoulli's equation, the velocity through any hole may be expressed &s

PRVy2

= Ap (20)
2

where Ap is the pressure difference across the wall.

It has been shown that if the pressure outside the wall is free-
Stream pressure, Ap is given by equation (8):

o = VeV - V)
Thus, upon substitution of equation (8) into equation (20),
1 2

If the density in the hole is assumed to be equal to free-stream density,

Vh = \/EVm(Vm - Vy) (21)
Then, the volume rate of flow through & hole of diameter D is

Q= Eﬁg \,levm(vm - V) (22)

and, since the volume rate of flow through m holes per unit area must
be equal to V,6,,

D2 \[2Veo(Veo = V)

V8, = " (23)
. msD? s ar - o :
Now B = ——, and k, 1is defined for a perforated wall as
L
V-V
ko = _°°2__2_Z (24)
V78
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The use of equation (2L4) in equation (23) results in

1
p® = — = (25)
Consider, instead of k,, a new nondimensional constant
Ky = _NTe? (26)
T VeV = Vy)
Use of this constant in equation (23) gives
p® = E} (27)

Equetion (27) shows that the perforation factor Ko of a perforated

tinnel is determined by the ratio of open area to total area and is not
levendent on tunnel velocity or density.

Porosity Conditions Required for Removing Shocks

It has already been noted trhat the reflection of & nose shock can
be prevented if the wall condition satisfies exactly the interference-
free flow-fieléd condition immediately behind the shock. This condition
cen pe calculated for either a porous wall (eq. (L)) or a perforated
wall (eq. (24)) by using the values of V., V3, and 6; from & set of
tebles which give the properties of the flow through a shock (see ref. 9).
In using the tables of reference 9, it is convenient to convert the Mach
nurker values ol the tables into ratios of velocity to limiting wvelocity
ané use these ratios in equations (4) and (24).

A set of values of k; were thus calculated for the shocks at free-

strear Mach numbers of 1.1, 1.2, 1.3, and 1.L. The results of these cal-
culations are skowsn in figure 2(a), where for convenience in plotting,
the reciprocal K; of k; 1is plotted against the turning angle down-

siream cf the shocxk.

In crder to obtain a rough approximation of the percentage of
opening B reguired to rermove the shock, B was calculated from egua-
tion (14) for a tremsonic tumnel operating with a total pressure of
1 atmcsphere and a total temperature of 130° F. The wall was assumed

™

tc be L inch thick and the tubes through the wall 0.0132 inch in diemeter.
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The results of these calculations are presented in figure 2(b), in which
the values of B that will ebsorb a shock at & given Mach number are
plotted against the turning angle due to the shock. This figure, as
well as figure 2(a), shows primerily that a variation of 2:1 is required
in porosity ratio K; or percentage of tunnel opening f to remove

weak shocks at a given free-stream Mach number. The figure alsoc shows
that normal or near normal shocks require almost a closed tunnel for
absorption.

It has already been shown that the wall porosity can vary with tun-
nel density. It is possible to show the extent of this variation by
applying equation (1k4) to & tunnel with a fixed percentage of opening
in the walls snd operating at = constant total temperature. The resulis
of such & variation are better seen in equation (1L) if it is rewritten
by use of ¥;, the reciprocal of X;, for k;. Thus,

2
32ut

It is seen that K; varies directly with the density and, therefore,

with the pressure. A plot of the totzal pressure required for shock
cancellation in a 25-percent-open tunnel operating at & totzl tempera-
ture of 130° F is vresented in figure 2(c). Since the pressure in a
pressure tunnel can usually be veried over & renge of pressure ratios
of L:1 to 8:1, these results indicate that & possibility of at least
partially ebsorbing the shock exists for a fair range of Mach numbers.

Since a perforated wall can also satisfy the values of V and ©
Just behind a shock, the values of § required for shock canceliation
for a perforated wall were calculated by using equations (26} and (27)
and were plotted against the turning angle due to the shock. The plot
is presented in figure 3. Anslysis of the curves of figures 2 and 3
shows severzsl differences between the values of B that will remove a
shock on & porous wall and the values that will remove the same shock
on & perforated wall. While the percentage of opening cen, with proper
selection of timnel operating conditions, be chosen to have gbout the
same renge, the shapes of the curves are much different. The broad
meximum shown in the curves of figure 3 indicates that for e fixed Mach
number one value of K, or B will absorb or nearly absorb a fair
range of shocks. As this value is near maximum turning angle, the per-
forated wall might be preferred in the two-dimensional tumnel where the
turning angles mey be fairly lerge.
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PROCEDURE

