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OF AN AIRPLANE CONFIGURATION HAVING A CAMBERED 

ARROW WING WITH A 750 SWEPT LEADING EDGE* 

By Joseph M. Hallissy, Jr., and Dennis F. Hasson 

SUMMARY 

An investigation has been conducted to determine the performance 
and static stability characteristics of a model of a long-range bomber 
intended to cruise at Mach number 3.0 . This configuration utilized a 
wing having a 750 sweptback leading edge and having camber and twist to 
give maximum lift-drag ratio at a lift coefficient of 0.1. The aspect 
ratio was 1 .79 and the taper ratio O. Wing thickness in sections normal 
to the leading edge varied betw.een 8 and 14 percent chord. Configura­
tions tested included the wing alone and two complete flying-wing type 
configurations, one having six separate underslung engine pods and the 
other having a clustered- engine installation with common inlet ducting. 

Tests were conducted at Mach numbers 2 .36 and 2 .87, through a range 
of angle of attack from _40 to 100 . The Reynolds number based on mean 

aerodynamic chord was about 4.2 X 106 for most tests. Maximum lift-drag 
ratios at Mach number 2.87 were 6 .8 for the wing alone, 6.2 for the com­
plete configuration having six underslung engine pods, and 5 .2 for the 
complete configuration with the clustered- engine arrangement. These 
results are below the anticipated performance, probably because of unfa­
vorable flow conditions on the upper surface . All configurations were 
longitudinally stable and trimmed near the design lift coefficient. The 
two complete configurations, which had vertical half-delta fins mounted 
on the wings near the tips, were directionally stable. 

INTRODUCTION 

In the search for an airplane configuration which has a lift-drag 
ratio at Mach number 3.0 high enough to be useful as a long- range all­
supersonic bomber, one possibility to be considered is a configuration 
incorporating a highly swept wing with subsonic leading edges. Linearized 

*Title, Unclassified . 
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t heory i ndi cates that the drag due to lift would be low for such a wing. 
Furthermore, the possibility exists that, when the wing is cambered, the 
configuration may be made stable and trimmed for the design load distri­
bution. This arrangement would permit the elimination of a horizontal 
stabilizer and the attendant trim and skin-friction drag. In addition, 
if the r equired airplane volume is incorporated in the wing, it would be 
poss ible t o eliminate or minimize the fuselage volume with a further 
r eduction in skin-friction drag. Accordingly, as one part of a Langley 
l aborat ory research program on supersonic-bomber designs (refs. 1 and 2), 
a configurat ion with leading edges swept 750 and with the design camber 
and twi st condition at a lift coefficient of 0.1 was laid out, and a 
wind- t unnel t est program was planned to determine whether the high lift­
drag r at i os were attainable ,experimentally and to investigate the static 
stability characteristics of such a wing. 

The r esults obtained in the wind-tunnel tests at Mach numbers 2.36 
and 2 .87 for several configurations utilizing this wing, including results 
on t he wing alone are presented. 

SYMBOLS 

The force and moment coeffiCient data are presented by using the 
system of axes shown in figure 1. The reference center for the moment 
data i s at t he apex of the wing trailing edge. 

b 

c 

C' D 

cn, min 
, 

CD 0 , 

t:£' D 

C l 

wing span, in. 

wing mean aerodynamic chord, in. 

drag coeffiCient , Drag 
qS 

minimum drag coefficient 

drag coefficient at zero lift 

drag-coefficient increment used in correcting measured drag 
coefficient 

lift coeffiCient, Lift 
qS 

pitching-moment coefficient, 

rolling-moment coefficient, 

Pitching moment 
qSc 

Rolling moment 
qSb 

r 

!\ 
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Cn 

Cy 

Cp 

CL 
a, 

Cz 13 

Cn 13 

Cy 

M 

Pz 

P 

s 

Xl 

yl 

13 

£:£2 
== 
~ 

l'Cn == 
~' 

£:£y 
== 43' 

yawing-moment coefficient, Yawing moment 
ClSb 

lateral-force coefficient, Lateral force 
ClS 

Pz - P 
pressure coefficient, 

Cl 

lift-curve slope, per degree 

calculated as 
(C z) §==4 0 - (CZ)~==_4O 

per deg 
8 

calculated as 
(Cn ) 13==4 0 (Cn) 13=-40 

per deg 
8 

calculated as 
(CY)I3==40 - (Cy) 13=-40 

per deg 
8 

free-stream Mach number 

local static pressure, lb/SCl ft 

free-stream static pressure, lb/SCl ft 

free-stream dynamic pressure, O.7PM2, lb/sq ft 

total wing area, (total area is used in computing force and 
moment coefficients for all configurations, including the 
tips-off configuration), sq ft 

distance along wing leading edge from the leading edge apex, in. 

distance from wing leading edge measured normal to the leading 
edge, in. 

upper-surface ordinate, measured normal to wing reference 
plane, in. 