The methods used in presenting the theory of verious walls capeble
of canceling the effects of shock do not result in equations which
represent the interference. The interference was therefore determined
by calculating the flow field about a number of tunnel model configura-
tions whnich represent the various walls studied and comparing these flow
fields with the corresponding free field. The flow fields were calcu-
lated by applying the characteristic-network methods of reference 9 to
a two-dimensional, symmetrical, almost parsbolic, lO-percent-thick air-
foil, with cherd equal to 20 inches and the upper surface given by

y =1 - 0.012340172(10 - x)2 + 0.000023L0172(10 - x)l+

at a Mach rurber of 1.4, and to a three-dimensional cone-cylinder model
having a 17.50 nose cone on a 0.49000-inch-dismeter cylinder at a Mach
nurker of 1.19k. All the two-dimensionel fields were manually calculated.
The free field for the three-dimensional axially symmetric cone-cylinder
was manuelly computed for a previous investigation. The restricted cone-
cylinder fields were all calculated in the Bell Telephone Laboratories
X-66T4l relay computer at the Langley Laboratory. The portion of the
free field which was to be compared with the restricted fields was recal-
culated in the Bell computer in order to eliminate any errors that might
have occurred ir that region of the flow field.

The two-dimensional flow fields that were calculated are: the free
field, a porous wall that absorbed the shock, & porous wall with a value
of ¥X; 1.5 times that necessary to absorb the shock, a perforated wall

thet absorbed the shock, and a nonreflecting field which consisted of &
Prandtl-Meyer expansiocn over the portion of the airfoil affected by the
wall. All the walls were located L.13962 inches from the center line,
giving a blockage of 24.16 percent.

The three-dimensional flow {ields thet were calculated are: the
free field, a porous well thal sbsorbed the shock, a nonreflecting wall
with a conical shock extending to infinity from the point of intersection
of the shock and wail, a nonreflecting wall with constant V and 6
just outside the wall location, a nonreflecting wall with & linear verie-
tion of V and © across the wall location, a porous wall with a poros-
ity 1.5 times that necessary to abscrb the shock, and a differential
porous wall with a K; value of 0.5438 for outflow at the wall end a

K1 value of 0.2000 for inflow at the well. Two three-dimensional flow

fields were calcuiated that were restricted by walls having porosity
curves suggested by the nature of the experimental porosity curves of
a wall with 60° slanted holes given in reference 8.

. J
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All the three-dimensicnal wall conditions were calculated for a
field consisting of & 0.L9-inch-radius model inserted in & tunnel of
3.508-inch radius, to give a bloeckage of 1.796 percent. Additional
fields were included for the shock-removing porous wall, in which the
tunnel radius was 4.991 inches and 6.205 inches and gave blocksges of
0.88 end 0.57, respectively.

RESULTS AND DISCUSSION

Supersonic-Tunnel Interference Due to Nonreflecti Walls
P ing

Two-dimensional nonreflecting walls.- The two-dimensional flow
field zbout the parsabolic ailrfoil restricted by the nonreflecting wall,
discussed in the section entitled "Nonreflecting Walls,” may be easily
calculated if it is remembered that no disturbance due to the plener
shock can occur on the model. The flow is therefore a Prandtl-Meyer
expansion downstream of the first point on the model influenced by the
wall.

The pressure-coefficient distribution due to this expansion, &s
well as the free-field pressure distribution, is presented in figure k4.
The difference between the model pressure-coefficient distribution
restricted by the planar shock wall and the free-field pressure coeffi-
cient is so small that the differences cannot be detected in the curves
of figure L. These differences are of the order of 0.3 percent of the
free-field velocity and are indicative of the degree of disturbance that
is due to the curvature of the shock in a two-dimensional flow field
containing a thin sharp-nosed model.

Free-fisld cheracteristic network.- The characteristic network of
the free field for the cone-cylinder model is given in figure 5 to show
the nature of the three-dimensional field being studied. It may be
observed that an expansion fan comes off the corner and that the result-
ant overexpansion must be compressed back to stream pressure by a shock
wave in the field. The shock in this field was not computed. Its exist-
ence is evidenced, though, by the crossing over of the characteristic
lines. It is believed that this condition will spproximeate the shock
closely enough to a&llow the resultant interference phenomena to be
approximeted. This net can also be used to determine the points of
origin on the wall of the interferences which occur on the model.

Three-dimensional nonreflecting flow fields.- The pressure distri-
butions on the surface of the cone-cylinder model located in a flow field
restricted by the three-dimensional walls previously given as examples
of nonreflecting walls asre presented in Tigure 6.
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Of the three fields investigated, tne flow field restrained by the
conicel~shock wall shows the least interference. The low interference
properties are due to the fact that the conical-shock field sets up
exterior disturbances which approximate the free-field disturbances.