lower surface ordinate, measured normal to wing reference 
plane, in. 

angle of attack of the balance axis (balance axis is 20 

noseup relative to the wing reference plane), deg 
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Subscripts: 

L 

R 
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angle of sideslip, deg 

angular deflection of wing tips about their hinge lines, posi­
tive trailing edge down, deg 

angular deflection of rudders, positive trailing edge left, deg 

left wing 

right wing 

APPARATUS AND METHODS 

Tunnel 

The tests were conducted in the low Mach number test section of the 
Langley Unitary Plan Wind Tunnel, which is a variable-pressure, contin- < 

uous, return- flow tunnel . The test section is 4 feet square and approxi­
mately 7 feet in length. The nozzle leading to the test section is of 
the asymmetric sliding-block type. The tunnel is equipped with a cen-
tral support system which permits remote control of the angles of attack 
and sideslip of a sting-mounted model . 

Model and Instrumentation 

The wing used in this investigation was designed by C. E. Brown and 
F. E. McLean of the Langley Aeronautical Laboratory. The plan form of 
the wing was selected on the basis of indications by the linear theory 
that at supersonic speeds lift can be carried efficiently by an arrow 
wing having subsonic leading edges (ref. 3, p. 202, fig. A,14m). The 
wing was cambered and twisted to provide a design lift coefficient of 
0.1 at Mach number 3.0 by using the superposition method of references 4 
and 5 and imposing the condition that the drag due to lift be a minimum 
for the plan form selected . A 63A thickness distribution, with the sec­
tions normal to the leading edge, was then wrapped symmetrically around 
the mean camber surface . The overall thickness was determined by approxi­
mate volume requirements for a long- range bomber design, rather than by 
structural requirements. The spanwise thickness distribution and the 
resulting longitudinal distribution of cross-section areas are shown in 
figure 2 . The ordinates of the upper and lower surfaces of the wing are 
given in table I . The photographs of a wood mock- up of the wing presented 
as figure 3 are presented to help in visualizing the surface contours. 

I 

I 

-~ 
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The wing was intended to be stable and to trim at the design point 
without the use of auxiliary longitudinal stabilizing surfaces; there­
fore, the concept for the complete airplane was that of a flying wing 
having little or no fuselage and with all re~uired internal volume pro­
vided by the wing. Three-view drawings of several of the configurations 
investigated are shown in figure 4 and additional geometric details are 
listed in table II. Configurations tested were the wing alone (with the 
minimum center body re~uired to enclose the balance), ,the wing alone with 
movable tips off, the wing with a rectangular body fairing on the upper 
surface, the wing with two half-delta vertical fins mounted on the upper 
surfaces, and two complete airplane configurations with simulated engine 
installation and vertical fins. One of these configurations had six 
underslung single pods and a pair of half-delta fins mounted on the upper 
surface (fig. 4(b)). The other had a cluster of six engines with a com­
mon underslung inlet and ducting and half-delta fins on both the upper 
and lower surfaces (fig. 4(c)). The same wing (fig. l(a)) was used for 
each configuration, the differences among the configurations being in 
the engine installation, vertical fins, and center body. The photographs 
of figure 5 show some of the test configurations. 

The vertical fins and pods were positioned so as to be aligned with 
the calculated local flow at the design lifting condition. Inlet geome­
try for both types of simulated engine installation was fixed at the Mach 
number 3.0 condition, and it was determined that flow in the inlets was 
supersonic at almost all test conditions, the only exception being that 
the outboard pods at large negative attitudes may not have been started 
because of the large flow angularity. 

The size of the engine exits was such that the exit flow was choked 
throughout the test speed range. In order to determine the internal 
drag, the exit pressures were measured by either a total-pressure tube 
just inside the exit (in the case of the clustered engine installation) 
or a flush static-pressure tube in the straight exit pipe (in the case 
of the six-pod engine installation). 

Forces and moments were obtained on a six-component electrical 
strain-gage balance mounted within the model. The model-balance assembly 
was sting-mounted from the tunnel central-support system. 

Tests 

Most of the tests were conducted at the conditions indicated in the 
following list: 
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Mach number . . 

Reynolds number (based on c) 
Stagnat ion pressure, atm 
Dynamic pressure, lb/sq ft 
Stagnation temperature, ~ 
Dewpoint, ~ ..... 
Angles of attack, deg . 
Angles of sideslip, deg 
Transition . . . . 

2.36 

4.3 x 106 

0·93 
560 
150 

< -30 
-4 to +10 
-4, 0, 4 

Fixed 

NACA RM L58E21 

2.87 

4.2 x 106 
l.21 
490 
150 

< -30 
-4 to +10 
-4, 0, 4 

Fixed 

The transition strips consisted of bands of sand 3/32 inch wide 
sparsely applied to the surfaces with a plastic spray. The grain size 
was 0.010 inch to 0.013 inch with the strip applied at 5 percent of the 
local streamwise chord on the wing and at 8.5 percent of the chord on 

the fins. A few data were also obtained at Reynolds numbers of 2.5 x 106, 

6 .3 x 106, and 8 .2 X 106, and some tests were made with natural transition. 