This flow field correspondés to the two-dimensional flow field with a
plenar shock and so may be considered the three-dimensional equivalent

of a Prendtl-Meyer expansion. A measure of the disturbances due to the
curvature of the shock can be seen by comparing the difference between
the coniceal-shock field (in which no disturbances due to shock curvature
occur) and the free-stream field with the corresponding difference
between the two-dimensionsl planar-shock field and the two-dimensional
Tree field. This comparison gives an indication of the seriousness of

the interference problem caused by the focusing effect of three-
dimensicnal tunnels. The seriousness of this effect is magnified even
rmore wnen the observation is made that the blockage of the two-dimensionsl
tunnel-model coribination was 24 percent whereas the blockage of the three-
dimensional combination was 1.96 percent.

he second nonreflecting field, calculated by using the coastent
V,0 wall, showed pressure distributions (see fig. 6) which were similar
to those due to the conical -shock field. The pressures were, however,
Tore negative thar those Jue to the conical-shock wall. This effect is
believed to be due to the fact that the velocity is higher outside the
wall becazuse of the assumed boundary conditicn than it is for the
conical-shock well, which reqguires a negative velocity gradient across
the wall in the downstream portior of the tunnel.

Tre ncenreflective characteristic of the constant V,8 wall may be
noted by observing the concentration of points near the T-inch stetion.
These points arise Trom the continuation of the corpression lines that
intersect the well near the 5-inch station (see fig. 5). If a shock
were reflected, these points would show a discontinuity in the velocity
distribution; alsg, they would not be lccated in consecutively increasin
order with respect to x on account of the crossing of the characteris-
tic lines. This wall is therefore nonrefiecting but, nevertheless, does
disturb the free field.

The third nonreflecting wall is the continuous-derivative V,6
wall, for which the derivatives of V and € are continuous across the
wall. Thougk it is nonreflecting, it shcws very severe interference due
to the nature of the wall itself. This interierence seems to be caused
by an accumulsation of the extrapolation errors of the linear veriation
cf V and ©6 across the well. Since the operation of such a wall is
independent of anry outside influence cof the free-stream flow field, such
as might, in the case of a porous wall, be provided by the condition of
stream pressure outside the wall, the errors rerain unchecked and accumu-
late downstrean.
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This wall shows the same nonreflectivity pattern as was observed
for the constant V,0 well, as evidenced by the continuity of the
cluster of points near the T-inch statiom.

Festures of flow fields restrained by nonreflecting wells.- The
results of the study of nonreflecting walls indicate several interesting
Teatures. The concept of & nonreflecting wall was shown to be expressed
by a general theorem which permitted many walls to satisfy the definition
of nonreflectivity. It was shown in the results that the degree of inter-
ference from such walls was highly variable and that & nonreflecting wall
was not necessarily & noninterfering wall. A more stringent definition
than nonreflection theory is required of a supersonic-tunnel wall if the
wall is to have negligibly low interference properties.

It was glso observed that the interference of the wall was dependent
on the degree to which the wall or, rather, the exterior field which sim-
ulated the wall, gpproximeted free-field conditions. For example, the
planar-shock wall or the conical-shock wail, both of which were good
approximations to the free-field conditions in that only the effects of
shock curvature were deleted, were very good walls with, comparatively
speaking, little interference. In contrast to this condition, the
continuous-derivative V,8 wall which eliminated 211 outside disturb-
ances as well as being nonreflecting proved to be so severely interfering
that the flow became subsonic downstream. The severe interference was
believed to be related to the fact that the wall elimineted all possibil-
ity of control from any outside disturbance which approximated the free-
field condition. The vossibility of causing divergence from free-stream
values, such as was shown by the continuous-derivative V,8 wall, led
to the conclusion that the definition of a supersonic-tunnel wall should
tie the action of the wall preferably to & free-field condition, or at
least to a free-stream condition.

The porous well, although not generally noninterfering, does depend
for its sction on the pressure outside the wall and this pressure may be
controlled and set at free-stream pressure.

Supersonic-Tunnel Interference Due to Porous Walls
Two-dimensionsl porous wells.- The pressure coefficients on the

neer-parabolic two-dimensional sairfoll in & flow field restricted by
various porous walls are presented in figure k.

Observation of the pressure coefficients due to the vorous wall
which completely cancels the reflection of the shock shows that this
wall is restraeining the outflow behind the shock, thereby preventing
sufficient expansion for the flow to attein its free-field values. It
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is also observed thet at the trailing edge the wall is restraining inflow
and, hence, causing too much expansion. The indications here are that

a porous wall set to remove & shock can cause restraints to the flow
which may be serious and certainly cannot be predicted with simple Mach
murber increment correction.

As is to be expected, the overporous wall allows an expansion wave
to follow the shock, and thereby decreases the pressure coefficients.
So, also, an underporous wall would cause a shock and, hence, an increase
in the pressure coefficients.