Additional tests were required for pressure measurements needed to 
evaluate the internal drag and base pressures. In order to provide some 
insight concerning air-flow conditions on the wing, pressure orifices 
were installed and a limited amount of pressure data was obtained on the 
wing alone. 

A flow-visualization technique which utilized a fluorescent oil 
painted on the wing surface was also employed. The photographs of the 
wing surface, made with the tunnel in operation, indicate the areas of 
attached and separated flow as well as the air-flow direction on the sur­
face. The model was translated forward and rearward in the test section 
to obtain full photographic coverage of the Wing, and the resulting prints 
were pieced together to form a composite. 

Corrections and Accuracy 

The maximum deviation of local Mach number in the part of the tunnel 
occupied by the model is ±0.015 from the average value given. The pres ­
sure gradients are sufficiently small that no buoyancy correction is 
required. 

The average angularity of the flow in the region of the model was 
determined by comparing inverted and upright runs and the angle of attack 
corrected accordingly. The angles of attack and sideslip have been cor­
rected for balance-sting deflection and are accurate to within to.lo . 

The internal drag has been subtracted from the measured drag, and 
the data have also been adjusted to the condition of free - stream static 
pressure on the model base and engine bases . No corrections or adjustments 

--- ----- --------
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have been made relative to the boundary-layer diverter drag of the 
clustered-engine configuration. 

Based upon balance accuracy and repeatability of data, it is esti­
mated that the coefficients are accurate within the following limits: 

PRESENTATION OF RESULTS 

±0.003 

±0.0005 

±0.0005 

±O.0003 

±0.0003 

±0.002 

±0.005 

The results of this investigation are presented in the following 
figures: 

Schlieren photographs of the model . . . . . . . . . . . 
Composite of oil-film flow photographs of wing alone .. 
Pressure distribution on wing alone at angles of attack 

near design condition . . . . . ....... . 
Base, chamber, and internal drag coefficients for various 

model configurations . . . . . . . . . . . . . . . . 
Boundary-layer-diverter pressures for clustered engine 

configuration . . . . . . . . . . . . . . . . . 
Longitudinal characteristics of the various model 

configurations . . . . . . . . . . . . . . . . 
Effects of transition at two Reynolds numbers on longit udinal 

characteristics of wing alone at M = 2.87 .... 
Variation of CD min with Reynolds number for fixed and , 

natural transition on wing alone at a Mach number 
of 2.87 ................... . 

Summary of longitudinal characteristics of several model 
configurations . . . . . . . . . . . . . . . . . 

Lateral characteristics of various model configurations at 
Mach number 2.87 . .... . ....... . 

Sideslip derivatives for several model configurations at 14ach 
number 2.87 . . . . . . . . . . . . . 

Figure 
6 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 
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SUMMARY OF RESULTS 

Performance 

At Mach number 2 .87, which is near the design speed, the maximum 
lift - drag ratio for the wing alone is 6.8 (fig. 14). For the complete 
airplane configuration with six underslung pods and upper surface fins, 
the value of (L/D)max is 6 .2, and for the complete configuration with 

the clustered engine installation and both upper and lower surface fins 
the value (L/D)max is 5 .2 . These numbers are appreciably below the 

antiCipated levels, and it will be worthwhile to consider briefly the 
cause of this difference . 

Figure ll(b) compares the experimental data for the wing-alone 
configuration with the theoretical longitudinal characteristics obtained 
in the design calculations for M = 3 .0 . The drag- coefficient polars 
indicate that, although a low level of minimum drag was achieved, the 
drag due to lift for M = 2 . 87 was much higher than the calculated 
result for M = 3 .00 . Furthermore, theory indicates that the lift-curve 
slope at Mach number 3 .00 should be about 0.0253, but the present test 
results at M = 2 .87 Were about 13 percent below this value for lift 
coefficients up to 0 .1 . From these results, it is apparent that the 
wing is not achieving its intended performance . It is believed that 
this deficiency is due to unfavorable flow conditions on the upper sur­
face . The oil- film flow photographs of figure 7 indicate a region of 
attached flow over the forward portion of the wing . Behind this region 
the flow is separated from the surface, as is indicated by the lack of 
scrubbing and the erratic oil- flow paths . On each of the pressure dis ­
tributions of figure 8 is shown the level of pressure coefficient which 
corresponds to M = 1 .0 in the direction normal to the leading edge, 
and it can be seen that this value of the pressure coefficient is 
exceeded at every station . The flow separation is therefore probably 
associated with the existence of supercritical flow (in a direction nor­
mal to the leading edge) and attendant shock waves on the upper surface . 
The rectangular body fairing, shown in figures 4 (a) and 5 (b), was added 
to the upper surface in an effort to move the wing shock wave nearer 
the leading edge and thereby to weaken the shock wave and reduce the 
amount of separation . No conclusive visual evidence of flow changes 
were obtai ned, but force data (fig. ll(c)) shows a reduction of maximum 
lift- drag ratio to 6 .4, so that any gains were more than offset by a 
loss of lift or an increase of drag, or both . 

Although the performance of the best complete configuration of this 
investigation is below its estimated design capability, it should be 
pointed out that the maximum lift - drag ratios obtained are comparable 
with those obtained on other configurations intended for the long-range 
airplane (refs . 1 and 2) . 

r 
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Longitudinal Stability 

For the center - of- gravity position used in the data reduction) all 
configurations (except the configuration with wing tips off) were longi­
tudinally stable throughout the lift and Mach number range of the tests. 
The stability for the wing alone was not as great, however, as the calcu­
lated value (fig . ll(b )), the calculated aerodynamic center being about 
0.12c aft of the experimental location. All configurations showed reduc­
tions of stability above CL = 0 .2, but none became unstable within the 

test range. 

The effectiveness of the tips as a longitudinal trim device is indi­
cated by comparing figures ll(g) and ll(h). At M = 2 .87 a tip deflec­
tion of _50 increased the tr im lift coefficient from 0.090 to 0.155. 

Lateral and Directional Stability 

Tests to determine effects of sideslip, rudder deflection, and 
opposite tip deflection were made only at M = 2 . 87 . All configurations 
had positive effective dihedral, -C2~ ' throughout the angle - of-attack 

range (fig. 15), although the location and amount of fin and nacelle 
area affected the magnitude , as would be expected . 

The basic wing-alone configuration had neutral directional stability 
throughout the angle - of- attack range, so that the addition of fins and 
nacelles always resulted in positive Cn~ ' figure 16 . Variations with 

angle of attack were about as might be anticipated: a rather severe 
decrease as Q increased when only the upper - surface fins are mounted, 
but flatter curves for the other configurations having nacelles or fins 
below the wing. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va . , May 7, 1958 . 
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TABLE I. - WING ORDINATES 

[All dimensions are in inches. Ordinates to the upper and lower surfaces, Zu 

and zl' are measUred normal to the wing reference plane which is parallel to 

the free stream when the wing is at the design attitude. Ordinates are posi ­
ti ve upward-] 

y' Zu zl y' Zu zl y' Zu zl 

x' = 0 x' = 9·0 x ' = 15·0 

0.000 3 .045 3 .045 0.000 0.272 0.272 0 .000 0 .081 0.081 
.045 .386 .231 .075 .201 .014 

x' = 3 .0 .090 .438 .221 .150 .251 - .012 
.135 .474 .219 .227 .287 -.035 

0 .000 1.149 1 .149 .227 .548 .210 .378 .344 -.075 
.015 1.209 1 .118 .341 .614 .203 .569 .390 -.125 
.045 1.268 1.122 ·572 ·725 .188 .761 .419 -.174 
.075 1.319 1.131 .689 .767 .182 1.148 .429 -.276 
.152 1 .416 1.163 1.044 .872 .167 1.344 .422 -. 327 
.230 1.518 1.203 1.164 .899 .162 1.542 .410 -.380 
.309 1.617 1.254 1.286 .926 .155 1.940 .372 -.488 
.389 1 ·710 1.308 
.470 1.·814 1 .371 

1·529 .960 .135 
1 .653 ·968 .120 

2.142 .342 -.540 
2.345 .308 -·596 

.551 1. 926 1.443 1.902 .951 .065 2.754 .224 -. 707 

.635 2 .046 1.538 2 .028 ·917 .010 2.961 .173 -.765 

.719 2:198 1.649 2 .154 .864 -.065 3.170 .113 -. 825 

.804 2 .393 1 .808 2 .283 .786 -.155 3·591 - .053 -· 975 
2 .412 .698 - .255 4.019 -.322 -1 .208 

x ' = 6 .0 
x' = 12.0 x ' = 18.0 

0.000 0.594 0.594 
.030 .684 ·557 0 .000 0.125 0.125 0 .000 0.096 0.096 
.060 ·732 ·552 .060 .239 .069 .090 .225 .030 
.120 ·797 .558 .120 .290 .051 .180 .282 -.002 
.152 .833 .563 .240 .366 .020 .270 .320 -.026 
.305 .962 .581 .302 .398 .008 .362 .345 -.050 
.381 1.019 ·591 .455 .458 -.020 .683 .395 -.150 
·537 1.116 .614 .762 .537 -.069 .912 .392 -.231 
.617 1.163 .626 .918 .566 -.096 1.377 .344 -.390 
.696 1.206 .636 1.076 .590 -.123 1.613 .309 -.471 
.857 1.287 .662 1.391 .612 -.179 1 .850 .266 -. 551 