It may be observed that the perforated wall has less interference
than the porous wall. This msy be a fortuitous circumstance. Calcula-
tions of additional cases would be required to show whether the perforated
wall is generally better than the porous wall. The same phenomena that
were observed for the porous wall in connection with too much or too
little porosity to remove the shock may also be expected to exist for the
perforated wall.

A corparison of the model surface-pressure coefficients in a field
restricted by either the porous wall or the perforated wall with the
corresponding pressure coefficients in a fileld restricted by an oven
tunnel (see fig. 4) gives a concept of the reduction in interference that
can be attained in a two-dimensional tunnel by using porous walls. In
fact, the interference due to the properly designed porous wall is so
small compared with the interference In the open tumnel that it may
almost be called negligible. It must be noted, though, that if the
poroslty is not of the correct value to remove the shock, a serious
interference wave can arise from the point of intersection of the shock
with the wali. Thus, even though a two-dimensional tunnel can have &
relatively small interference pattern, care must be taken to insure that
the test conditions are correct or else the interference may become very
severe.

Three-dimensional shock-removing porous walls.- The porosity of the
shock-removing porous wall for three-dimensional application wes deter-~
mined by substituting the free-field values of V and 6 on the down-
stream side of the shock from the cone-cylinder nose into equation (L).
The resultant value was then used as the wall porosity for the entire
wall.

A comparison between the pressure distribution over the cone-cylinder
model duve to this wall and the free-field pressure distribution (see
fFig. 7(a)) shows that even though the wall removed the shock, it could
not absorb the compression wave which immedisately follows the shock.
The shock-rermoving porous wall reflects this compression wave as a com-
pression wave. The porous wall also reflects the subsequent expansion
wave that arises from the flow around the cone-cylinder as an expansion
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weve. The shock which follows the overexpsnsion Gue tc the corner (see
fig. 5) also spvears on the model near the T-inch location and so is not
ebsorbed by the wall (see fig. T(a)). In this case, as was expected
from the theoreticsl analysis, the constant-porosity wall reflects dis-
turbances from the model and so interference with the flow field.

The reasons why this constant-porosity wall was not noninterfering,
and also why constant-porosity walls with constent outside pressure can-
not in general be noninterfering, may be seen from examination of fig-
ure 8, which presents the porosity as calculated by equation (4) of the
various walls studied. The csuses of the various reflective interferences
and a rough indication of their magnitude can be observed by comparing
the porosity of the noninterfering wall, which is & well with the porosity
distribution required for zero interference, with the porosity of the
constant-porosity wall. For example, the compression interference
observed between the 3.5-inch and 6.25-inch stations (see fig. T(a))
arises because the constant porosity wall is less porous than the non-
interfering wall in the region where 6 1is positlve (see fig. 9(g)) and
s0 & compression wave is reflected. At the point at which the flow
direction becomes negative, the porosity of the noninterfering wall
changes sign so that the constant-porosity wall becomes too open over &
smell region. This too-open condition reflects the expansion of the free
field as a compression wave. At the end of this region (see fig. 8, the
k.2-inch ststion) the porosity of the constant-porosity wall becomes less
than the porosity of the noninterfering well and so the expension wave
is reflected as an expansion wave. This wave intersects the model between
the 6.25-inch and the 7T-inch station. This analysis shows that the vari-
ous interferences due to the constant-porosity wall can be traced to the
differences between the porosity distribution of the constant-porosity
wall and the porosity distribution of the noninterfering wsll. It seems
from the results of this discussion that, in general, walls with a
constant-porosity distribution and with constaent pressure outside the
walls will cause interference with the flow field about the model.

Effects of varying the porosity.- Ore flow field was calculated
with & porosity factor X; +that was 1.5 times the value necessary to

remove the shock or a kj factor two-thirds that required to remove the
shock. The interference due to this wall msy be observed in figure T(a).
The observed strong initial expansion is required to meet the wall
boundary condition at the shock-wall intersection point. After this
condition is satisfied, the flow shows a compression in the same region
in which compression was observed for the shock-removing porous wall.
This corpression is more severe than for the shock-removing porous well
and the following expansion merely returns the pressure to the free-
field level, so that no reflected shock or only a very minor one occurs.
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If the wall is not porous enough to absorb the shock, the boundary
conditions require that a shock wave be returned into the field. BSince
a reflected shock greatly complicates the calculation, the field due to
a wall with too low a porosity to remove the shock was not calculated.

Interference effects of differential porous walls.- A differential
porous wall 1s defined as a wall that presents different porosities to
the flow field, depending upon some given flow characteristic such as
the sign of the pressure difference across the wall.