1.020 1 .367 .684 1·553 .620 -. 207 2 .328 .156 -.704 
1.101 1.406 .698 1 .713 .621 -.234 2 ·570 .098 -.780 
1.185 1.442 ·710 2 .039 .609 -.296 2.813 .029 -.858 
1.352 1.500 ·731 2.204 .596 -.329 3 .305 -.131 -1.010 
1.608 1.568 .744 2 .537 .536 -. 419 3 ·554 -.219 -1.086 

2 ·705 .480 - .480 3 .803 -. 317 -1.164 
3 .044 .284 -·705 4 .565 -.641 -1.395 
3 .215 .119 -. 863 4 .823 -.756 -1.470 

II 
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TABLE 1.- WING ORDINATES - Continued 

y' Zu zr y' Zu zr y ' Zu zr 

x' = 21.0 x ' = 27 ·0 x ' = 33 .0 

0.000 0.109 0.109 0 .000 0.118 0 .118 0.000 0.101 0 .101 
.105 .250 .039 .135 .293 .038 .165 .315 .003 
.210 .315 .010 .270 .368 .004 .332 .401 -.031 
.317 .352 - .014 .407 .419 -.028 .497 .459 -.066 
.423 .381 -.041 .680 .484 -.093 .663 ·501 -.099 
.528 .400 -.068 1 .023 ·502 -.180 .831 .528 -.135 

1.065 .409 -.239 1.368 .478 -.285 1.250 .549 -.228 
1.335 .375 - .341 1 .716 .416 -.400 1 .673 ·512 -. 338 
1.881 .247 -· 553 2 .067 .334 -. 526 2 .097 .432 -.456 
2 .159 .169 -. 661 2 .420 .220 -. 661 2 .526 .312 -. 585 
2 ·717 -.020 - .874 2 ·775 .074 - .805 2 .957 .152 -·719 
2 ·999 -.119 -. 977 3 .492 - .289 -1 .114 3 .392 -.045 - .863 
3.282 -.227 -1.076 3 .855 -.489 -1.272 3.828 -.288 -1.022 
3 .857 - .458 -1. 267 4.587 -· 903 -1. 552 4 .268 -. 560 -1.191 
4 .146 - .580 -1. 346 5 ·331 -1 .288 -1.762 4.712 -. 855 -1. 371 
4 .733 -. 824 -1.489 5.706 -1.453 -1 .837 5 ·157 -1.154 -1. 554 
5·327 -1.069 -1. 621 6 .084 -1·591 -1. 882 5 .607 -1.461 -1·739 
5.627 -1.186 -1. 682 6 .465 -1·702 -1. 900 6 .059 -1·757 -1. 905 

6 .849 -1.789 -1 .894 6 ·515 -1.998 -2.021 
x ' = 24 .0 7 .234 -1.858 -1.867 6.602 -2 .030 -2 .033 

0.000 0.117 0.117 
.120 .278 .041 
.240 .338 .014 

x' = 30 .0 
0 .000 0 .113 0.113 

.150 ·311 .020 

x ' = 36.0 
0 .000 0 .085 0.085 

.180 .308 -.015 
.360 .384 - .014 ·300 .389 -. 013 .362 .400 - .053 
.483 .419 -.044 .452 .446 - .050 .542 .463 - .083 
.605 .441 -.072 
·909 .462 -.156 

.603 .486 -.081 
1 .137 .536 - .210 

·725 .508 -.118 
.906 ·537 -.151 

1. 526 .398 -.360 
1. 838 .324 -.480 
2 .151 .224 -. 611 
2 .466 .108 -.749 

1.521 .504 -. 320 
1 ·907 .437 -.444 
2 .297 .336 -· 569 
2 .688 .200 -·707 

1 .364 .558 -.242 
1 .824 ·505 -. 347 
2 .289 .405 -.461 
2 .756 .268 -. 583 

2 ·784 - .021 -. 882 
3 .104 -.161 -1.013 
3.752 -.462 -1. 260 
4.077 -. 615 -1.373 
4 .407 -·767 -1.475 
5 ·072 -1.068 -1.638 
5.408 -1.209 -1.704 
6 .087 -1.470 -1. 805 

3 .083 .032 -. 854 
3.480 -.179 -1.014 
3.881 - .414 -1 .185 
4.283 -. 662 -1.346 
4. 689 -· 921 -1 .514 
5·097 -1.184 -1. 670 
5·508 -1.433 -1.805 
5·922 -1. 629 -1. 895 

3 .225 .084 -· 710 
3.699 -.146 - .848 
4.176 -.422 -1.004 
4 .656 -. 725 -1. 171 
5 ·139 -1 .039 -1. 357 
5 ·627 -1 .384 -1· 562 
6 .117 -1 ·730 -1·775 
6 .255 -1. 835 -1. 835 

6.431 -1. 568 -1. 832 6 .341 -1.788 -1·952 
6 .930 -1. 989 -1.992 
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TABLE I. - WING ORDINATES - Concluded 

[ yl Zu Zz yl Zu Zz 

, 
I 

Xl = 39·0 Xl = 48.0 

0.000 0.067 0.067 
.195 .294 -.030 
.392 .391 -.063 
.588 .454 -.093 
·785 .499 -.1.22 
.981 .526 -.152 

1.478 ·544 -.238 
1.977 .486 -.334 
2.480 .363 -.439 
2.985 .204 -.548 
3.495 -.008 -.665 
4.008 -.268 -.800 

0.000 -0.009 -0.009 
.240 .216 -.074 
.482 .310 -.089 
·723 .376 -.101 
.966 .418 -.111 

1.208 .439 -.120 
1.818 .435 -.146 
2.433 .316 - .1&:l 
3·051 .132 -.224 
3.674 -.098 - .289 
4.301 -.359 -.382 
4.380 -.379 -.382 

4.524 -·572 -. 958 
5 .045 -.899 -1.135 Xl = 51.0 
5 .568 -1.235 -1.327 
5.877 -1.444 -1.447 0.000 -0.038 -0.038 

.255 .164 -.074 
Xl = 42.0 ·512 .248 -.076 

.768 .310 -.073 
0.000 0.046 0.046 1.026 .347 -.068 

.210 .277 -.044 

.422 .380 -.077 
1.284 .362 -.062 
1·932 .335 -.043 

.633 .445 -.106 2.585 .200 -.055 

.845 .493 -.131 
1.058 ·520 -.159 

3.242 -.005 -.101 
3.641 -.131 -.134 

1·592 ·529 -.231 
2.1.29 .455 -.313 Xl = 54 .0 
2.670 .314 -.402 
3.215 .127 -.496 
3;764 -.110 -· 595 
4.316 -.399 -.726 

0.000 -0.075 -0.075 
.270 .100 -.078 
·542 .175 -.056 

4.872 -·724 -. 894 
5·432 -1.072 -1.081 

.813 .225 -.035 
1.086 .250 -.011 

5.456 -1.086 -1.089 1.359 .253 .015 
2.046 .207 .087 

Xl = 45·0 2.634 .076 .076 

0.000 0.020 0.020 Xl = 57·0 
.225 .254 - .063 
.452 .356 -.088 
.678 .420 -.109 

0.000 -0.118 -0. 118 
.285 .011 -.069 

·905 .464 -·1.29 
1.133 .492 -.147 

·572 .059 -.007 
.858 .072 .053 

1.704 ·500 -.203 
2.200 .402 -.266 

·975 .075 .075 

2.861 .240 -.332 Xl = 57.956 
3.444 .024 -.407 
4.032 -.231 -·501 0.000 -0.134 -0.134 
4.625 -·534 -.632 
4.967 -.716 -·719 
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TABLE 11.- GEOMETRIC CHARACTERISTICS OF THE MODELS 

~tations are inches rearward of wing- leading- edge apex] 

Center- of- gravity location : 
Longitudinal ..... ......... • 
Distance below the wing r eference plane , in. 

Station 27 .98 
. . .. 1.86 

Wing : 
Area, total including tips , sq ft 
Span, in . . . 
Aspect ratio . . . . 
Taper ratio . . . . . 
Sweepback of leading edge, deg 
Total length in streamwise direction, nose to wing 

tip, in . . .... . 
Root chord, in ............. . . . 
Mean aerodynamic chord, in . . . . . .... . 
Mean- aerodynamic - chord lateral location, in. 
Area outside of the upper ver tical fins ( or movable tip 

area), total for both sides, sq ft 

3 .490 
30 .0 
1.19 

o 
15 

55 ·97 
21 .98 
20 .43 

5 .49 

0. 562 

Vertical fins (applies to either upper or lower except as noted): 
Area, each upper fin , sq ft 
Area, each lower fin, sq ft 
Height, in ..... . 
Taper ratio . . . . . 
Sweepback of the leading edge relative to the local wing 

chord, deg . . . . . 
Mean aerodynamic chord, in. . . . . . . . 
Root.chord, in ......... . ... . 
Longitudinal location of r oot chord midpoint 
Lateral location of r oot chord midpoint from plane of 

symmetry, in . 
Toe - in of lower fins, deg ...... . 
Toe- in of upper fins , deg ...... . 
Airfoil section parallel to local wing 

0. 283 
0 .255 
6.859 

o 

30.0 
7 ·92 

11 . 88 
Station 43 .39 

9 . 564 
4 .50 

-4 .50 

chord ......... . 5- per cent - thick circular ar c 

Circular fuselage (used with wing alone configuration and with 
six- pod confi guration) : 
Average nose - cone half- angle , deg . 2 . 6 
Location of the forward end of the 

cylindrical- section . . . . . . 
Location of the cyl indri cal base 
Cylindri cal- section di ameter, in . 
Base annulus area, sq ft .... 
Chamber area, sq ft . . . . . . . 
Inclination of cylinder relative to wi ng reference 

plane, deg .............. .. .. . 