The well chosen for study was recommended in reference 5 as being
superior to the ccnstant-porosity wall because its effective resistance
to inflow can be mede greater in regions along the wall when the pres-
sure is low. A flow field using such a wall was calculated in order to
obtain a comparison of the interference introduced by this wall with
that due to the constant-porosity well. The porosity for outflow was
cncsen to remove the shock, whereas that for inflow was chosen to be
about the average value of the downstream porosity of the noninterfering
wall. The results of this calculation are shown in figure T(a).

It is seen here that the expansion wave which was reflected to the
model by the skrock-removing porous wall is reflected much more strongly
by the differential wall. Also, the far-downstream pressure does not
return as repidly to the free-field pressure. The reason for the exces-
sive expansion wave mey be seen by comparing the differential-wall curve
of figure 8 with the noninterfering-wall curve. It mey be observed that
the region in vhich the differential porous well reflects the expansion
wave as an expansion (thst is, the region petween the 3.9-inch and 5.7-
inch stations where the porosity is less than that of the noninterfering
wall) is larger than the corresponding region for the constant-porosity
wali. Therefore, 1t may be expected that a greater reflected expansion
wave will occur. The origin of this expansion may be seen by examining
figures 9(a) and 10(a} between the 4-inch and 5-inch stations. These
figures show that the differentisl wall seriously restrichts the inflow
(fig. 9(a)) thereby causing a negative pressure peak (fig. 10(a)) which
creates the strong expansion wave that appears on the model.

In view of the fact that, contrary to the results of reference 6,
the differential-porous wall resulted in greater interference than the
constant-porosity wall, the porosity curves of reference 6 were examined
to see whether other phenomena were present which might account for the
smell interference reported. The plot of pressure, across the wall as
a function of flow through the wall for the best wall reported in refer-
ence 6, the 6-percent-open wall with 60° slanted holes, showed that this
wall was capable of sustaining an outflow against & negative pressure
gradient. This condition results in a negstive porosity value which msy
also be observed to exist for the noninterfering wall. It was believed
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that the simulation of this condition in a theoretical well might reduce
the interference due to the wall.

A ressonable simulstion of the slant-hole differential-porous wall
of reference 6 can be attained by using equation (6) summed over n = O
and n =1 to represent the wall, provided the values of kg and kj

are allowed to have different values depending upon the sign of ithe »res-
sure difference across the wall. The wall boundary condition (eq. (6))
thus becomes

Vo ~ Vi = kg + k1V40y (29)

Two walls meeting the above conditions were set up. One of them
theoretically matched the noninterfering wall at three points: (1) the
intersection of the shock with the wall, (2) the point on the wall where
the pressure gradient is zero, and (3) the point on the wall where the
fiow angle is zero. The other wall (the experimentally approximated well)
matched the noninterfering wall at only one point, the intersection of
the shock with the well, a necessary distortion of the experimentsl curve
of reference ot to avoid reflected shock phenomena. Two other points of
this wall were chosen to meitch the experimental values given in fig-
ure 6(f) of reference 8. The points chosen were the value of 6 where

Vo = V; =0, and the value of V_ - V; where 8 = 0. The resultant

values of Ky and k; fTor the theoretical matched case were

kg = 0.01262 and k; = 2.69:73 for V,; < 0.47103, anéd kg = 0.00753
and k; = 1.60779 for V; > 0.4T7103. The corresponding values of kg
and k) for the experimentally approximeted case were kg = 0.004805
and ky = 2.16489 for v, < 0.47103, end kg = 0.009150 and

ky = 4.12265 for v, > 0.47105. The condition v, < 0.4L7203 corre-
sponds to a positive pressure difference across the wall and

Vz > 0.4T103% corresponds to a negative pressure difference across the

wall,

The cone-cylinder surfeace pressures, the wall pressures, the wall
flow angle, and the porosity function Kl(x) are presented and compared
with the corresponding free-field values and corresponding values for a
field restrained by a shock-removing well with constant porosity in
figures 7(b), 10(b), 9(b), and 8. It is seen ir figure T(b) that both
the differentiel slant-hole walls recuced the initial compression inter~
ference wave put that the same expansion wave appears as was observed
with the constant-porosity shock-removing wall. The expansion wave is
observed to be of approximstely the same strength for the theoreticelly
matched wall as for the constant-porosity wall but is much stronger for
the experimentzlly approximated wall.
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These interference waves can be explained from exsmination of
figure 8. The curve for both the theoretically matched wall and the
experimentally approximeted wall agree rather closely with the curve
for the noninterfering wall up to the 3.5-inch station, and therefore
it may be expected that the compression observed in the case of the wall
with constant porosity will be reduced in megnitude. The large expan-
sion wave observed in the field restrained by the experimentally approxi-
mated wall occurs because the perosity of this wall is appreciably less
then the porosity of the noninterfering wall between the 3.75-inch and
5.0-inch stations (see fig. 8) and therefore the inflow is restricted
and a severe expansion wave is reflected. This wave 1s more severe than
the corresponding wave caused by the theoretically matched wall because
the difference petween the porosity of the experimentally approximated
wall and that of the noninterfering wall is grester than the corresponding
difference for the theoretlcally matched wall.

The experimentally approximated wall does not give the low inter-
ference intensities reported in reference 6. A major portion of the
difference between the results of reference 6 and those of this paper
is believed to be due to slteration of the effective porosity by the
boundsry layer, especially in regions of inflow through the wall. This
subject is discussed in a later section. The Interferences of refer-
ence 6 are also spread out and not concentrated, because the tests of
reference 6 were made in a square tunnel rather thesn in & circular tun-
nel. This reduction of intensity of interference due to tunnel shape is
further discussed in the following section.

Effects of varying the blockage.- The effects on the interference
of verying the blockage (i.e., the ratio of maximum cross-sectional area
of the model to cross-sectional area of the tunnel} from 1.796 percent to
0.57 percent are shown in figures 11 and 12. A value of porosity k to
absorb the shock was chosen for each case. Model pressures are shown in
filgure 11, and wall pressures are shown in figure 12.

Analysis of these figures shows that the general nature of the
interference effects of the constant-porosity wall was not changed by
reducing the blockage. The most prominent effect of reducing the block-
age was to shift the location of the interference effects relatively
farther downstream on the model. (See fig. 11.) More Important, how-
ever, is the fact that the intensity of the reflected expansion and
compression waves at the position of the model is but little reduced by
reducing the blockage. This effect may be expected to be peculiar to a
two-dimensional tunnel or to the three-dimensional circular tunnel con-
taining a body of revolution located on the tumnel center line.

The reason for the small reduction in the interference may be seen
by examining the flow field about a disturbence located on the tunnel
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center line in either a two-dimensional tunmnel or a three-~-dimensional
circular tunnel. The effects of this disturbance sre transmitted into
the field along the characteristic surface originating from the disturb-
ance. These effects sare then reflected by the wall into the stream. In
both the two-dimensionel and the three-dimensionel tumnels, the charac-
teristic surfaces of the interference disturbences created at the wall
are reconcentrated on the tunnel center line. In the two-dimensional
tunnel the disturbances at the wall will be carried to the center with
no reduction In intensity, so that changing the tunnel height will cause
no change in the intensity of the interference. A three-dimensional
tunnel may be expected to act in a similaxr fashion except that as the
tunnel radius becomes larger the disturbance at the wall will become
weaker, This effect is compensated by the fact that the wall disturb-
ance is cresated over an increasing portion of the wall, so that when the
entire disturbance 1s reconcentrated on the center the intensity at the
center will remein sbout constant regardless of the tunnel radius.

This phenomenon of constant intensity of the interference waves
regardless of tunnel dimensions cennot be expected to hold for the
general three-dimensional tunnel, as the interference characteristic
surfaces which originate &t the wall will not, in general, be reconcen-~
trated on the center line, but will instead be re-reflected between the
various walls and will strike the model many times with weak disturbances.
Such disturbances will be spread more and weakened more as the dimensions
of the tunnel are increased with respect to the model. This spreading
and weakening of the disturbances In a general three-dimensional tunnel
helps to account for the fact that the intensities of the dlsturbances
reported in reference 6 are less than those reported herein, as the test
results given in that reference involved a cone-cylinder model restrained
by & tunnel of square cross section.

Influence of boundary layer on interference of porous walls.- The
boundery layer of a tumnnel mey be considered as & region of reduced
velocity enclosing the flow flield. BSuch a region of reduced velocity
will contribute & modification to the flow in the direction of an open-
tunnel influence. The extent of the modification is dependent on the
thickness of the boundary layer, varying from no modification for zero
thickness to an open tunnel for infinite thickness.

This analogy shows that the effective porosity of a porous-wall
tunnel with a boundary layer present should be greater than the actual
porosity of the wall when no boundary layer is present. Since the
effective porosity is dependent on the boundary-layer thickness, it may
be expected to be appreciably higher in regions where the air flows into
the tunnel, beceause the incoming air greatly thickens the boundary leyer.
Where the flow through the wall is outward, the boundary layer will be
thinner and, &s a result, the effective porosity will approach actual
porosity.
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The changes in interference due to these effects cen be fairly
large. Reference 5, for example, reports that the inflow through a
constant -porosity wall was usually too large and so csused a large
downstrear. compression fan. The theoretical calculations of the present
investigation, however, showed that in the absence of a boundary layer
the downstream porosity was too small; as a result the inflow was
restricted and an expansion wave formed. The indications are, then,

hat the boundary layer in the experimental tunnel of reference 5 thick-
ened Tor the inflow and thereby increased the effective porosity to such
an extent that a compression wave resulted. This condition was met in
reference 5 by using a differentiel porous wall which restricted inflow
more than outflow. The corbined effect of both the reduced boundary-
layer thickness and the reduced well porosity resulted in an effective
porosity near that required for low-interference properties.