Station 23 .37 
Station 35 .11 

2.250 
0.0058 
0. 0218 

2 .00 
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TABLE 11.- GEOMETRIC CHARACTERISTICS OF THE MODELS - Concluded 

Engine pods used with six-pod configuration : 
Length, inlet spike tip to exit, in . 
Length, inlet lip to exit, in . 
Maximum diameter, in. 
Capture area, per pod, s~ ft . 
Exit area, per pod, s~ ft 
Base annulus area, per pod, s~ ft 
Longitudinal location of inlet spike tip: 

Inboard pods . 
Center pods 
Out board pods .... 

8 .557 
6.732 
1.254 

0.0056 
0.0041 
0.0036 

Station 28.62 
Station 35.07 
Station 40.42 

Lateral location of inlet spike tip from the plane 
Inboard pods . 

of symmetry, in.: 

Center pods . .. . . . • . •. •. . • 
Outboard pods . . . . . . . . . . . . . . 

Distance of inlet spike tip below lower wi ng surface, in.: 
Inboard pods . 
Center pods . . . . . . . . . . . . . . . 
Outboard pods . . . . . . . . . . . . •.. 

InClination of the pod center line r elative to the wing reference 
plane, nose upward, deg : 
Inboar d pods . 
Center pods . ... . . 
Outboard pods . . . . . 

Toe - in angle of the pod center line, deg: 
Inboard pods . 
Center pods 
Outboard pods 

Pod support strut: 
Sweepback of leading and trailing edges relative to the local 

wing .surface, deg . . . . ... . . . . 
Chord parallel to the local wing surface, in. 
Airfoil section parallel to the local wing 

1.28 
1.28 
1.28 

3. 25 
0.92 

-0.33 

0. 66 
2. 66 
4.21 

60 
4 .00 

surface . .•• .. . . . .. . .. .. . 3-percent-thick circular arc 

Clustered engine inlet -duct assembly : 
Location of base . . . . . . . . 
Length of assembly, in . ... . 
Maximum height of assembly, in . 
Maximum width of assembly, in . . 
Capture area, total for both sides, sq ft 
Exit area, total for four exits, s~ ft 
Base area, sq ft . . . . . . 
Chamber ar ea, sq ft . . . . 
I nlet- ramp wedge angle, deg 
Sweepback angle of upper and lower inlet lips , deg 
Angle of the forward part of the duct outer side wall relat ive to 

the plane of symmetry, deg .... 
Boundary-layer-diverter wedge angle, deg . . . . . . . . . . . 

Station 34.22 
19 ·27 
2. 588 
3.934 

0 .0288 
0 .0208 
0.0168 
0.0192 

6 .00 
65.65 

5.48 
9 .44 

15 
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Rolling 
moment 

Re l ati ve 

Side force 

------

~ Yawing moment 

Lift r-
I 

Figure 1 .- Axes used for data present a t ion. 
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Figure 2.- Wing thickness. 
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L-5B-502 

L-58-503 
Figure 3.- Photographs of a wood mock-up of the wing showing upper­

surface contours. Sections indicated are normal to the leading edge. 
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30.00 

15 . 00 
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~~~ 

Section A-A 

Moment center 

I- 27.98 -I 

Wing tip 
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Wing r eference 
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~_ ~1.86 
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(a) Wing alone with rectangular body fairing on upper surface. The basic test configuration 
was the same but with the rectangular fairing removed (circular body fairing only used) . 

Figure 4.- Three-view drawings of the test configurations. 
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(b) Complete-airplane configuration with six underslung pods and upper-surface fins. 

Figure 4.- Continued. 
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(c) Complete-airplane configuration with clustered engine installation and upper- and lower­
surface fins. 

Figure 4 .- Concluded . 
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(a) Wing alone. L-57-5560 

(b) Wing alone with rectangular body fairing. L-58-300 

Figure 5.- Photographs of several model configurations. 
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L-58-826 
(c) Compl ete airplane configuration with underslung pods and upper­

surface fins. 

L-57-56l4 
(d) Complete airplane configuration with clustered engine installation. 

23 

Bot h upper- and lower-surface fins are skewed so as to be aligned with 
local air flow at design lifting conditions. 

Figure 5.- Concluded. 



M=2.36j (1:::2 0 M=2.36j (1:::2 0 M=2 .36; .=2.5° 

M=2 . 87i 0:::2 0 M=2.B7j 0:::2 0 M=2.B7; 0=2.20 

(a) Wing alone. L-58-l673 

Figure 6 .- Schlieren photographs of the model . 

f\) 

+'"" 

~ 
~ 
l:-i 
\Jl 

~ 
f-' 
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(b) Complete model wit h s ix underslung pods and upper-surface fins. De = 0°. 