Estimation of interference effects of porous-wall tunnels on drag
coefficient and flow angle.- In order to estimate the effect of the
interference, the drag of the cone-cylinder model with a flat base was
calculated by assuming that the base pressure was equal to the local
pressure on the surface of the,cylinder as given in Tigure 7(a). Fig-
ure 1% shows the drag-coefficient values cobtained by this approximation,
and figure 1l skows these values expressed zs a percentage error calcu-
lated by the following expression:

Cp,t = Op,#r

Cp,sr

100 (30)

where CD,t 1s the drag coefficient of the model in the tunnel end
Cp. rr is the drag coefficient of the model in the free field.
=~

Exsmination of Tigure 13 shows that the variations in the drag
coefficient caused by the various porous walls are apprecisble. This
point is emphasized in figure 1L, which shows the percentage of error
introduced into the drag coefficient by the interference of the verious
walls. Figure 14 shows that the percentage errors for the cases calcu-
lated zre almost intolereble, varying over & range of -40 percent to
T5 percent. Even the best cases, such as the constent-porosity wall
set to remove the shock or the theoretically matched wall, produce errors
which vary from -20 percent to 25 percent and from 7 percent to 26 per-
cent, respectively. It does not appear to be possible to apply a simple
correction for this type of interference.

The fact that the porous walls produce lerge increments in drag
because of their interference effects on the pressure field indicates
also that these walls may cause severe interference effects on the flow
angle in regions close to the model. The amount of this interference
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is shown in figure 15, which presents the increment between the flow
angles in the restrained-tunnel fields and in the free field at a radial
distance of 1 inch from the model.

The errors observed ere appreciable, varying between 1.2° and -1.2°
for the worst case calculated and -0.25° to 0.4L0° for the best case cal-
culated. Errors in the flow engle of the magnitude shown here could
cause apprecisble changes in such properties as lift and pitching moment
of & model if a critical portion of the model, such as a control surface,
were located where it would be infiluenced by the erroneous field. Cor-
rection for the effects of this interference seems as complicated as the
correction for the drag interference.

SUMMARY OF RESULTS \
\Y
\

A theoretical analysis of the supersonic flow aboul, two-dimensional
and three-dimensionel models restricted by verious wellis\capable of

removing the nose shock has shown several interesting fea?ures of the
interference caused by such walls.

1. A study of nonreflecting walls for both the two-dimensional and
three-dimensional cases suggested the possibility that, unless the wall
was bound to a free-field property or at least & free-stream vproperty,
very severe interference effects could be created by the wall.

2. The noninterfering condition was shown to be far more stringent
then the nonreflecting condition. The noninterfering wall was found to
require speciel distribution of the wall properties which, for most
practical cases, are different for every different test condition. The

a,
1
design of the special distribution of wall proverties was shown to
a knowledge of the free Tield.

3. The intensity of interference due to the well was Tound to be
dependent on the difference between the porosity of the actual wall and
the porosity of the noninterfering porous wall. Also, the intensity of
interfererce was found to be sensitive to the tunnel shape, with indica-
tion that it would be impractical to meke a circular tunnel interference

free.

L. The most prominent effect of decreasing the blockage (the ratio
of the model cross-sectional arez to the tunnel cross-sectional area)
wes 1o move the location of the interference waves relatively farther
downstream on the mcdel. The intensity of these waves was but little

reduced with the reduction in blockage, an eifect characteristic of the
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three-dimensional cilrcular tunnel. This effect is not expected to hold
ir nonecircular tunnels.

5. The effects of the boundary layer in regions where the flow was
inward were found to be so serious that the conclusions indicated by
theory concerning the best porous wall conditions for inflow through
the wall were rendered wrong. The indications were that the effective
porosity over the inflow region of the wall is & combination of the
actual porosity of the wall and an effective increase in the porosity
due to the thickened boundery layer.

6. Positive or negative interference increments were found to occur
ror such model proverties as drag, lift, vpitching moment, and so forth,
depending upon the type of wave that would strike critical portions of
the model.

T. Supersonic Interference effects cannot be expressed as a simple
increment such as is used for subsonic blockage correction. The inter-
ference is, rather, a complicated function of Mach nmumber, wall porosity,
and tunnel and model configurstions.