Figure 6 .- Cont inued. 
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M= 2.36; ex = 2.5 ° 

M=2.87; ex=2.2° 

(c) Complete model with clustered engine installation. 
lower-surface fins. 0e = 0°. 

Figure 6.- Concluded. 
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L-58-1675 
Both upper- and 
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M = 2.36 M = 2.87 

L-58-1676 
Figure 1.- Oil-film-flow photographs of the wing alone. Fixed transi-

tion, CL ~ 0.1; R ~ 4.2 X 106 . 

j 
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Cp 

o Upper surfoce 
o Lower surface 

--- Pressure coefficient level 
correspon(hng 10 M - 1,0 
normal 10 The leadmg edge 

-.05 

.05 

Cp 

(a) M == 2.36. 

NACA RM L58E21 

Cp 

Figure 8.- Pressure distribution on wing alone at angles of attack near 
design condition. 
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Cp 

o Upper surface 
o lower surface 

- - - Pressure coefl/elenl level 
correspondmg 10 M . '.0 
normal 10 The leadmg edge 

.05 

Cp 

/ CL 0.090 

(b) M = 2.87. 

Figure 8.- Concluded. 
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Figure 9 .- Variation of base, chamber, and internal drag coefficients with angle of attack for 
various model configurations . 
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Figure 9.- Concluded. 
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A 

A 

Section through the boundary layer 
diverter orifices (between the 
wing and the clustered engine 
inlet ducting) 

2 4 6 8 10 12 
Distance aft of inlet leading edge, inches 

NACA RM L58E21 

Figure 10.- Boundary-layer-diverter pressures for clustered engine 
configuration. 
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(a) Wing with tips removed. 

Figure 11.- Longitudinal characteristics of the various model 
configurations. 
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(a) Concluded. 

Figure 11.- Continued. 

NACA RM L58E21 
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(b) Wing alone. 

Figure 11.- Continued. 
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(b) Concluded. 

Figure 11.- Continued. 
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(c) Wing with rectangular body fairing. 

Figure 11.- Continued. 
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(c) Concluded. 

Figure 11.- Continued. 
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a, 
deg 

(d) Wing with upper-surface fins. 

Figure 11.- Continued. 
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L -o 

(d) Concluded. 

Figure 11.- Continued. 

- - - - - - ------
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a, 
deg 

(e) Wing with upper-surface fins deflected. or = 5°. 

Figure 11.- Continued. 
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L 
-o 

(e) Concluded. 

Figure 11.- Continued. 



NACA RM L58F21 

(f) Wing with upper-surface fins and oppositely deflected wing tips. 
0e,L = -5°; 0e,R = +5°. 

Figure 11.- Continued. 
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(f) Concluded. 

Figure 11.- Continued. 
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(g) Wing with six underslung pods and upper-surface vertical fins. 
De = 00

. 

Figure 11.- Continued. 



46 NAeA RM L58E21 

(g) Concluded. 

Figure 11.- Continued. 
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(h) Wing with six underslung pods and upper-surface vertical fins. 
0e = _5°. 

Figure 11.- Continued. 
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(h) Concluded. 

Figure 11.- Continued. 
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(i) Wing with clustered engine installation with upper- and lower­
surface fins. oe = 0°. 

Figure 11.- Continued. 
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(i) Concluded. 

Figure 11.- Concluded. 

~----- --~- ~~---~-~~~~-----~~---~~ 
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(a) R = 4.24 x 106. 

Figure 12.- Effects of transition at two Reynolds numbers on pitch char­
acteristics of wing alone at M = 2.87. 
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(a) Concluded. 

Figure 12.- Continued. 

l 
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(b) R = 8.20 x 106 . 

Figure 12.- Continued. 
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(b) Concluded. 

Figure 12.- Concluded. 
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Figure 14.- Summary of the longitudinal characteristics of several model 
configurations. 
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(a) Wing alone. 

Figure 15.- ~ateral characteristics of the various model configurations 
at Mach number 2.87. 
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.02 

.01 

.01 

.02 

a,deg 

(b) Wing with upper-surface fins. or = 0°. 

Figure 15.- Continued. 
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.01 

(c) Wing with upper-surface fins deflected. or 5°. 

Figure 15.- Continued. 
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.01 

a,deg 

(d) Wing with upper-surface fins and oppositely deflected wing tips. 
o = 5°· 0 - 5° e,L - , e,R - . 

Figure 15.- Continued. 
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a,deg 

(e) Wing with six underslung pods and upper-surface vertical fins. 
0e = 0°. 

Figure 15.- Continued. 
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.02 
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(f) Wing with clustered engine installation with upper- and lower­
surface fins. 0e = 0°. 

Figure 15.- Concluded. 
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Figure 16.- Sideslip derivatives for several model configurations at 
Mach number 2.87. 
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