8. No simple solution to the problem of interference at low super-
sonic speeds appesrs possible, nor does it appear practical completely
co eliminate the interference in any case,

9. In the two-dimensional case, & uniform-porosity wall could be
designred for small interference with a particular model and &t a particu-
lar Msch nurber, but the interference would become appreciable for off-
design conditions.

10. In the three-dimensional axially symmetric case, the porosity
distribution required for elimination of the interference 1s too com-
plicated for practicel realization. On the other hand, the required
distribution can be roughly approximated by a differential porous wall
and the residual interference can be made less evident by use of some
test section shape, such &s the square, which serves to spread out the
disturbances due to the interference.

11l. The design of a porous- or perforated-wall tunnel with small
interference is corplicated by the fact that the porosity distribution
required for tre elimination of the interference is known only from the
free fiezld andé by the fact that the effective porosity is largely influ-
enced by the bpoundsry layer, particularly in regions of inflow.

Langley Aeronautical Leboratory,
National Adviscry Commlttee for Aeronautics,
Lengley Field, Va., Feb. 12, 1958.
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Figure 1.- The supersonic flow Field about a two-dimensional model restricted by a nonreflecting
wall.
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Tigure 2.- Porous tunnel-wall conditions required to remove various shocks.

T29QST WM VOVN



=
—
70 \\\ (:12
T~ &
=
\\ =
\J
|~ o
60 [~ &
\\ -~
\\\ S
@ T~ ™~ Weak shock
g 50 =
e ]
: ~ N
5 ™S
o 40 g T
: ~_] ~ N
8 L4
g %0 ™ \\ 13 )
5 N ) /
§ \\\ N y —
S N\ \\Lz yi A
e 20 7
\ Moo=1.| / L~ P Strong shock
r L /
| /-“/
= |
.
0O 2 3 4 5 6 7 8 9 10
Turning angle due fo shock ,85,deg
(b) Percentage of open area of tunnel required to remove various shocks. t = 1 inch;
D = 0.0132 inch; py = 1 atmosphere; total temperature, 130° F.
W
AN

Tigure 2.~ Continued.



Variation of total pressure tc remove shock, p]\/p1Ih r
b ]

o
(@]

/

\ --..___\
\‘J \TLN . )
| [~ Weak shock
.2 T~ \\\
£ — ~—]
N \\ —

/
/
/

\ e
g \ \\j ) | /\ ik
1.3 '
B\km =L / - - —
4 ) 0™ - L — /’/J/ _ _|
| //// | ] Strong shock
_’TL"-‘-

0 | 2 3 4 5 6 7 8 9 10
Turning angle due fo shock,fs,deg

(c) Variation of total pressure required to remove various shocks. B = 25 percent; t = 1 inch;
D = 0.01352 inch; Pt,r = 1 atmosphere; total temperature, 130° F.

Figure 2.~ Concluded.

T24QCT WY VOVN



-— N
o) N [22) (o]

H

Percent opening for perforated tunnel, B

Weak shock

\

|

)
‘_
N

ST =
A/// /) o~ //
A// / // // Strong shock
O AT ) Mol ]
//‘/// m////////’///
s
Z=
0 | 2 3 4 5 6 7 10

Turning angle due to shock,8s,deg

Pigure 3.- Percentage of perforation required to remove various shocks.

TedeaT ¥ VOVN

44



-8 -r— ———e e - - - e e
O Free field, two-dimensional airfoil
O Porous wall, shock removed, K;=Kg S I
¢ Perforated wall, shock removed
6l— - 4 Over-porous wall, K= L.9Kg B |
- V' Prondtl- Meyer, nonreflecting wall 1D
D Oper_\—m'funnel wall o B \D\
'l N\
4 — \[
+ / 3 i N D
£ oy
,of—ygf“o'
‘-?_ 2 / . A==
/ i " A
Q
= 4 s \
§ 0 / e :'/
e /A//A:)/ \
[t
& %/k % 5\
Lot | \
o Gy
4 0O ]
\)———()wo—
i L
‘60 2 4 6 8 10 12 14 16 18 20

Distance along the air foil, in.
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-cylinder free field. M, = 1.194.
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Figure 7.- Pressure coefficients on the surface of the cone-cylinder
model due to restraint of the flow by various porous walls.
M, = 1.194; blockage, 1.796 percent.
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Figure 8.- The porosity factor for various walls.
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Figure 10.- Variation ol pressure coeflicient at the tunnel boundary for flows about a cone-
cylinder model restricted by various porous walls. M, = 1.19%; blockage, 1.796 percent.
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constant-porosity wall.
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Figure 13.- Drag coefficient of cone-cylinder model with a flat base.
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Figure 15.- Error in flow angle at l-inch radius from a 0.94-inch-diameter conc-cylinder model

with flow restricted by various walls,

M, = 1.19%; blockage, 1.796 percent.
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